Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Strains and Cell Lines
2.2. Mosquito Strains
2.3. Mouse Infections and Mosquito Feeding
2.4. Mosquito Incubation and Virus Quantification
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vasilakis, N.; Weaver, S.C. Flavivirus transmission focusing on Zika. Curr. Opin. Virol. 2017, 22, 30–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyer, S.; Calvez, E.; Chouin-Carneiro, T.; Diallo, D.; Failloux, A.B. An overview of mosquito vectors of Zika virus. Microbes. Infect. 2018. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.R.; Chen, T.H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef] [PubMed]
- Guerbois, M.; Fernandez-Salas, I.; Azar, S.R.; Danis-Lozano, R.; Alpuche-Aranda, C.M.; Leal, G.; Garcia-Malo, I.R.; Diaz-Gonzalez, E.E.; Casas-Martinez, M.; Rossi, S.L.; et al. Outbreak of Zika Virus Infection, Chiapas State, Mexico, 2015, and first confirmed transmission by Aedes aegypti mosquitoes in the Americas. J. Infect. Dis. 2016, 214, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Aliota, M.T.; Bassit, L.; Bradrick, S.S.; Cox, B.; Garcia-Blanco, M.A.; Gavegnano, C.; Friedrich, T.C.; Golos, T.G.; Griffin, D.E.; Haddow, A.D.; et al. Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antivir. Res. 2017, 144, 223–246. [Google Scholar] [CrossRef] [PubMed]
- Althouse, B.M.; Vasilakis, N.; Sall, A.A.; Diallo, M.; Weaver, S.C.; Hanley, K.A. Potential for Zika Virus to establish a sylvatic transmission cycle in the Americas. PLoS Negl. Trop. Dis. 2016, 10, e0005055. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.E.; Holmes, E.C.; Barrett, A.D. Out of Africa: A molecular perspective on the introduction of yellow fever virus into the Americas. PLoS Pathog. 2007, 3, e75. [Google Scholar] [CrossRef] [PubMed]
- Hanley, K.A.; Monath, T.P.; Weaver, S.C.; Rossi, S.L.; Richman, R.L.; Vasilakis, N. Fever versus fever: The role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2013, 19, 292–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira-Soto, A.; Torres, M.C.; Lima de Mendonca, M.C.; Mares-Guia, M.A.; Dos Santos Rodrigues, C.D.; Fabri, A.A.; Dos Santos, C.C.; Machado Araujo, E.S.; Fischer, C.; Ribeiro Nogueira, R.M.; et al. Evidence for multiple sylvatic transmission cycles during the 2016–2017 yellow fever virus outbreak, Brazil. Clin. Microbiol. Infect. 2018. [Google Scholar] [CrossRef] [PubMed]
- Vanchiere, J.A.; Ruiz, J.C.; Brady, A.G.; Kuehl, T.J.; Williams, L.E.; Baze, W.B.; Wilkerson, G.K.; Nehete, P.N.; McClure, G.B.; Rogers, D.L.; et al. Experimental Zika Virus Infection of Neotropical Primates. Am. J. Trop. Med. Hyg. 2018, 98, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Seferovic, M.; Martin, C.S.; Tardif, S.D.; Rutherford, J.; Castro, E.C.C.; Li, T.; Hodara, V.L.; Parodi, L.M.; Giavedoni, L.; Layne-Colon, D.; et al. Experimental Zika virus infection in the pregnant common marmoset induces spontaneous fetal loss and neurodevelopmental abnormalities. Sci. Rep. 2018, 8, 6851. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Sanchez-San Martin, C.; Bouquet, J.; Li, T.; Yagi, S.; Tamhankar, M.; Hodara, V.L.; Parodi, L.M.; Somasekar, S.; Yu, G.; et al. Experimental Zika virus inoculation in a New World monkey model reproduces key features of the human infection. Sci. Rep. 2017, 7, 17126. [Google Scholar] [CrossRef] [PubMed]
- Terzian, A.C.B.; Zini, N.; Rocha, R.F.; Sacchetto, L.; Sarto, J.L.; Coutinho, F.; Rayra, J.; da Silva, R.A.; Dias, A.C.F.; Fernandes, N.C.C.A.; et al. Detection of Zika virus in neotropical non-human primates from Brazil: Evidence of natural infection. Sci. Rep. 2018. in revision. [Google Scholar]
- Roundy, C.M.; Azar, S.R.; Rossi, S.L.; Huang, J.H.; Leal, G.; Yun, R.; Fernandez-Salas, I.; Vitek, C.J.; Paploski, I.A.; Kitron, U.; et al. Variation in Aedes aegypti mosquito competence for Zika virus transmission. Emerg. Infect. Dis. 2017, 23, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.C.; Young, K.I.; Johnson, W.L.; Villa, M.E.; Buraczyk, C.A.; Messer, W.B.; Hanley, K.A. Rise and fall of vector infectivity during sequential strain displacements by mosquito-borne dengue virus. J. Evol. Biol. 2016, 29, 2205–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanley, K.A.; Nelson, J.T.; Schirtzinger, E.E.; Whitehead, S.S.; Hanson, C.T. Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus. BMC Ecol. 2008, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Antunes, P.C.A.; Whitman, L. Studies on the capacity of mosquitoes of the genus Haemagogus to transmit yellow fever. Am. J. Trop. Med. Hyg. 1937, 17, 825–831. [Google Scholar] [CrossRef]
- Bates, M.; Roca-Garcia, M. Laboratory studies of the Saimiri-Haemagogus cycle of jungle yellow fever. Am. J. Trop. Med. Hyg. 1945, 25, 203–216. [Google Scholar] [CrossRef]
- Couto-Lima, D.; Madec, Y.; Bersot, M.I.; Campos, S.S.; Motta, M.A.; Santos, F.B.D.; Vazeille, M.; Vasconcelos, P.; Lourenco-de-Oliveira, R.; Failloux, A.B. Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations. Sci. Rep. 2017, 7, 4848. [Google Scholar] [CrossRef] [PubMed]
- Galindo, P.; De Rodaniche, E.; Trapido, H. Experimental transmission of yellow fever by Central American species of Haemagogus and Sabethes chloropterus. Am. J. Trop. Med. Hyg. 1956, 5, 1022–1031. [Google Scholar] [CrossRef]
- Diagne, C.T.; Diallo, D.; Faye, O.; Ba, Y.; Faye, O.; Gaye, A.; Dia, I.; Faye, O.; Weaver, S.C.; Sall, A.A.; et al. Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infect. Dis. 2015, 15, 492. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, L.; Beaty, B.J.; Aitken, T.H.; Wallis, G.P.; Tabachnick, W.J. The effect of colonization upon Aedes aegypti susceptibility to oral infection with yellow fever virus. Am. J. Trop. Med. Hyg. 1984, 33, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Weger-Lucarelli, J.; Ruckert, C.; Chotiwan, N.; Nguyen, C.; Garcia Luna, S.M.; Fauver, J.R.; Foy, B.D.; Perera, R.; Black, W.C.; Kading, R.C.; et al. Vector competence of American mosquitoes for three strains of Zika virus. PLoS Negl. Trop. Dis. 2016, 10, e0005101. [Google Scholar] [CrossRef] [PubMed]
- Azar, S.R.; Roundy, C.M.; Rossi, S.L.; Huang, J.H.; Leal, G.; Yun, R.; Fernandez-Salas, I.; Vitek, C.J.; Paploski, I.A.D.; Stark, P.M.; et al. Differential vector competency of Aedes albopictus populations from the Americas for Zika virus. Am. J. Trop. Med. Hyg. 2017, 97, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Mansuy, J.M.; Mengelle, C.; Pasquier, C.; Chapuy-Regaud, S.; Delobel, P.; Martin-Blondel, G.; Izopet, J. Zika virus infection and prolonged viremia in whole-blood specimens. Emerg. Infect. Dis. 2017, 23, 863–865. [Google Scholar] [CrossRef] [PubMed]
- Terzian, A.C.B.; Schanoski, A.S.; Mota, M.T.O.; da Silva, R.A.; Estofolete, C.F.; Colombo, T.E.; Rahal, P.; Hanley, K.A.; Vasilakis, N.; Kalil, J.; et al. Viral load and cytokine response profile does not support antibody-dependent enhancement in dengue-primed Zika virus-infected patients. Clin. Infect. Dis. 2017, 65, 1260–1265. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, J.J.; Gresh, L.; Vargas, M.J.; Ballesteros, G.; Tellez, Y.; Soda, K.J.; Sahoo, M.K.; Nunez, A.; Balmaseda, A.; Harris, E.; et al. Viremia and clinical presentation in Nicaraguan patients infected with Zika virus, chikungunya virus, and dengue virus. Clin. Infect. Dis. 2016, 63, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
- Althouse, B.M.; Hanley, K.A. The tortoise or the hare? Impacts of within-host dynamics on transmission success of arthropod-borne viruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christofferson, R.C.; Mores, C.N. Estimating the magnitude and direction of altered arbovirus transmission due to viral phenotype. PLoS ONE 2011, 6, e16298. [Google Scholar] [CrossRef] [PubMed]
- Christofferson, R.C.; Mores, C.N.; Wearing, H.J. Bridging the gap between experimental data and model parameterization for chikungunya virus transmission predictions. J. Infect. Dis. 2016, 214, S466–S470. [Google Scholar] [CrossRef] [PubMed]
- Goenaga, S.; Fabbri, C.; Duenas, J.C.; Gardenal, C.N.; Rossi, G.C.; Calderon, G.; Morales, M.A.; Garcia, J.B.; Enria, D.A.; Levis, S. Isolation of yellow fever virus from mosquitoes in Misiones province, Argentina. Vector Borne Zoonotic Dis. 2012, 12, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, P.F.; Rodrigues, S.G.; Degallier, N.; Moraes, M.A.; da Rosa, J.F.; da Rosa, E.S.; Mondet, B.; Barros, V.L.; da Rosa, A.P. An epidemic of sylvatic yellow fever in the southeast region of Maranhao State, Brazil, 1993–1994: Epidemiologic and entomologic findings. Am. J. Trop. Med. Hyg. 1997, 57, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Rawlins, S.C.; Hull, B.; Chadee, D.D.; Martinez, R.; LeMaitre, A.; James, F.; Webb, L. Sylvatic yellow fever activity in Trinidad, 1988–1989. Trans. R. Soc. Trop. Med. Hyg. 1990, 84, 142–143. [Google Scholar] [CrossRef]
- De Rodaniche, E.; Galindo, P. Isolation of yellow fever virus from Haemagogus mesodentatus, H. equinus and Sabethes chloropterus captured in Guatemala in 1956. Am. J. Trop. Med. Hyg. 1957, 6, 232–237. [Google Scholar] [PubMed]
- De Rodaniche, E.; Galindo, P.; Johnson, C.M. Isolation of yellow fever virus from Haemagogus lucifer, H. equinus, H. spegazzinii falco, Sabethes chloropterus and Anopheles neivai captured in Panama in the fall of 1956. Am. J. Trop. Med. Hyg. 1957, 6, 681–685. [Google Scholar] [PubMed]
- Serra, O.P.; Cardoso, B.F.; Ribeiro, A.L.; Santos, F.A.; Slhessarenko, R.D. Mayaro virus and dengue virus 1 and 4 natural infection in culicids from Cuiaba, state of Mato Grosso, Brazil. Mem. Inst. Oswaldo Cruz 2016, 111, 20–29. [Google Scholar] [CrossRef] [PubMed]
- De Rodaniche, E.; Galindo, P. Isolation of Ilheus virus from Sabethes chloropterus captured in Guatemala in 1956. Am. J. Trop. Med. Hyg. 1957, 6, 686–687. [Google Scholar] [CrossRef] [PubMed]
- Wanzeller, A.L.; Martins, L.C.; Diniz Junior, J.A.; de Almeida Medeiros, D.B.; Cardoso, J.F.; da Silva, D.E.; de Oliveira, L.F.; de Vasconcelos, J.M.; Nunes, M.R.; Vianez Junior, J.L.; et al. Xiburema virus, a hitherto undescribed virus within the family Rhabdoviridae isolated in the Brazilian Amazon region. Genome Announc. 2014, 2, e00454-14. [Google Scholar] [CrossRef] [PubMed]
- Tubaki, R.M.; Menezes, R.M.; Vesgueiro, F.T.; Cardoso, R.P., Jr. Observations on Haemagogus janthinomys Dyar (Diptera: Culicidae) and other mosquito populations within tree holes in a gallery forest in the northwestern region of Sao Paulo state, Brazil. Neotrop. Entomol. 2010, 39, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Silva Jdos, S.; Pacheco, J.B.; Alencar, J.; Guimaraes, A.E. Biodiversity and influence of climatic factors on mosquitoes (Diptera: Culicidae) around the Peixe Angical hydroelectric scheme in the state of Tocantins, Brazil. Mem. Inst. Oswaldo Cruz 2010, 105, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, C.S.; Confalonieri, U.E.; Mascarenhas, B.M. Ecology of Haemagogus sp. and Sabethes sp. (Diptera: Culicidae) in relation to the microclimates of the Caxiuana National Forest, Para, Brazil. Mem. Inst. Oswaldo Cruz 2009, 104, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Chaverri, L.G.; Dillenbeck, C.; Lewis, D.; Rivera, C.; Romero, L.M.; Chaves, L.F. Mosquito species (Diptera: Culicidae) diversity from ovitraps in a Mesoamerican tropical rainforest. J. Med. Entomol. 2018, 55, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Mangudo, C.; Aparicio, J.P.; Rossi, G.C.; Gleiser, R.M. Tree hole mosquito species composition and relative abundances differ between urban and adjacent forest habitats in northwestern Argentina. Bull. Entomol. Res. 2018, 108, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Camargo-Neves, V.L.; Poletto, D.W.; Rodas, L.A.; Pachioli, M.L.; Cardoso, R.P.; Scandar, S.A.; Sampaio, S.M.; Koyanagui, P.H.; Botti, M.V.; Mucci, L.F.; et al. Entomological investigation of a sylvatic yellow fever area in Sao Paulo State, Brazil. Cad. Saude Publ. 2005, 21, 1278–1286. [Google Scholar] [CrossRef]
- Mucci, L.F.; Medeiros-Sousa, A.R.; Ceretti-Junior, W.; Fernandes, A.; Camargo, A.A.; Evangelista, E.; de Oliveira Christe, R.; Montes, J.; Teixeira, R.S.; Marrelli, M.T. Haemagogus leucocelaenus and other mosquitoes potentially associated with sylvatic yellow fever In Cantareira State Park In the Sao Paulo metropolitan area, Brazil. J. Am. Mosq. Control. Assoc. 2016, 32, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Degallier, N.; Sa Filho, G.C.; Monteiro, H.A.; Castro, F.C.; Da Silva, O.V.; Brandao, R.C.; Moyses, M.; Da Rosa, A.P. Release-recapture experiments with canopy mosquitoes in the genera Haemagogus and Sabethes (Diptera: Culicidae) in Brazilian Amazonia. J. Med. Entomol. 1998, 35, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Chadee, D.D. Seasonal abundance and diel landing periodicity of Sabethes chloropterus (Diptera: Culicidae) in Trinidad, West Indies. J. Med. Entomol. 1990, 27, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.L.; Miyazaki, R.D.; Silva, M.; Zeilhofer, P. Spatial and temporal abundance of three sylvatic yellow fever vectors in the influence area of the Manso hydroelectric power plant, Mato Grosso, Brazil. J. Med. Entomol. 2012, 49, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C. Host range, amplification and arboviral disease emergence. In Infectious Diseases From Nature: Mechanisms of Viral Emergence and Persistence; Springer: Vienna, Austria, 2005; pp. 33–44. [Google Scholar]
Mosquito Day Post-Feeding | Mouse Day Post-Infection | ZIKV Titer (log10 pfu/mL) | N | No. (%) Infection | No. (%) Dissemination | No. (%) Transmission |
---|---|---|---|---|---|---|
3 | 1 | 5.38 | 5 | 0 | 0 | 0 |
4 | 1 | 5.38 | 5 | 0 | 0 | 0 |
5 | 1 | 5.38 | 5 | 0 | 0 | 0 |
7 | 1 | 5.38 | 5 | 0 | 0 | 0 |
14 | 1 | 5.38 | 5 | 0 | 0 | 0 |
3 | 2 | 6.83 | 7 | 0 | 0 | 0 |
4 | 2 | 6.83 | 7 | 0 | 0 | 0 |
5 | 2 | 6.83 | 7 | 0 | 0 | 0 |
7 | 2 | 6.83 | 7 | 0 | 0 | 0 |
14 | 2 | 6.83 | 7 | 0 | 0 | 0 |
21 | 2 | 6.83 | 9 | 1 (11.1) | 1 (11.1) | 1 (11.1) |
Mosquito Day Post-Feeding | Mouse Day Post-Infection | ZIKV Titer (log10 pfu/mL) | N | No. (%) Infection | No. (%) Dissemination | No. (%) Transmission |
---|---|---|---|---|---|---|
14 | 1 | 5.38 | 10 | 3 (30) | 1 (10) | 0 (0) |
21 | 1 | 5.38 | 10 | 4 (40) | 2 (20) | 2 (20) |
14 | 2 | 6.83 | 10 | 10 (100) | 10 (100) | 7 (70) |
21 | 2 | 6.83 | 10 | 10 (100) | 10 (100) | 7 (70) |
Species | Mosquito Day Post Feeding | Mouse Day Post Infection | Mean Body Titer * (log10 pfu/mL) ± 1SE (N) | Mean Legs Titer * (log10 pfu/mL) ± 1SE (N) | Mean Saliva Titer * (log10 pfu/mL) ± 1SE (N) |
---|---|---|---|---|---|
Sabethes cyaneus | 21 | 2 | 5.4 (1) | 4.4 (1) | 1.1 (1) |
Aedes aegypti | 14 | 1 | 4.5 ± 0.2 (3) | 3.2 (1) | NA (0) |
21 | 1 | 5.1 ± 0.2 (4) | 4.4 ± 0.4 (2) | 2.8 ± 1.0 (2) | |
14 | 2 | 5.2 ± 0.2 (10) | 4.4 ± 0.4 (10) | 2.8 ± 0.3 (7) | |
21 | 2 | 5.7 ± 0.1 (10) | 4.7 ± 0.3 (10) | 2.9 ± 0.5 (7) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karna, A.K.; Azar, S.R.; Plante, J.A.; Yun, R.; Vasilakis, N.; Weaver, S.C.; Hansen, I.A.; Hanley, K.A. Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti. Viruses 2018, 10, 434. https://doi.org/10.3390/v10080434
Karna AK, Azar SR, Plante JA, Yun R, Vasilakis N, Weaver SC, Hansen IA, Hanley KA. Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti. Viruses. 2018; 10(8):434. https://doi.org/10.3390/v10080434
Chicago/Turabian StyleKarna, Ajit K., Sasha R. Azar, Jessica A. Plante, Rumei Yun, Nikos Vasilakis, Scott C. Weaver, Immo A. Hansen, and Kathryn A. Hanley. 2018. "Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti" Viruses 10, no. 8: 434. https://doi.org/10.3390/v10080434
APA StyleKarna, A. K., Azar, S. R., Plante, J. A., Yun, R., Vasilakis, N., Weaver, S. C., Hansen, I. A., & Hanley, K. A. (2018). Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti. Viruses, 10(8), 434. https://doi.org/10.3390/v10080434