Long-Acting HIV-1 Fusion Inhibitory Peptides and their Mechanisms of Action
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Peptide Design Synthesis and Identification
2.3. Circular Dichroism (CD) Spectroscopy
2.4. Determination of gp41 6-HB Formation by Native Polyacrylamide Gel Electrophoresis (N-PAGE)
2.5. Cytotoxicity Assay
2.6. Inhibition of HIV-1 Env-Mediated Cell–Cell Fusion
2.7. Inhibition of HIV-1 Replication
2.8. Pharmacokinetics of Peptides in Rats
3. Results
3.1. Generation of High-Purity PEGylated HIV-1 Fusion Inhibitory Peptide
3.2. Binding of PEGylated C34 to NHR Forms Stable 6-HB
3.3. Inhibitory Potency of PEGylated C34 against Env-Mediated Cell–Cell Fusion and Infection of Laboratory-Adapted HIV-1 Strain with Low Cytotoxicity
3.4. PEGylated C34 Could Effectively Inhibit the Replication of the HIV-1 Subtypes Circulating in China
3.5. Decreased Resistance of T20-Induced HIV-1 Mutants to PEGylated HIV-1 Fusion Inhibitors
3.6. PEGylated C34 Displayed Prolonged Half-Life
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rai, M.A.; Pannek, S.; Fichtenbaum, C.J. Emerging reverse transcriptase inhibitors for HIV-1 infection. Expert Opin. Emerg. Drugs 2018, 23, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhao, J.; Sun, J.; Yin, Q.; Wang, Y.; Jiao, Y.; Liu, J.; Jiang, S.; Shao, Y.; Wang, X.; et al. The HEPT Analogue WPR-6 Is Active against a Broad Spectrum of Nonnucleoside Reverse Transcriptase Drug-Resistant HIV-1 Strains of Different Serotypes. Antimicrob. Agents Chemother. 2015, 59, 4882–4888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, L.A.; Junqueira, D.M.; de Medeiros, R.M.; Matte, M.C.; Almeida, S.E. Naturally occurring resistance mutations to HIV-1 entry inhibitors in subtypes B, C, and CRF31_BC. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2012, 54, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Trotter, A.B.; Hong, S.Y.; Srikantiah, P.; Abeyewickreme, I.; Bertagnolio, S.; Jordan, M.R. Systematic review of HIV drug resistance in Southeast Asia. AIDS Rev. 2013, 15, 162–170. [Google Scholar] [PubMed]
- Ariza-Saenz, M.; Espina, M.; Calpena, A.; Gomara, M.J.; Perez-Pomeda, I.; Haro, I.; Garcia, M.L. Design, Characterization, and Biopharmaceutical Behavior of Nanoparticles Loaded with an HIV-1 Fusion Inhibitor Peptide. Mol. Pharm. 2018, 15, 5005–5018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, D.C.; Kim, P.S. HIV entry and its inhibition. Cell 1998, 93, 681–684. [Google Scholar] [CrossRef]
- Weissenhorn, W.; Dessen, A.; Harrison, S.C.; Skehel, J.J.; Wiley, D.C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 1997, 387, 426–430. [Google Scholar] [CrossRef]
- Matthews, T.; Salgo, M.; Greenberg, M.; Chung, J.; DeMasi, R.; Bolognesi, D. Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat. Rev. Drug Discov. 2004, 3, 215–225. [Google Scholar] [CrossRef]
- He, Y.; Xiao, Y.; Song, H.; Liang, Q.; Ju, D.; Chen, X.; Lu, H.; Jing, W.; Jiang, S.; Zhang, L. Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor. J. Biol. Chem. 2008, 283, 11126–11134. [Google Scholar] [CrossRef]
- Chong, H.; Yao, X.; Qiu, Z.; Sun, J.; Zhang, M.; Waltersperger, S.; Wang, M.; Liu, S.L.; Cui, S.; He, Y. Short-peptide fusion inhibitors with high potency against wild-type and enfuvirtide-resistant HIV-1. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2013, 27, 1203–1213. [Google Scholar] [CrossRef]
- Milla, P.; Dosio, F.; Cattel, L. PEGylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab. 2012, 13, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wang, Y.; Zhang, Z.; Lv, X.; Gao, G.F.; Shao, Y.; Ma, L.; Li, X. Enfuvirtide-PEG conjugate: A potent HIV fusion inhibitor with improved pharmacokinetic properties. Eur. J. Med. Chem. 2016, 121, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 2005, 10, 1451–1458. [Google Scholar] [CrossRef]
- Cheng, S.; Chang, X.; Wang, Y.; Gao, G.F.; Shao, Y.; Ma, L.; Li, X. Glycosylated enfuvirtide: A long-lasting glycopeptide with potent anti-HIV activity. J. Med. Chem. 2015, 58, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ding, X.; Zhu, Y.; Chong, H.; Cui, S.; He, J.; Wang, X.; He, Y. Structural and functional characterization of HIV-1 cell fusion inhibitor T20. AIDS 2019, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Lan, Q.; Pu, J.; Wang, C.; Liu, Z.; Xu, W.; Wang, Q.; Liu, H.; Jiang, S.; Lu, L. Potent MERS-CoV Fusion Inhibitory Peptides Identified from HR2 Domain in Spike Protein of Bat Coronavirus HKU4. Viruses 2019, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Herschhorn, A.; Finzi, A.; Jones, D.M.; Courter, J.R.; Sugawara, A.; Smith, A.B., 3rd; Sodroski, J.G. An inducible cell-cell fusion system with integrated ability to measure the efficiency and specificity of HIV-1 entry inhibitors. PLoS ONE 2011, 6, e26731. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qian, H.; Miyamoto, F.; Naito, T.; Kawaji, K.; Kajiwara, K.; Hattori, T.; Matsuoka, M.; Watanabe, K.; Oishi, S.; et al. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats. Biochem. Biophys. Res. Commun. 2012, 424, 257–261. [Google Scholar] [CrossRef]
- Chong, H.; Wu, X.; Su, Y.; He, Y. Development of potent and long-acting HIV-1 fusion inhibitors. AIDS 2016, 30, 1187–1196. [Google Scholar] [CrossRef]
- Su, S.; Rasquinha, G.; Du, L.; Wang, Q.; Xu, W.; Li, W.; Lu, L.; Jiang, S. A Peptide-Based HIV-1 Fusion Inhibitor with Two Tail-Anchors and Palmitic Acid Exhibits Substantially Improved In Vitro and Ex Vivo Anti-HIV-1 Activity and Prolonged In Vivo Half-Life. Molecules 2019, 24, 1134. [Google Scholar] [CrossRef]
- Allen, G.D. MODFIT: A pharmacokinetics computer program. Biopharm. Drug Dispos. 1990, 11, 477–498. [Google Scholar] [CrossRef] [PubMed]
- Ingallinella, P.; Bianchi, E.; Ladwa, N.A.; Wang, Y.J.; Hrin, R.; Veneziano, M.; Bonelli, F.; Ketas, T.J.; Moore, J.P.; Miller, M.D.; et al. Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc. Natl. Acad. Sci. USA 2009, 106, 5801–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, F.; Lu, L.; Du, L.; Zhu, X.; Debnath, A.K.; Jiang, S. Approaches for identification of HIV-1 entry inhibitors targeting gp41 pocket. Viruses 2013, 5, 127–149. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, Q.; Jiang, S. Determination of the HIV-1 gp41 fusogenic core conformation modeled by synthetic peptides: Applicable for identification of HIV-1 fusion inhibitors. Peptides 2003, 24, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, Y.; Ouyang, Y.; Xing, H.; Liao, L.; Jiang, S.; Shao, Y.; Ma, L. Mutation covariation of HIV-1 CRF07_BC reverse transcriptase during antiretroviral therapy. J. Antimicrob. Chemother. 2013, 68, 2521–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.W.; Wang, S.F.; Lin, Y.T.; Yen, C.H.; Lee, C.H.; Wong, W.W.; Tsai, H.C.; Yang, C.J.; Hu, B.S.; Lin, Y.H.; et al. Patients infected with CRF07_BC have significantly lower viral loads than patients with HIV-1 subtype B: Mechanism and impact on disease progression. PLoS ONE 2014, 9, e114441. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.S.; Chen, Y.Q.; McCauley, M.; Gamble, T.; Hosseinipour, M.C.; Kumarasamy, N.; Hakim, J.G.; Kumwenda, J.; Grinsztejn, B.; Pilotto, J.H.; et al. Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 2011, 365, 493–505. [Google Scholar] [CrossRef]
- Li, W.; Lu, L.; Li, W.; Jiang, S. Small-molecule HIV-1 entry inhibitors targeting gp120 and gp41: A patent review (2010–2015). Expert Opin. Ther. Pat. 2017, 27, 707–719. [Google Scholar] [CrossRef]
- Iyidogan, P.; Anderson, K.S. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014, 6, 4095–4139. [Google Scholar] [CrossRef]
- Ngo-Giang-Huong, N.; Huynh, T.H.K.; Dagnra, A.Y.; Toni, T.D.; Maiga, A.I.; Kania, D.; Eymard-Duvernay, S.; Peeters, M.; Soulie, C.; Peytavin, G.; et al. Prevalence of pretreatment HIV drug resistance in West African and Southeast Asian countries. J. Antimicrob. Chemother. 2018. [Google Scholar] [CrossRef]
- Greenberg, M.L.; Cammack, N. Resistance to enfuvirtide, the first HIV fusion inhibitor. J. Antimicrob. Chemother. 2004, 54, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Deeks, S.G.; Hoh, R.; Beatty, G.; Kuritzkes, B.A.; Martin, J.N.; Kuritzkes, D.R. Rapid emergence of enfuvirtide resistance in HIV-1-infected patients: Results of a clonal analysis. J. Acquir. Immune Defic. Syndr. 2006, 43, 60–64. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Cheng, J.; Lu, H.; Li, J.; Hu, J.; Qi, Z.; Liu, Z.; Jiang, S.; Dai, Q. Potent HIV fusion inhibitors against Enfuvirtide-resistant HIV-1 strains. Proc. Natl. Acad. Sci. USA 2008, 105, 16332–16337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, H.; Xue, J.; Xiong, S.; Cong, Z.; Ding, X.; Zhu, Y.; Liu, Z.; Chen, T.; Feng, Y.; He, L.; et al. A Lipopeptide HIV-1/2 Fusion Inhibitor with Highly Potent In Vitro, Ex Vivo, and In Vivo Antiviral Activity. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed]
- Stoddart, C.A.; Nault, G.; Galkina, S.A.; Thibaudeau, K.; Bakis, P.; Bousquet-Gagnon, N.; Robitaille, M.; Bellomo, M.; Paradis, V.; Liscourt, P.; et al. Albumin-conjugated C34 peptide HIV-1 fusion inhibitor: Equipotent to C34 and T-20 in vitro with sustained activity in SCID-hu Thy/Liv mice. J. Biol. Chem. 2008, 283, 34045–34052. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Yao, C.; Wang, L.; Min, W.; Xu, J.; Xiao, J.; Huang, M.; Chen, B.; Liu, B.; Li, X.; et al. An albumin-conjugated peptide exhibits potent anti-HIV activity and long in vivo half-life. Antimicrob. Agents Chemother. 2010, 54, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Song, M.; Sim, B.C.; Gu, C.; Podust, V.N.; Wang, C.W.; McLaughlin, B.; Shah, T.P.; Lax, R.; Gast, R.; et al. Multivalent antiviral XTEN-peptide conjugates with long in vivo half-life and enhanced solubility. Bioconjugate Chem. 2014, 25, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lu, L.; Na, H.; Li, X.; Wang, Q.; Jiang, X.; Xu, X.; Yu, F.; Zhang, T.; Li, J.; et al. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: A promising strategy for discovering new antiviral therapeutics. J. Med. Chem. 2014, 57, 7342–7354. [Google Scholar] [CrossRef] [PubMed]
- Huet, T.; Kerbarh, O.; Schols, D.; Clayette, P.; Gauchet, C.; Dubreucq, G.; Vincent, L.; Bompais, H.; Mazinghien, R.; Querolle, O.; et al. Long-lasting enfuvirtide carrier pentasaccharide conjugates with potent anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 2010, 54, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.; Tam, S.C.; Zheng, Y.T. Current peptide HIV type-1 fusion inhibitors. Antivir. Chem. Chemother. 2009, 20, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Quinn, K.; Traboni, C.; Penchala, S.D.; Bouliotis, G.; Doyle, N.; Libri, V.; Khoo, S.; Ashby, D.; Weber, J.; Nicosia, A.; et al. A first-in-human study of the novel HIV-fusion inhibitor C34-PEG4-Chol. Sci. Rep. 2017, 7, 9447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; He, X.; Zhong, P.; Liu, Y.; Gui, T.; Jia, D.; Li, H.; Wu, J.; Yan, J.; Kang, D.; et al. Phylodynamics of major CRF01_AE epidemic clusters circulating in mainland of China. Sci. Rep. 2017, 7, 6330. [Google Scholar] [CrossRef] [PubMed]
- Brumme, Z.L.; Goodrich, J.; Mayer, H.B.; Brumme, C.J.; Henrick, B.M.; Wynhoven, B.; Asselin, J.J.; Cheung, P.K.; Hogg, R.S.; Montaner, J.S.; et al. Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals. J. Infect. Dis. 2005, 192, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Danial, M.; Stauffer, A.N.; Wurm, F.R.; Root, M.J.; Klok, H.A. Site-Specific Polymer Attachment to HR2 Peptide Fusion Inhibitors against HIV-1 Decreases Binding Association Rates and Dissociation Rates Rather than Binding Affinity. Bioconjugate Chem. 2017, 28, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Danial, M.; van Dulmen, T.H.; Aleksandrowicz, J.; Potgens, A.J.; Klok, H.A. Site-specific PEGylation of HR2 peptides: Effects of PEG conjugation position and chain length on HIV-1 membrane fusion inhibition and proteolytic degradation. Bioconjugate Chem. 2012, 23, 1648–1660. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Lai, S.K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 655–677. [Google Scholar] [CrossRef] [PubMed]
HIV-1 Strains | T20 | C34 | PEG2kC34 | PEG5kC34 | ||||
---|---|---|---|---|---|---|---|---|
EC50 | n-Fold | EC50 | n-Fold | EC50 | n-Fold | EC50 | n-Fold | |
NL4-3 | 128.53 ± 21.06 | 1 | 0.98 ± 1.12 | 1 | 4.14 ± 1.89 | 1 | 4.59 ± 1.83 | 1 |
NL4-3V38A | 1361.21 ± 72.93 | 10.6 | 14.44 ± 5.44 | 14.7 | 34.10 ± 18.07 | 8.2 | 31.49 ± 4.71 | 6.9 |
NL4-3N43K | 764.40 ± 398.35 | 5.9 | 15.24 ± 5.73 | 15.6 | 30.03 ± 10.29 | 7.3 | 39.33 ± 32.10 | 8.6 |
NL4-3V38A/N42D | 424.70 ± 290.16 | 3.3 | 26.07 ± 4.77 | 26.6 | 59.39 ± 39.03 | 14.4 | 45.91 ± 38.62 | 10.0 |
NL4-3V38A/N42T | 780.06 ± 426.99 | 6.07 | 153.13 ± 19.80 | 156.3 | 114.71 ± 36.06 | 27.7 | 71.12 ± 38.07 | 15.5 |
Parameter | PEG2kC34 | PEG5kC34 |
---|---|---|
Rat, i.h., n = 4 | ||
Tmax (h) | 2.94 ± 1.30 | 3.88 ± 1.77 |
Cmax (μg/mL) | 10.37 ± 3.55 | 4.32 ± 1.88 |
t1/2 (h) | 2.57 ± 0.71 | 5.11 ± 3.54 |
AUC0-24h (μg/mL * h) | 39.75 ± 16.80 | 17.68 ± 6.98 |
AUCINF_obs (μg/mL * h) | 40.38 ± 16.75 | 15.56 ± 2.63 |
Vz_F_obs (ml/kg) | 773.42 ± 355.01 | 2688.46 ± 341.05 |
Cl_F_obs (ml/h/kg) | 353.43 ± 84.54 | 1033.79 ± 163.89 |
MRTlast (h) | 3.08 ± 0.55 | 3.75 ± 0.44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Cheng, S.; Zhang, Y.; Ding, Y.; Chong, H.; Xing, H.; Jiang, S.; Li, X.; Ma, L. Long-Acting HIV-1 Fusion Inhibitory Peptides and their Mechanisms of Action. Viruses 2019, 11, 811. https://doi.org/10.3390/v11090811
Wang C, Cheng S, Zhang Y, Ding Y, Chong H, Xing H, Jiang S, Li X, Ma L. Long-Acting HIV-1 Fusion Inhibitory Peptides and their Mechanisms of Action. Viruses. 2019; 11(9):811. https://doi.org/10.3390/v11090811
Chicago/Turabian StyleWang, Chen, Shuihong Cheng, Yuanyuan Zhang, Yibo Ding, Huihui Chong, Hui Xing, Shibo Jiang, Xuebing Li, and Liying Ma. 2019. "Long-Acting HIV-1 Fusion Inhibitory Peptides and their Mechanisms of Action" Viruses 11, no. 9: 811. https://doi.org/10.3390/v11090811
APA StyleWang, C., Cheng, S., Zhang, Y., Ding, Y., Chong, H., Xing, H., Jiang, S., Li, X., & Ma, L. (2019). Long-Acting HIV-1 Fusion Inhibitory Peptides and their Mechanisms of Action. Viruses, 11(9), 811. https://doi.org/10.3390/v11090811