A New Era for Mild Strain Cross-Protection
Abstract
:1. Societal and Environmental Pressures for Resilient Cropping Plants
2. What Is Mild Strain Cross-Protection?
3. Mild Strain Cross-Protection—Discovery through to Examples from Laboratory and Field Cross-Protection
4. Commercialization of Mild Strain Cross-Protection: Case Study Pepino Mosaic Virus
5. Mechanism(s) of Mild Strain Cross-Protection
6. The Mild Strain Cross-Protection Era
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heimpel, G.E.; Yang, Y.; Hill, J.D.; Ragsdale, D.W. Environmental consequences of invasive species: Greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions. PLoS ONE 2013, 8, e72293. [Google Scholar] [CrossRef] [PubMed]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Smith, P.; Haberl, H.; Popp, A.; Erb, K.H.; Lauk, C.; Harper, R.; Tubiello, F.N.; Pinto, A.D.; Jafari, M.; Sohi, S.; et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biol. 2013, 19, 2285–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Rockstrom, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed]
- FAO (Food and Agriculture Organization). Building a Common Vision for Sustainable Food and Agriculture: Principles and Approaches; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef] [PubMed]
- About the Sustainable Development Goals—United Nations Sustainable Development. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 03 June 2019).
- Ziebell, H.; Carr, J.P. Cross-protection: A century of mystery. Adv. Virus Res. 2010, 76, 211–264. [Google Scholar] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Van Bueren, E.T.L.; Struik, P.C.; van Eekeren, N.; Nuijten, E. Towards resilience through systems-based plant breeding. A review. Agron. Sustain. Dev. 2018, 38, 42. [Google Scholar] [CrossRef]
- Jijelava, D.; Vanclay, F. How a large project was halted by the lack of a social licence to operate: Testing the applicability of the Thomson and Boutilier model. Environ. Impact Asses. 2018, 73, 31–40. [Google Scholar] [CrossRef]
- Ziebell, H.; MacDiarmid, R. Prospects for engineering and improvement of cross-protective virus strains. Curr. Opin. Virol. 2017, 26, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Bar-Joseph, M. Cross protection incompleteness: A possible cause for natural spread of citrus tristeza virus after a prolonged period in Israel. Phytopathology 1978, 68, 1110–1111. [Google Scholar] [CrossRef]
- Costa, A.S.; Muller, G.W. Tristeza control by cross protection: A U.S.–Brazil cooperative success. Plant. Dis. 1980, 64, 538–541. [Google Scholar] [CrossRef]
- Powell, C.A.; Pelosi, R.R.; Rundell, P.A.; Cohen, M. Breakdown of crossprotection of grapefruit from decline-inducing isolates of citrus tristeza virus following introduction of the brown citrus aphid. Plant Dis. 2003, 87, 1116–1118. [Google Scholar] [CrossRef] [PubMed]
- Rezende, J.A.M.; Sherwood, J.L. Breakdown of cross protection between strains of tobacco mosaic virus due to susceptibility of dark green areas to superinfection. Phytopathology 1991, 81, 1490–1496. [Google Scholar] [CrossRef]
- Wang, H.L.; Gonsalves, D.; Provvidenti, R.; Lecoq, H.L. Effectiveness of cross-protection by a mild strain of zucchini yellow mosaic-virus in cucumber, melon, and squash. Plant Dis. 1991, 75, 203–207. [Google Scholar] [CrossRef]
- Wang, H.L.; Yeh, S.-D.; Chiu, R.J.; Gonsalves, D. Effectiveness of cross-protection by mild mutants of papaya ringspot virus for control of ringspot disease of papaya in Taiwan. Plant Dis. 1987, 71, 491–497. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Broadbent, P.; Hailstones, D.L.; Bowyer, J.; Connor, R. Movement and Titre of Citrus Tristeza Virus (pre immunizing isolate PB61) within Seedlings and Field Trees, 15th Conference of the International Organization of Citrus Virologists; Duran Vila, N., Milne, R.G., da Graca, J.V., Eds.; University of California: Riverside, CA, USA, 2002; pp. 39–47. [Google Scholar]
- Koizumi, M.; Sasaki, A. Protection Phenomena against Tristeza in Trees pre-Inoculated with vein-Enation Virus, Proceedings of the 8th International Organization of Citrus Virologists, Riverside; IOCV: Riverside, CA, USA, 1980; pp. 48–50. [Google Scholar]
- Folimonova, S.Y. Developing an understanding of cross-protection by citrus tristeza virus. Front. Microbiol. 2013, 4, 76. [Google Scholar] [CrossRef]
- Jridi, C.; Martin, J.-F.; Marie-Jeanne, V.; Labonne, G.; Blanc, S. Distinct viral populations differentiate and evolve independently in a single perennial host plant. J. Virol. 2006, 80, 2349–2357. [Google Scholar] [CrossRef]
- Müller, G.W.; Rezende, J.A. Preimmunization: Applications and perspectives in virus disease control. Diseases of Fruits and Vegetables Volume I 2004, 1, 361–395. [Google Scholar]
- Baba, V.Y.; Giampani, J.S.; Tazima, Z.H.; Yada, I.F.U.; Paccola-Meirelles, L.D.; Leite, R.P. Agronomic performance of pera and related sweet orange accessions naturally infected with citrus tristeza virus in Northern Parana State, Brazil. Trop. Plant Pathol. 2014, 39, 442–448. [Google Scholar] [CrossRef]
- Salibe, A.A.; Souza, A.A.; Targon, M.L.P.N.; Müller, G.W.; Coletta Filho, H.D.; Machado, M.A. Selection of a Mild Sub-Isolate of Citrus Tristeza Virus for Preimmunization of pera Sweet Orange, 15th Conference of the International Organization of Citrus Virologists; Duran Vila, N., Milne, R.G., da Graca, J.V., Eds.; University of California: Riverside, CA, USA, 2002; pp. 348–351. [Google Scholar]
- Yeh, S.D.; Cheng, Y.H. Use of resistant Cucumis metuliferus for selection of nitrous-acid induced attenuated strains of papaya ringspot virus. Phytopathology 1989, 79, 1257–1261. [Google Scholar] [CrossRef]
- Desjardins, P.R.; Wallace, J.M.; Wollman, E.S.H.; Drake, R.J. A separation of virus strains from a tristeza-seedling-yellows complex by heat treatment of infected lime seedlings. Citrus Virus Dis. 1959, 91–95. [Google Scholar]
- Cook, G.; van Vuuren, S.P.; Breytenbach, J.H.J.; Burger, J.T.; Maree, H.J. Expanded strain-specific RT-PCR assay for differential detection of currently known citrus tristeza virus strains: A useful screening tool. J. Phytopathology 2016, 164, 847–851. [Google Scholar] [CrossRef]
- Kamitani, M.; Nagano, A.J.; Honjo, M.N.; Kudoh, H.; Kummerli, R. RNAseq reveals virus-virus and virus-plant interactions in nature. Fems Microbiol. Ecol. 2016, 92. [Google Scholar] [CrossRef] [PubMed]
- Zablocki, O.; Pietersen, G. Characterization of a novel citrus tristeza virus genotype within three cross-protecting source GFMS12 sub-isolates in South Africa by means of Illumina sequencing. Arch. Virol. 2014, 159, 2133–2139. [Google Scholar] [CrossRef] [Green Version]
- Harper, S.J.; Cowell, S.J.; Robertson, C.J.; Dawson, W.O. Differential tropism in roots and shoots infected by citrus tristeza virus. Virology 2014, 460, 91–99. [Google Scholar] [CrossRef]
- MacDiarmid, R.M.; Rodoni, B.; Melcher, U.; Ochoa-Corona, F.; Roossinck, M. Biosecurity implications of new technology and discovery in plant virus research. Plos Pathog. 2013, 9, e1003337. [Google Scholar] [CrossRef]
- McKinney, H.H. Mosaic diseases in the Canary Islands, West Africa and Gibraltar. J. Agric. Res. 1929, 39, 557–578. [Google Scholar]
- Salaman, R.N. Protective inoculation against a plant virus. Nature 1933, 131, 468. [Google Scholar] [CrossRef]
- Salaman, R.N.; Smith, K.M.; MacClement, W.D.; Bawden, F.C.; Bernal, J.D.; McFarlane, A.S.; Findlay, G.M.; Watson, M.A.; Murphy, P.A.; Elford, W.J. A discussion on new aspects of virus disease. Proc. R. Soc. Lond. B 1938, 125, 291–310. [Google Scholar]
- Thung, T.H. Smetstof en plantecel bij enkele virusziekten van de Tabaksplant. Rev. Appl. Mycol. 1932, 11, 750–751. [Google Scholar]
- Kudela, O.; Gallo, J. Characterization of the alfalfa mosaic virus strain t6. Acta. Virol. 1995, 39, 131–135. [Google Scholar] [PubMed]
- Ameyaw, G.A.; Domfeh, O.; Dzahini-Obiatey, H.; Ollennu, L.A.A.; Owusu, G.K. Appraisal of cocoa swollen shoot virus (CSSV) mild isolates for cross-protection of cocoa against severe strains in Ghana. Plant Dis. 2016, 100, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Zhang, J.; Liu, J.; Deng, X.G.; Zhang, P.; Zhu, T.; Chen, L.J.; Bao, W.K.; Xi, D.H.; Lin, H.H. The capsid protein p38 of turnip crinkle virus is associated with the suppression of cucumber mosaic virus in Arabidopsis thaliana co-infected with cucumber mosaic virus and turnip crinkle virus. Virology 2014, 462, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.S.; Melcher, U. Competition between isolates and variants of cauliflower mosaic-virus in infected turnip plants. J. Gen. Virol. 1989, 70, 3427–3437. [Google Scholar] [CrossRef]
- Vidalakis, G.; Garnsey, S.M.; Bash, J.A.; Greer, G.D.; Gumpf, D.J. Efficacy of bioindexing for graft-transmissible citrus pathogens in mixed infections. Plant. Dis. 2004, 88, 1328–1334. [Google Scholar] [CrossRef]
- Zanutto, C.A.; Corazza, M.J.; Nunes, W.M.D.; Muller, G.W. Evaluation of the protective capacity of new mild citrus tristeza virus (CTV) isolates selected for a preimmunization program. Sci. Agr. 2013, 70, 116–124. [Google Scholar] [CrossRef]
- Da Graca, J.V.; van Vuuren, S.P. Managing citrus tristeza virus losses using cross-protection. In Citrus Tristeza Virus Complex and Tristeza Diseases; Karasev, A.V., Hilf, M.E., Eds.; The American Phytopathological Society (APS): St. Paul, MN, USA, 2010; pp. 247–260. [Google Scholar]
- Read, D.A.; Pietersen, G. Genotypic diversity of citrus tristeza virus within red grapefruit, in a field trial site in South Africa. Eur. J. Plant Pathol. 2015, 142, 531–545. [Google Scholar] [CrossRef]
- Bederski, K.; Roistacher, C.N.; Silvestre, O.P.; Müller, G.W. Long-Term Cross-Protection of Severe Stem Pitting Citrus Tristeza Virus in Peru, 17th Conference of the International Organization of Citrus Virologists, Riverside, CA, USA; IOCV: Riverside, CA, USA, 2010; pp. 67–79. [Google Scholar]
- Dodds, J.A.; Lee, S.Q.; Tiffany, M. Cross protection between strains of cucumber mosaic-virus—Effect of host and type of inoculum on accumulation of virions and double-stranded-RNA of the challenge strain. Virology 1985, 144, 301–309. [Google Scholar] [CrossRef]
- Gallitelli, D.; Vovlas, C.; Martelli, G.; Montasser, M.S.; Tousignant, M.E.; Kaper, J.M. Satellite-mediated protection of tomato against cucumber mosaic-virus: II. Field-test under natural epidemic conditions in Southern Italy. Plant Dis. 1991, 75, 93–95. [Google Scholar] [CrossRef]
- Montasser, M.S.; Tousignant, M.E.; Kaper, J.M. Viral satellite RNAs for the prevention of cucumber mosaic virus (CMV) disease in field-grown pepper and melon plants. Plant Dis. 1998, 82, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Sayama, H.; Sato, T.; Kominato, M.; Natsuaki, T.; Kaper, J.M. Field testing of a satellite-containing attenuated strain of cucumber mosaic-virus for tomato protection in Japan. Phytopathology 1993, 83, 405–410. [Google Scholar] [CrossRef]
- Kosaka, Y.; Fukunishi, T. Multiple inoculation with three attenuated viruses for the control of cucumber virus disease. Plant Dis. 1997, 81, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Kuti, J.O.; Moline, H.E. Effects of inoculation with a mild strain of tomato aspermy virus on the growth and yield of tomatoes and the potential for cross-protection. J. Phytopathol. 1986, 115, 56–60. [Google Scholar] [CrossRef]
- Mahmood, T.; Rush, C.M. Evidence of cross-protection between beet soilborne mosaic virus and beet necrotic yellow vein virus in sugar beet. Plant Dis. 1999, 83, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Grupa, A.; Syller, J. Cross-protection between a naturally occurring mild isolate of potato virus m (PVM) and a more virulent isolate in Datura metel plants. J. Phytopathol. 2016, 164, 69–73. [Google Scholar] [CrossRef]
- Owor, B.; Legg, J.P.; Okao-Okuja, G.; Obonyo, R.; Kyamanywa, S.; Ogenga-Latigo, M.W. Field studies of cross-protection with cassava mosaic geminiviruses in Uganda. J. Phytopathol. 2004, 152, 243–249. [Google Scholar] [CrossRef]
- Reddy, R.V.C.; Dong, W.B.; Njock, T.; Rey, M.E.C.; Fondong, V.N. Molecular interaction between two cassava geminiviruses exhibiting cross-protection. Virus Res. 2012, 163, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, E.E.; Atkinson, J.D.; Hunter, J.A. Cross-protection between strains of apple mosaic virus. New Zealand J. Agric. Res. 1964, 7, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Jedlinski, H.; Brown, C.M. Cross protection and mutual exclusion by three strains of barley yellow dwarf virus in Avena sativa L. Virology 1965, 26, 613–621. [Google Scholar] [CrossRef]
- Wen, F.; Lister, R.M.; Fattouh, F.A. Cross-protection among strains of barley yellow dwarf virus. J. Gen. Virol. 1991, 72, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.E. A new strain of potato leaf roll virus. Am. Potato J. 1955, 32, 173–179. [Google Scholar] [CrossRef]
- Kondo, T.; Kogawa, K.; Ito, K. Evaluation of cross-protection by an attenuated strain of Chinese yam necrotic mosaic virus in Chinese yam. J. Gen. Plant. Pathol. 2015, 81, 42–48. [Google Scholar] [CrossRef]
- Komar, V.; Vigne, E.; Demangeat, G.; Lemaire, O.; Fuchs, M. Cross-protection as control strategy against grapevine fanleaf virus in naturally infected vineyards. Plant. Dis. 2008, 92, 1689–1694. [Google Scholar] [CrossRef] [PubMed]
- Legin, R.; Bass, P.; Etienne, L.; Fuchs, M. Selection of mild virus-strains of fanleaf degeneration by comparative field performance of infected grapevines. Vitis 1993, 32, 103–110. [Google Scholar]
- Bitterlin, M.W.; Gonsalves, D. Serological grouping of tomato ringspot virus isolates—Implications for diagnosis and cross-protection. Phytopathology 1988, 78, 278–285. [Google Scholar] [CrossRef]
- Hanssen, I.M.; Gutiérrez-Aguirre, I.; Paeleman, A.; Goen, K.; Wittemans, L.; Lievens, B.; Vanachter, A.C.R.C.; Ravnikar, M.; Thomma, B.P.H.J. Cross-protection or enhanced symptom display in greenhouse tomato co-infected with different pepino mosaic virus isolates. Plant. Pathol. 2010, 59, 13–21. [Google Scholar] [CrossRef]
- Vermunt, A.M.W.; Kaarsemaker, R.C. Multi-genotype cross-protection against pepino mosaic virus in tomato. Crop. Prot. 2017, 96, 116–122. [Google Scholar] [CrossRef]
- Agüero, J.; Gómez-Aix, C.; Sempere, R.N.; García-Villalba, J.; García-Núñez, J.; Hernando, Y.; Aranda, M.A. Stable and broad spectrum cross-protection against pepino mosaic virus attained by mixed infection. Front. Plant Sci. 2018, 9, 1810. [Google Scholar] [CrossRef]
- Chewachong, G.M.; Miller, S.A.; Blakeslee, J.J.; Francis, D.M.; Morris, T.J.; Qu, F. Generation of an attenuated, cross-protective pepino mosaic virus variant through alignment-guided mutagenesis of the viral capsid protein. Phytopathology 2015, 105, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Cong, Q.Q.; Wang, Y.; Liu, J.; Lan, Y.F.; Guo, Z.K.; Yang, J.G.; Li, X.D.; Tian, Y.P. Evaluation of potato virus X mild mutants for cross-protection against severe infection in China. Virol. J. 2019, 16. [Google Scholar] [CrossRef] [PubMed]
- Nakazono-Nagaoka, E.; Takahashi, T.; Shimizu, T.; Kosaka, Y.; Natsuaki, T.; Omura, T.; Sasaya, T. Cross-protection against bean yellow mosaic virus (BYMV) and clover yellow vein virus by attenuated BYMV isolate M11. Phytopathology 2009, 99, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Maia, L.M.; Lima, J.A.d.A.; do Nascimento, A.K.Q.; Rabelo Filho, F.d.A.C. Biological differences and unilateral cross-protection between biotypes of Cowpea aphid-borne mosaic virus. Rev. Ciência Agronômica 2017, 48, 310–317. [Google Scholar] [CrossRef]
- Zakeri, A.; Masumi, M.; Nejad, S.N.; Ghahramani, T.; Izadpanah, K. Cross protection between maize dwarf mosaic virus and Bermuda grass southern mosaic virus. Iran. J. Plant Pathol. 2012, 48, 51. [Google Scholar]
- Gonsalves, D. Control of papaya ringspot virus in papaya: A case study. Annu. Rev. Phytopathol. 1998, 36, 415–437. [Google Scholar] [CrossRef]
- Huang, X.D.; Fang, L.; Gu, Q.S.; Tian, Y.P.; Geng, C.; Li, X.D. Cross protection against the watermelon strain of papaya ringspot virus through modification of viral RNA silencing suppressor. Virus Res. 2019, 265, 166–171. [Google Scholar] [CrossRef]
- Rezende, J.A.M.; Pacheco, D.A. Control of papaya ringspot virus-type w in zucchini squash by cross-protection in Brazil. Plant Dis. 1998, 82, 171–175. [Google Scholar] [CrossRef]
- Tanzi, M.; Betti, L.; Canova, A. Protection of pepper crops under glass against PepMV artificial infection with the mild mutant M-1: Analysis of its influence on growth and yield. Adv. Hortic. Sci. 1988, 2, 19–22. [Google Scholar]
- Ravelonandro, M.; Briard, P.; Glasa, M.; Adam, S. The ability of a mild isolate of plum pox virus to cross-protect against sharka virus. In Proceedings of the Twentieth International Symposium on Virus and Virus-Like Diseases of Temperate Fruit Crops—Fruit Tree Diseases, Antalya, Turkey, 22 May 2006; pp. 281–286. [Google Scholar] [CrossRef]
- Ogawa, T.; Nakamura, S.; Sayama, M.; Ohshima, K. Attenuated mutants of potato virus Y necrotic strain produced by nitrous acid treatment and mutagenesis-in-tissue culture methods. Eur. J. Plant. Pathol. 2013, 135, 745–760. [Google Scholar] [CrossRef]
- Grupa, A.; Otulak-Koziel, K.; Syller, J. Serological, molecular and immunofluorescent evidence for interference competition between isolates of potato virus Y. Plant Pathol. 2018, 67, 1997–2012. [Google Scholar] [CrossRef]
- Valkonen, J.P.T.; Rajamaki, M.L.; Kekarainen, T. Mapping of viral genomic regions important in cross-protection between strains of a potyvirus. Mol. Plant Microbe In. 2002, 15, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Kosaka, Y.; Fukunishi, T. Attenuated isolates of soybean mosaic-virus derived at a low-temperature. Plant Dis. 1993, 77, 882–886. [Google Scholar] [CrossRef]
- Shi, A.; Chen, P.; Gergerich, R.; Hou, A.; Zhang, B. Interaction between two strains of soybean mosaic virus in soybean. Can. J. Plant Pathol. 2008, 30, 486–491. [Google Scholar] [CrossRef]
- Kung, Y.J.; Lin, P.C.; Yeh, S.D.; Hong, S.F.; Chua, N.H.; Liu, L.Y.; Lin, C.P.; Huang, Y.H.; Wu, H.W.; Chen, C.C.; et al. Genetic analyses of the FRNK motif function of turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Mol. Plant Microbe In. 2014, 27, 944–955. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.N.; Keshaw, S.; Gupta, D. Effects of two naturally occurring mild potyviruses on the symptom expression of vanilla necrosis potyvirus in Vanilla fragrans. New Zeal. J. Crop. Hort. 1999, 27, 325–330. [Google Scholar] [CrossRef]
- Kameya-Iwaki, M.; Tochihara, H.; Hanada, K.; Torigoe, H. Attenuated isolate of watermelon mosaic virus (WMV-2) and its cross-protection against virulent isolate. Jpn. J. Phytopathol. 1992, 58, 491–494. [Google Scholar] [CrossRef]
- Lecoq, H.; Fabre, F.; Joannon, B.; Wipf-Scheibel, C.; Chandeysson, C.; Schoeny, A.; Desbiez, C. Search for factors involved in the rapid shift in watermelon mosaic virus (WMV) populations in South-Eastern France. Virus Res. 2011, 159, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.S.; French, R.; Hein, G.L.; Morris, T.J.; Stenger, D.C. Three distinct mechanisms facilitate genetic isolation of sympatric wheat streak mosaic virus lineages. Virology 2001, 282, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Slavokhotova, A.A.; Istomina, E.A.; Andreeva, E.N.; Korostyleva, T.V.; Pukhalskij, V.A.; Shijan, A.N.; Odintsova, T.I. An attenuated strain of cucumber green mottle mosaic virus as a biological control agent against pathogenic viral strains. Am. J. Plant Sci. 2016, 7, 724–732. [Google Scholar] [CrossRef]
- Ali, A.; Ahmad, M.; Nishigawa, H.; Natsuaki, T. Evaluation of low temperature induced mutants of cucumber green mottle mosaic virus for cross-protection in cucurbits. J. Plant Pathol. Microbiol. 2010, S3. [Google Scholar] [CrossRef]
- Wen, Y.; Lim, G.X.Y.; Wong, S.M. Profiling of genes related to cross-protection and competition for NbTOM1 by HLSV and TMV. PLoS ONE 2013, 8, e73725. [Google Scholar] [CrossRef] [PubMed]
- Ogai, R.; Kanda-Hojo, A.; Tsuda, S. An attenuated isolate of pepper mild mottle virus for cross-protection of cultivated green pepper (Capsicum annuum l.) carrying the l3 resistance gene. Crop. Prot. 2013, 54, 29–34. [Google Scholar] [CrossRef]
- Das, P.P.; Chua, G.M.; Lin, Q.S.; Wong, S.M. Itraq-based analysis of leaf proteome identifies important proteins in secondary metabolite biosynthesis and defence pathways crucial to cross-protection against TMV. J. Proteomics 2019, 196, 42–56. [Google Scholar] [CrossRef] [PubMed]
- Cassells, A.C.; Herrick, C.C. Cross protection between mild and severe strains of tobacco mosaic-virus in doubly inoculated tomato plants. Virology 1977, 78, 253–260. [Google Scholar] [CrossRef]
- Goto, T.; Iizuka, N.; Komochi, S. Selection and utilization of an attenuated isolate of pepper strain of tobacco mosaic virus. Jpn. J. Phytopathol. 1984, 50, 221–228. [Google Scholar] [CrossRef]
- Kurihara, Y.; Watanabe, Y. Cross-protection in Arabidopsis against crucifer tobamovirus cg by an attenuated strain of the virus. Mol. Plant. Pathol. 2003, 4, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Kurath, G.; Dodds, J.A. Satellite tobacco mosaic virus sequence variants with only five nucleotide differences can interfere with each other in a cross-protection-like phenomenon in plants. Virology 1994, 202, 1065–1069. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Nara, Y.; Furuya, H.; Takahashi, H.; Tairako, K.; Yamamoto, H. Characteristics for practical use of attenuated isolated L11A-Fukushima of Tomato mosaic virus. J. Gen. Plant. Path. 2002, 68, 382–384. [Google Scholar] [CrossRef]
- Wang, M.; Gonsalves, D. Artificial induction and evaluation of a mild isolate of tomato spotted wilt virus. J. Phytopathol. 1992, 135, 233–244. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Koenig, R.; Lesemann, D.E. Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Ann. Appl. Biol. 1980, 94, 61–68. [Google Scholar] [CrossRef]
- van der Vlugt, R.A.A.; Stijger, C.C.M.M.; Verhoeven, J.T.J.; Lesemann, D.-E. First report of pepino mosaic virus on tomato. Plant Dis. 2000, 84, 103. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Fernández, A.; Del Carmen Córdoba-Sellés, M.; Herrera-Vásquez, J.Á.; Cebrián, M.d.C.; Jordá, C. Transmission of pepino mosaic virus by the fungal vector olpidium virulentus. J. Phytopathol. 2010, 158, 217–226. [Google Scholar] [CrossRef]
- Córdoba-Sellés, M.d.C.; García-Rández, A.; Alfaro-Fernández, A.; Jordá-Gutiérrez, C. Seed transmission of pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Dis. 2007, 91, 1250–1254. [Google Scholar] [CrossRef]
- Hanssen, I.M.; Mumford, R.; Blystad, D.R.; Cortez, I.; Hasiow-Jaroszewska, B.; Hristova, D.; Pagan, I.; Pereira, A.M.; Peters, J.; Pospieszny, H.; et al. Seed transmission of pepino mosaic virus in tomato. Eur. J. Plant Pathol. 2010, 126, 145–152. [Google Scholar] [CrossRef]
- Hanssen, I.M.; Thomma, B.P.H.J. Pepino mosaic virus: A successful pathogen that rapidly evolved from emerging to endemic in tomato crops. Mol. Plant Pathol. 2010, 11, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Lacasa, A.; Guerrero, M.M.; Hita, I.; Martínez, M.A.; Jordá, C.; Bielza, P.; Contreras, A.; Alcázar, A.C. Implicaciones de los abejorros (bombus spp.) en la dispersión del virus del mosaico del pepino dulce (pepino mosaic virus) en cultivos de tomate. Bol San Veg Plagas 2003, 29, 393–403. [Google Scholar]
- Ling, K.S. Pepino mosaic virus on tomato seed: Virus location and mechanical transmission. Plant Dis. 2008, 92, 1701–1705. [Google Scholar] [CrossRef]
- Schwarz, D.; Beuch, U.; Bandte, M.; Fakhro, A.; Buttner, C.; Obermeier, C. Spread and interaction of pepino mosaic virus (PepMV) and Pythium aphanidermatum in a closed nutrient solution recirculation system: Effects on tomato growth and yield. Plant Pathol. 2010, 59, 443–452. [Google Scholar] [CrossRef]
- Hanssen, I.M.; Paeleman, A.; Van Bergen, L.; Vandewoestijne, E.; Wittemans, L.; Goen, K.; Vanachter, A.C.R.C.; Thomma, B.P.H.J. Survey on symptom expression and damage caused by pepino mosaic virus in commercial tomato production in Belgium. Int. Symp. Tomato Dis. 2009, 808, 185–192. [Google Scholar] [CrossRef]
- Hanssen, I.M.; Paeleman, A.; Vandewoestijne, E.; Van Bergen, L.; Bragard, C.; Lievens, B.; Vanachter, A.C.R.C.; Thomma, B.P.H.J. Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathol. 2009, 58, 450–460. [Google Scholar] [CrossRef]
- Spence, N.J.; Basham, J.; Mumford, R.A.; Hayman, G.; Edmondson, R.; Jones, D.R. Effect of pepino mosaic virus on the yield and quality of glasshouse-grown tomatoes in the UK. Plant Pathol. 2006, 55, 595–606. [Google Scholar] [CrossRef]
- Ling, K.S.; Scott, J.W. Sources of resistance to pepino mosaic virus in tomato accessions. Plant Dis. 2007, 91, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Soler, S.; Lopez, C.; Prohens, J.; Nuez, F. New sources of resistance to PepMV in tomato. J. Plant Dis. Protect. 2011, 118, 149–155. [Google Scholar] [CrossRef]
- Hanssen, I.M.; Paeleman, A.; Wittemans, L.; Goen, K.; Lievens, B.; Bragard, C.; Vanachter, A.C.R.C.; Thomma, B.P.H.J. Genetic characterization of pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. Eur. J. Plant Pathol. 2008, 121, 131–146. [Google Scholar] [CrossRef]
- Hanssen, I.M.; van Esse, H.P.; Ballester, A.R.; Hogewoning, S.W.; Parra, N.O.; Paeleman, A.; Lievens, B.; Bovy, A.G.; Thomma, B.P.H.J. Differential tomato transcriptomic responses induced by pepino mosaic virus isolates with differential aggressiveness. Plant Physiol. 2011, 156, 301–318. [Google Scholar] [CrossRef] [PubMed]
- Hasiow-Jaroszewska, B.; Borodynko, N.; Jackowiak, P.; Figlerowicz, M.; Pospieszny, H. Single mutation converts mild pathotype of the pepino mosaic virus into necrotic one. Virus Res. 2011, 159, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Hasiow-Jaroszewska, B.; Borodynko, N.; Pospieszny, H. Genetic and biological variability of pepino mosaic virus isolates infecting tomato plants. Phytopathology 2011, 101, S70. [Google Scholar]
- Hasiow-Jaroszewska, B.; Jackowiak, P.; Borodynko, N.; Figlerowicz, M.; Pospieszny, H. Quasispecies nature of pepino mosaic virus and its evolutionary dynamics. Virus Genes 2010, 41, 260–267. [Google Scholar] [CrossRef]
- Hasiow-Jaroszewska, B.; Kuzniar, A.; Peters, S.A.; Leunissen, J.A.M.; Pospieszny, H. Evidence for RNA recombination between distinct isolates of pepino mosaic virus. Acta. Biochim. Pol. 2010, 57, 385–388. [Google Scholar] [CrossRef]
- Hasiow-Jaroszewska, B.; Paeleman, A.; Ortega-Parra, N.; Borodynko, N.; Minicka, J.; Czerwoniec, A.; Thomma, B.P.H.J.; Hanssen, I.M. Ratio of mutated versus wild-type coat protein sequences in pepino mosaic virus determines the nature and severity of yellowing symptoms on tomato plants. Mol. Plant Pathol. 2013, 14, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Hasiow-Jaroszewska, B.; Pospieszny, H.; Borodynko, N. New necrotic isolates of pepino mosaic virus representing the CH2 genotype. J. Phytopathol. 2009, 157, 494–496. [Google Scholar] [CrossRef]
- Van der Vlugt, R.A.A.; Stijger, C.C.M.M. Pepino mosaic virus. In Encyclopedia of Virology; Mahi, B.W.J., Van Regenmortel, M.H.V., Eds.; Academic Press: Salt Lake City, UT, USA, 2008; pp. 103–108. [Google Scholar] [CrossRef]
- De Nayer, F.; Goen, K.; Paeleman, A.; Parra, N.O.; Vanachter, A.C.R.C.; Hanssen, I.M.; Wittemans, L.; Vandewoestijne, E. CROSS-PROTECTION AS A CONTROL STRATEGY FOR PEPINO MOSAIC VIRUS (PEPMV) IN GREENHOUSE TOMATO. Acta. Hortic. 2011, 914, 163–169. [Google Scholar] [CrossRef]
- Hasiow-Jaroszewska, B.; Minicka, J.; Pospieszny, H. Cross-protection between different pathotypes of pepino mosaic virus representing Chilean 2 genotype. Acta. Sci. Pol-Hortorum 2014, 13, 177–185. [Google Scholar]
- Mih, C.G. Engineering Plant Virus “Vaccines” Using Pepino Mosaic Virus as a Model. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2013. [Google Scholar]
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance pepino mosaic virus strain CH2 isolate 1906. EFSA J. 2015, 13, 3977. [Google Scholar] [CrossRef]
- Pmv®-01 | Vaccination against PepMV Damage on Tomatoes. Available online: http://pmv-01.com/en/#what-is-pmv-01 (accessed on 30 May 2019).
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance Mild Pepino mosaic virus isolate VX1. EFSA J. 2015, 15, 4650. [Google Scholar] [CrossRef]
- Valto—Dedicated in the World of Natural Crop Protection. Available online: https://www.valto.nl/en (accessed on 18 June 2019).
- Wilstermann, A.; Ziebell, H. 2019: Tomato brown rugose fruit virus (ToBRFV). JKI Data Sheets Plant Dis. Diagn. 2019, 1, 1–4. [Google Scholar] [CrossRef]
- Pooggin, M.M. Small RNA-omics for plant virus identification, virome reconstruction, and antiviral defense characterization. Front. Microbiol. 2018, 9, 2779. [Google Scholar] [CrossRef] [PubMed]
- Voinnet, O. RNA silencing as a plant immune system against viruses. Trends Genet. 2001, 17, 449–459. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Zamora, A.; Azhar, M.T.; Sacco, M.A.; Lambert, L.H.; Moffett, P. Virus resistance induced by NB–LRR proteins involve Argonaute4-dependent translational control. Plant J. 2009, 58, 940–951. [Google Scholar] [CrossRef]
- Sanfaçon, H. Plant Translation Factors and Virus Resistance. Viruses 2015, 7, 3392–3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziebell, H.; Payne, T.; Berry, J.O.; Walsh, J.A.; Carr, J.P. A cucumber mosaic virus mutant lacking the 2b counter-defence protein gene provides protection against wild-type strains. J. Gen. Virol. 2007, 88, 2862–2871. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.; Maiss, E. Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. J. Gen. Virol. 2003, 84, 2871–2876. [Google Scholar] [CrossRef] [PubMed]
- Ziebell, H.; Carr, J.P. Effects of dicer-like endoribonucleases 2 and 4 on infection of Arabidopsis thaliana by cucumber mosaic virus and a mutant virus lacking the 2b counter-defence protein gene. J. Gen. Virol. 2009, 90, 2288–2292. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, M.; Shigemune, N.; Kikuhara, K.; Furuya, N.; Takanami, Y. Spatial analysis for exclusive interactions between subgroups I and II of cucumber mosaic virus in cowpea. Virology 2004, 328, 45–51. [Google Scholar] [CrossRef]
- De Zoeten, G.A.; Fulton, R.W. Understanding generates possibilities. Phytopathology 1975, 65, 221–222. [Google Scholar]
- Zaitlin, M. Viral cross-protection: More understanding is needed. Phytopathology 1976, 66, 382–383. [Google Scholar] [CrossRef]
- Folimonova, S.Y.; Robertson, C.J.; Shilts, T.; Folimonov, A.S.; Hilf, M.E.; Garnsey, S.M.; Dawson, W.O. Infection with strains of citrus tristeza virus does not exclude superinfection by other strains of the virus. J. Virol. 2010, 84, 1314–1325. [Google Scholar] [CrossRef]
- Harper, S.J.; Cowell, S.J.; Dawson, W.O. Isolate fitness and tissue-tropism determine superinfection success. Virology 2017, 511, 222–228. [Google Scholar] [CrossRef]
- Costa, A.T.; Nunes, W.M.D.; Zanutto, C.A.; Muller, G.W. Stability of citrus tristeza virus protective isolates in field conditions. Pesqui. Agropecu. Bras. 2010, 45, 693–700. [Google Scholar] [CrossRef]
- Scott, K.A.; Hlela, Q.; Zablocki, O.; Read, D.; van Vuuren, S.; Pietersen, G. Genotype composition of populations of grapefruit-cross-protecting citrus tristeza virus strain gfms12 in different host plants and aphid-transmitted sub-isolates. Arch. Virol. 2013, 158, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Harper, S.J.; Cowell, S.J.; Dawson, W.O. With a little help from my friends: Complementation as a survival strategy for viruses in a long-lived host system. Virology 2015, 478, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syller, J.; Grupa, A. The effects of co-infection by different potato virus y (PVY) isolates on virus concentration in solanaceous hosts and efficiency of transmission. Plant. Pathol. 2014, 63, 466–475. [Google Scholar] [CrossRef]
- Folimonova, S.Y. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J. Virol. 2012, 86, 5554–5561. [Google Scholar] [CrossRef] [PubMed]
Protecting Virus | Challenging Virus | Host Plant | Test Site | Year of Publication | Reference |
---|---|---|---|---|---|
Alfamovirus | |||||
Alfalfa mosaic virus (AMV), strain 425 | AMV, T6 strain | Phaseolus vulgaris | Lab | 1995 | [39] |
Badnavirus | |||||
Cocoa swollen shoot virus (CSSV), N1 and SS365B isolates | CSSV, 1A isolate | Theobroma cacao various cultivars | Field | 2016 | [40] |
Carmovirus | |||||
Turnip crinkle virus, TCVΔCP | TCV, T1d1 | Arabidopsis thaliana | Lab | 2014 | [41] |
Caulimovirus | |||||
Cauliflower mosaic virus (CaMV), UN130 isolate | CaMV, Cabb S strain | Brassica rapa | Lab | 1989 | [42] |
Closterovirus | |||||
Citrus tristeza virus (CTV), T30 isolates | Citrus vein enation virus | Citrus aurantifolia cv. Mexican lime | Lab | 2004 | [43] |
CTV, CS-1 isolate | CTV, Rolândia strain | Citrus sinensis | Field | 2013 | [44] |
CTV, GFMS-12, GFMS-35, and LMS-6 strains | CTV severe strains | C. paradisi Macfad., C. aurantifolia, C. sinensis, C. reticulata | Field | 2010, 2015 | [45,46] |
CTV | CTV | Citrus sinensis various cultivars, Citrus × paradisi various cultivars | Field | 2010 | [47] |
Cucumovirus | |||||
Cucumber mosaic virus (CMV), S strain | CMV, P strain | Solanum lycopersicum cv Rutgers, Nicotiana tabacum cvs Xanthi-nc, Turkish, Cucurbita pepo | Field | 1985 | [48] |
CMV-S with S-CARNA 5 | CMV severe strains | Solanum lycopersicum, various cultivars, Cucurbita melo cv. Janus des Canaries, Capsicum annuum cv. California Wonder | Field | 1991, 1998 | [49,50] |
CMV, KO2 strain | Severe strain CMV-876 | Solanum lycopersicum | Lab | 1993 | [51] |
CMV, CM95 strain | CMV severe strains | Cucumis sativus cv. Sagamihanjiro | Lab | 1997 | [52] |
Tomato aspermy virus (TAV) mild strain | TAV severe strains | Solanum lycopersicum, various cultivars | Lab | 1986 | [53] |
Furovirus | |||||
Beet soilborne mosaic virus | Beet necrotic yellow vein virus | Beta vulgaris | Lab | 1999 | [54] |
Carlavirus | |||||
Potato virus M (PVM), I-38 isolate | PVM, Uran isolate | Datura metel | Lab | 2016 | [55] |
Geminivirus | |||||
African cassava mosaic virus (ACMV) - Uganda | Virulent ACMV strains | Manihot esculenta | Field | 2004 | [56] |
African cassava mosaic virus (ACMV) | East African cassava mosaic Cameroon virus (EACMVC) | Nicotiana benthamiana | Lab | 2012 | [57] |
Ilarvirus | |||||
Apple mosaic virus (ApMV), mild strain “M” | ApMV, severe strain “A” | Malus sp., various cultivars | Field | 1964 | [58] |
Luteovirus | |||||
Barley yellow dwarf virus (BYDV), mild isolates | BYDV severe strains | Avena sativa var. Clintland 64 | Lab | 1965, 1991 | [59,60] |
Potato leaf roll virus (PLRV), mild strain | PLRV severe strain | Solanum tuberosum ‘Katahdin’ Physalis floridana | Lab | 1955 | [61] |
Macluravirus | |||||
Chinese yam necrotic mosaic virus (CYNMV), KM3 strain | CYNMV wild-type | Dioscorea opposita | Field | 2015 | [62] |
Nepovirus | |||||
Grapevine fanleaf virus (GFLV), GHu strain | GFLV severe strain | Vits vinifera cv. Gewurztraminer clone 643 grafted onto rootstock Kober 5BB clone 259., V. vinifera various cultivars | Field | 2008, 1993 | [63,64] |
Arabis mosaic virus (ArMV), Ta strain | GFLV severe strain | Vits vinifera cv. Gewurztraminer clone 643 grafted onto rootstock Kober 5BB clone 259., V. vinifera, various cultivars | Field | 2008, 1993 | [63,64] |
Tomato ringspot virus (ToRSV), Chickadee isolate | ToRSV, PYBM isolate | Nicotiana benthamiana | Lab | 1988 | [65] |
Potexvirus | |||||
Pepino mosaic virus (PepMV), LP,EU, and CH2 strains | Severe PepMV, CH2 isolate | Solanum esculentum cv. Tricia | Lab | 2010 | [66] |
PepMV, VX1, and VC1 mixture (LP and CH2 genotype) | Severe PepMV isolates of EU and CH2 genotype | Solanum esculentum various cultivars | Lab | 2017 | [67] |
PepMV, Sp13, and PS5 | Severe PepMV isolates of EU and CH2 genotype | Solanum esculentum various cultivars | Field | 2018 | [68] |
PepMV, KD strain (engineered) | PepMV, wild-type | Nicotiana benthamiana, Solanum esculentum various cultivars | Lab | 2015 | [69] |
Potato virus X (PVX), mild strain | PVX severe strain | Nicotianatabacum | Lab | 1933 | [36] |
PVX E1001A, E46A | Wild type PVX severe strain | Nicotiana benthamiana | Lab | 2019 | [70] |
Potyvirus | |||||
Bean yellow mosaic virus (BYMV), M11 isolate | BYMV severe strains and Clover yellow vein virus | Vicia faba | Lab | 2009 | [71] |
Cowpea aphid-borne mosaic virus (CABMV), cowpea and passionfruit isolates | various combinations of severe isolates | Canavalia ensiformis, Passiflora edulis | Lab | 2017 | [72] |
Maize dwarf mosaic virus (MDMV) | Bermuda grass Southern mosaic virus (BgSMV) | Sorghum (unknown species) | Lab | 2012 | [73] |
Papaya ringspot virus (PRSV), PRSV HA 5-1 and 6-1 mutated strains | PRSV-W severe strains PRSV-W-C, PRSV-W-B, PRSV-W-P | Carica papaya | Field | 1998 | [74] |
Papaya ringspot virus (PRSV), PRSV-W-SD mutated strains C57A, K125D, G317K, P328A | Wild type PRSV-W-gfp | Cucumis melo | Lab | 2019 | [75] |
PRSV-W mild strains PRSV-W-1 and PRSV-W-2 | PRSV-W severe strains PRSV-W-C, PRSV-W-B, PRSV-W-P | Cucurbita pepo cv. Caserta and cv. Clarinda | Field | 1998 | [76] |
Pepper severe mosaic virus (PeSMV), M-1 strain | PeSMV virulent strains | Capsicum cv. XPH 833 and cv. NUN 3364 | Lab | 1988 | [77] |
Plum pox virus (PPV) mild strains | PPV severe strains | Prunus persica GF305 | Lab | 2008 | [78] |
Potato virus Y (PVY) mild strains M-MY10 and N-NA10 | PVY severe isolate NTND6 | Nicotiana tabacum cv. Xanthi | Lab | 2013 | [79] |
PVY isolates Li, FrKV2, Wy, Wi, Cou8/03, 47/96 | various combination of PVY isolates | Nicotiana tabacum cv. Samsun, S. tuberosum cv Irga and cv. Satina | Lab | 2018 | [80] |
Potato virus A (PVA) tobacco strain | PVA potato strains | Nicotiana tabacum cv. Samsun nn | Lab | 2002 | [81] |
Soybean mosaic virus (SMV), Aa15-M2 strain | SMV severe strains | Glycine max cv. Shin Tambaguro | Lab and field | 1993 | [82] |
SMV, mosaic strain | SMV mosaic strain | Glycine max, various cultivars | Lab | 2008 | [83] |
Turnip mosaic virus, GK strain | YC5 strain | Arabidopsis thaliana | Lab | 2014 | [84] |
Vanilla necrosis potyvirus (VNV), mild strains | VNV severe strains | Vanilla fragrans | Lab | 1999 | [85] |
Watermelon mosaic virus (WMV), EM, CL isolates; W1-9 isolates | WMV, EM, and CL isolates and WMV severe strains | Cucurbita maxima cv. Hokou Aokawa Kuri, C. moshata, various cultivars, C. maxima x C. moshata, various cultivars, C. pepo, Cucumis melo cv. various, Citrullus lunatus cv. Kyokuto, Lagenaria siceraria cv. Shimotsukeshiro | Lab | 1992, 2011 | [86,87] |
Zucchini yellow mosaic virus (ZYMV), WK isolate | ZYMV severe strains | Curcubita pepo cvs. Elite, Oriental sweet melon, Cucumis sativus cv. Marketer | Lab and field | 1991 | [19] |
Rymovirus | |||||
Wheat streak mosaic virus (WSMV), Type and Sidney 81 strains | WSMV, Type and Sidney 81 strains | Triticum aestivum cv. Centurk | Lab | 2001 | [88] |
Tobamovirus | |||||
Cucumber green mottle mosaic virus (CGMMV), VIROG-43Ms strain | CGMMV, MC-1 and MC-2 isolates | Cucumis sativus var. Kurazh F1 | Lab | 2016 | [89] |
CGMMV Pk-47 and Pk-81 | Wild type CGMMV | Cucumis sativus | Lab | 2010 | [90] |
Hibiscus latent Singapore virus (HLSV) | Tobacco mosaic virus-U1 | Nicotiana benthamiana | Lab | 2013 | [91] |
Pepper mild mottle virus (PMMoV), isolates L3-163 | Wild type PMMoV isolate | Capsicum annuum, various cultivars | Lab | 2013 | [92] |
Tobacco mosaic virus (TMV), 43A | Wild type TMV | Nicotiana benthamiana | Lab | 2019 | [93] |
TMV, MII-16 strain | TMV, type O isolate | Solanum lycopersicum cv. Potentate | Lab | 1977 | [94] |
TMV mild strain | TMV | Capscicum annuum various cultivars | Lab | 1984 | [95] |
Crucifer TMV, CgYD strain (engineered) | Crucifer TMV, Cg strain | Arabidopsis thaliana ecotype Col-0 and sde1 (ecotype C24) | Lab | 2003 | [96] |
Satellite TMV, type 5 and type 6 | Satellite TMV, type 5 and type 6 | Nicotianatabacum cv. Xanthi nn | Lab | 1994 | [97] |
Tomato mosaic virus (ToMV), L11A-Fukushima strain | ToMV severe strains | Solanum lycopersicum cv. Momotaro | Field | 2002 | [98] |
Tospovirus | |||||
Tomato spotted wilt virus (TSWV), R27G mild strain | TSWV, BL isolate | Datura stramonium L. | Lab | 1992 | [99] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pechinger, K.; Chooi, K.M.; MacDiarmid, R.M.; Harper, S.J.; Ziebell, H. A New Era for Mild Strain Cross-Protection. Viruses 2019, 11, 670. https://doi.org/10.3390/v11070670
Pechinger K, Chooi KM, MacDiarmid RM, Harper SJ, Ziebell H. A New Era for Mild Strain Cross-Protection. Viruses. 2019; 11(7):670. https://doi.org/10.3390/v11070670
Chicago/Turabian StylePechinger, Katrin, Kar Mun Chooi, Robin M. MacDiarmid, Scott J. Harper, and Heiko Ziebell. 2019. "A New Era for Mild Strain Cross-Protection" Viruses 11, no. 7: 670. https://doi.org/10.3390/v11070670
APA StylePechinger, K., Chooi, K. M., MacDiarmid, R. M., Harper, S. J., & Ziebell, H. (2019). A New Era for Mild Strain Cross-Protection. Viruses, 11(7), 670. https://doi.org/10.3390/v11070670