Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vibrio anguillarum Strains, Medium Composition and Growth Conditions
2.2. Stability of zot-Encoding Prophages
2.3. Detection of Circularized Prophages
2.4. Evaluation of Prophage Induction by Detection of Nuclease-Resistant zot in the Supernatant
2.5. Buoyant Density of VAIϕ
2.6. Transmission Electron Microscopy
2.7. Genomic Sequencing of pVAIs
2.8. Genome Analysis
2.9. Relative qPCR Analysis of zot Gene Quantities
2.10. Host Range Analysis of VAIϕ
2.11. Determination of the Integration Site of VAIϕ
3. Results
3.1. Clone-Specific Instability of zot-Encoding Prophages Observed in Vibrio anguillarum
3.2. Filamentous Phage Particles Were Released in Vibrio anguillarum Strains Ba35 and T265, but Were Not Observed in Strain PF4-zot-Prophage+
3.3. Characterization and Annotation of pVAIs in Vibrio anguillarum
3.4. Vibrio anguillarum Inoviridae-Related Elements Are Closely Related to Vibrio cholerae Inoviruses
3.5. VAIϕ Reached High Estimated Genome Copies mL−1 In Vitro
3.6. VAIϕ Can Disseminate and Propagate in Vibrio anguillarum
3.7. VAIϕ Can Integrate at Several Sites in Both Vibrio anguillarum Chromosomes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rakonjac, J.; Bennett, N.J.; Spagnuolo, J.; Gagic, D.; Russel, M. Filamentous Bacteriophage: Biology, Phage Display and Nanotechnology Applications. Curr. Issues Mol. Biol. 2011, 13, 51–76. [Google Scholar] [PubMed]
- Clarke, M.; Maddera, L.; Harris, R.L.; Silverman, P.M. F-Pili Dynamics by Live-Cell Imaging. Proc. Natl. Acad. Sci. USA 2008, 105, 17978–17981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, S.; Krupovic, M.; Daly, R.A.; Borges, A.L.; Nayfach, S.; Schulz, F.; Sharrar, A.; Matheus Carnevali, P.B.; Cheng, J.-F.; Ivanova, N.N.; et al. Cryptic Inoviruses Revealed as Pervasive in Bacteria and Archaea across Earth’s Biomes. Nat. Microbiol. 2019, 4, 1895–1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, I.D.; Lithgow, T. Filamentous Phages: Masters of a Microbial Sharing Economy. EMBO Rep. 2019, 20, e47427. [Google Scholar] [CrossRef] [PubMed]
- Askora, A.; Kawasaki, T.; Fujie, M.; Yamada, T. Resolvase-like Serine Recombinase Mediates Integration/Excision in the Bacteriophage ΦRSM. J. Biosci. Bioeng. 2011, 111, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.S.; Lau, M.; Kjelleberg, S. Bacteriophage and Phenotypic Variation in Pseudomonas aeruginosa Biofilm Development. J.Bacteriol. 2004, 186, 8066–8073. [Google Scholar] [CrossRef] [Green Version]
- Bille, E.; Zahar, J.-R.; Perrin, A.; Morelle, S.; Kriz, P.; Jolley, K.A.; Maiden, M.C.J.; Dervin, C.; Nassif, X.; Tinsley, C.R. A Chromosomally Integrated Bacteriophage in Invasive Meningococci. J. Exp. Med. 2005, 201, 1905–1913. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Bischerour, J.; Barre, F.-X. VGJ Integration and Excision Mechanisms Contribute to the Genetic Diversity of Vibrio cholerae Epidemic Strains. Proc. Natl. Acad. Sci. USA 2011, 108, 2516–2521. [Google Scholar] [CrossRef] [Green Version]
- Kamruzzaman, M.; Robins, W.P.; Nayeemul Bari, S.M.; Nahar, S.; Mekalanos, J.J.; Faruque, S.M. RS1 Satellite Phage Promotes Diversity of Toxigenic Vibrio cholerae by Driving CTX Prophage Loss and Elimination of Lysogenic Immunity. Infect. Immun. 2014, 82, 3636–3643. [Google Scholar] [CrossRef] [Green Version]
- Quinones, M.; Kimsey, H.H.; Waldor, M.K. LexA Cleavage Is Required for CTX Prophage Induction. Mol. Cell 2005, 17, 291–300. [Google Scholar] [CrossRef]
- Davis, B.M.; Waldor, M.K. CTXϕ Contains a Hybrid Genome Derived from Tandemly Integrated Elements. Proc. Natl. Acad. Sci. USA 2000, 97, 8572–8577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marvin, D.A.; Hohn, B. Filamentous Bacterial Viruses. Bacteriol. Rev. 1969, 33, 172–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldor, M.K.; Mekalanos, J.J. Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin. Science 1996, 272, 1910–1914. [Google Scholar] [CrossRef] [Green Version]
- Fasano, A.; Baudry, B.; Pumplin, D.W.; Wasserman, S.S.; Tall, B.D.; Ketley, J.M.; Kaper, J.B. Vibrio cholerae Produces a Second Enterotoxin, Which Affects Intestinal Tight Junctions. Proc. Natl. Acad. Sci. USA 1991, 88, 5242–5246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T. Regulation of Intestinal Epithelial Permeability by Tight Junctions. Cell. Mol. Life Sci. 2013, 70, 631–659. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.A.; Askora, A.; Kawasaki, T.; Fujie, M.; Yamada, T. The Filamentous Phage XacF1 Causes Loss of Virulence in Xanthomonas axonopodis pv. citri, the Causative Agent of Citrus Canker Disease. Front. Microbiol. 2014, 5, 1–11. [Google Scholar]
- Secor, P.R.; Sweere, J.M.; Michaels, L.A.; Malkovskiy, A.V.; Lazzareschi, D.; Evanko, S.P.; Stevens, D.A.; Kaminsky, W.; Singh, P.K.; Parks, W.C.; et al. Filamentous Bacteriophage Promote Biofilm Assembly and Function. Cell Host Microbe 2015, 18, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Weynberg, K.D.; Voolstra, C.R.; Neave, M.J.; Buerger, P.; van Oppen, M.J.H. From Cholera to Corals: Viruses as Drivers of Virulence in a Major Coral Bacterial Pathogen. Sci. Rep. 2016, 5, 17889. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, N.P.; Wilkins, M.R.; Castaño-Rodríguez, N.; Bainbridge, E.; Sodhi, N.; Riordan, S.M.; Mitchell, H.M.; Kaakoush, N.O. Campylobacter concisus Pathotypes Induce Distinct Global Responses in Intestinal Epithelial Cells. Sci. Rep. 2016, 6, 34288. [Google Scholar] [CrossRef]
- Bille, E.; Meyer, J.; Jamet, A.; Euphrasie, D.; Barnier, J.P.; Brissac, T.; Larsen, A.; Pelissier, P.; Nassif, X. A Virulence-Associated Filamentous Bacteriophage of Neisseria meningitidis Increases Host-Cell Colonisation. PLoS Pathog. 2017, 13, 1–23. [Google Scholar] [CrossRef]
- Sweere, J.M.; Van Belleghem, J.D.; Ishak, H.; Bach, M.S.; Popescu, M.; Sunkari, V.; Kaber, G.; Manasherob, R.; Suh, G.A.; Cao, X.; et al. Bacteriophage Trigger Anti-Viral Immunity and Prevent Clearance of Bacterial Infection. Science 2019, 363, eaat9691. [Google Scholar] [CrossRef] [PubMed]
- Rice, S.A.; Tan, C.H.; Mikkelsen, P.J.; Kung, V.; Woo, J.; Tay, M.; Hauser, A.; McDougald, D.; Webb, J.S.; Kjelleberg, S. The Biofilm Life Cycle and Virulence of Pseudomonas aeruginosa Are Dependent on a Filamentous Prophage. ISME J. 2009, 3, 271–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, D.; Kauffman, K.; Hussain, F.; Kalatzis, P.; Rørbo, N.; Polz, M.F.; Middelboe, M. Widespread Distribution of Prophage-Encoded Virulence Factors in Marine Vibrio Communities. Sci. Rep. 2018, 8, 9973. [Google Scholar] [CrossRef] [PubMed]
- Castillo, D.; Vandieken, V.; Engelen, B.; Engelhardt, T.; Middelboe, M. Draft Genome Sequences of Six Vibrio diazotrophicus Strains Isolated from Deep Subsurface Sediments of the Baltic Sea. Genome Announc. 2018, 6, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frans, I.; Michiels, C.W.; Bossier, P.; Willems, K.A.; Lievens, B.; Rediers, H. Vibrio anguillarum as a Fish Pathogen: Virulence Factors, Diagnosis and Prevention. J. Fish. Dis. 2011, 34, 643–661. [Google Scholar] [CrossRef]
- Castillo, D.; Alvise, P.D.; Xu, R.; Zhang, F.; Middelboe, M.; Gram, L. Comparative Genome Analyses of Vibrio anguillarum Strains Reveal a Link with Pathogenicity Traits. mSystems 2017, 2, e00001-17. [Google Scholar] [CrossRef] [Green Version]
- Castillo, D.; Rørbo, N.; Jørgensen, J.; Lange, J.; Tan, D.; Kalatzis, P.G.; Svenningsen, S.L.; Middelboe, M. Phage Defense Mechanisms and Their Genomic and Phenotypic Implications in the Fish Pathogen Vibrio anguillarum. FEMS Microbiol. Ecol. 2019, 95, fiz004. [Google Scholar] [CrossRef]
- Nasu, H.; Iida, T.; Sugahara, T.; Park, K.; Yokoyama, K.; Nasu, H.; Iida, T.; Sugahara, T.; Yamaichi, Y. A Filamentous Phage Associated with Recent Pandemic Vibrio parahaemolyticus O3:K6 Strains. J. Clin. Micrbiology 2000, 38, 2156–2161. [Google Scholar] [CrossRef]
- Austin, B.; Alsina, M.; Austin, D.A.; Blanch, A.R.; Grimont, F.; Grimont, P.A.D.; Jofre, J.; Koblavi, S.; Larsen, J.L.; Pedersen, K.; et al. Identification and Typing of Vibrio anguillarum: A Comparison of Different Methods. Syst. Appl. Microbiol. 1995, 18, 285–302. [Google Scholar] [CrossRef]
- Xue, H.; Xu, Y.; Boucher, Y.; Polz, M.F. High Frequency of a Novel Filamentous Phage, VCYϕ, within an Environmental Vibrio cholerae Population. Appl. Environ. Microbiol. 2012, 78, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.; Ashton, B. Geneious v9.1. Available online: http://www.geneious.com (accessed on 6 June 2016).
- Wheeler, D.L.; Church, D.M.; Federhen, S.; Lash, A.E.; Madden, T.L.; Pontius, J.U.; Schuler, G.D.; Schriml, L.M.; Sequeira, E.; Tatusova, T.A.; et al. Database Resources of the National Center for Biotechnology. Nucleic Acids Res. 2003, 31, 28–33. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple Alignment of Conserved Genomic Sequence with Rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, T.N.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating Signal Peptides from Transmembrane Regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Kall, L.; Krogh, A.; Sonnhammer, E.L.L. Advantages of Combined Transmembrane Topology and Signal Peptide Prediction—the Phobius Web Server. Nucleic Acids Res. 2007, 35, W429–W432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Cenk Sahinalp, S.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved Protein Subcellular Localization Prediction with Refined Localization Subcategories and Predictive Capabilities for All Prokaryotes. Bioinformatics 2010, 26, 1608–1615. [Google Scholar] [CrossRef]
- Salamov, V.S.A.; Solovyevand, A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences. In Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies; Li, R.W., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2011; Chapter 4; pp. 61–78. [Google Scholar]
- Val, M.-E.; Bouvier, M.; Campos, J.; Sherratt, D.; Cornet, F.; Mazel, D.; Barre, F.-X. The Single-Stranded Genome of Phage CTX Is the Form Used for Integration into the Genome of Vibrio cholerae. Mol. Cell 2005, 19, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Moyer, K.E.; Kimsey, H.H.; Waldor, M.K. Evidence for a Rolling-Circle Mechanism of Phage DNA Synthesis from Both Replicative and Integrated Forms of CTXφ. Mol. Microbiol. 2001, 41, 311–323. [Google Scholar] [CrossRef]
- Tan, D.; Svenningsen, S.L.; Middelboe, M. Quorum Sensing Determines the Choice of Antiphage Defense Strategy in Vibrio anguillarum. MBio 2015, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Semsey, S.; Campion, C.; Mohamed, A.; Svenningsen, S.L. How Long Can Bacteriophage λ Change Its Mind? Bacteriophage 2015, 5, e1012930. [Google Scholar] [CrossRef] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Székely, A.J.; Breitbart, M. Single-Stranded DNA Phages: From Early Molecular Biology Tools to Recent Revolutions in Environmental Microbiology. FEMS Microbiol. Lett. 2016, 363, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Silva-Rubio, A.; Avendaño-Herrera, R.; Jaureguiberry, B.; Toranzo, A.E.; Magariños, B. First description of serotype O3 in Vibrio anguillarum strains isolated from salmonids in Chile. J. Fish. Dis. 2008, 31, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Gram, L.; Middelboe, M. Vibriophages and Their Interactions with the Fish Pathogen Vibrio anguillarum. Appl. Environ. Microbiol. 2014, 80, 3128–3140. [Google Scholar] [CrossRef] [Green Version]
- Rehnstam, A.S.; Norqvist, A.; Wolf-Watz, H.; Hagström, A. Identification of Vibrio anguillarum in Fish by Using Partial 16S rRNA Sequences and a Specific 16S rRNA oligonucleotide probe. Appl. Environ. Microbiol. 1989, 55, 1907–1910. [Google Scholar] [CrossRef] [Green Version]
- Skov, M.N.; Pedersen, K.; Larsen, J.L. Comparison of Pulsed-Field Gel Electrophoresis Ribotyping, and Plasmid profiling for Typing of Vibrio anguillarum Serovar O1. Appl. Environ. Microbiol. 1995, 61, 1540–1545. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, H.; Sato, K.; Ogawa, M.; Udou, T.; Mizuguchi1, Y. Isolation and Characterization of a Filamentous Phage, Vf33, Specific for Vibrio parahaemolyticus. Microbiol. Immunol. 1984, 28, 327–337. [Google Scholar] [CrossRef]
- Ackermann, H.W. Bacteriophage Taxonomy in 1987. Microbiol. Sci. 1987, 4, 214–218. [Google Scholar]
- Faruque, S.M.; Bin Naser, I.; Fujihara, K.; Diraphat, P.; Chowdhury, N.; Kamruzzaman, M.; Qadri, F.; Yamasaki, S.; Ghosh, A.N.; Mekalanos, J.J. Genomic Sequence and Receptor for the Vibrio cholerae Phage KSF-1phi: Evolutionary Divergence among Filamentous Vibriophages Mediating Lateral Gene Transfer. J. Bacteriol. 2005, 187, 4095–4103. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.M.; Kimsey, H.H.; Kane, A.V.; Waldor, M.K. A Satellite Phage-Encoded Antirepressor Induces Repressor Aggregation and Cholera Toxin Gene Transfer. EMBO J. 2002, 21, 4240–4249. [Google Scholar] [CrossRef]
- Ali, A.; Johnson, J.A.; Franco, A.A.; Metzger, D.J.; Connell, T.D.; Morris, J.G.; Sozhamannan, S. Mutations in the Extracellular Protein Secretion Pathway Genes (eps) Interfere with Rugose Polysaccharide Production in and Motility of Vibrio cholerae. Infect. Immun. 2000, 68, 1967–1974. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.M. Convergence of the Secretory Pathways for Cholera Toxin and the Filamentous Phage, CTXϕ. Science 2000, 288, 333–335. [Google Scholar] [CrossRef]
- Mahendran, V.; Liu, F.; Riordan, S.M.; Grimm, M.C.; Tanaka, M.M.; Zhang, L. Examination of the Effects of Campylobacter concisus Zonula Occludens Toxin on Intestinal Epithelial Cells and Macrophages. Gut Pathog. 2016, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pierro, M.; Lu, R.; Uzzau, S.; Wang, W.; Margaretten, K.; Pazzani, C.; Maimone, F.; Fasano, A. Zonula Occludens Toxin Structure-Function Analysis: Identification of the Fragment Biologically Active on Tight Junctions and of the Zonulin Receptor Binding Domain. J. Biol. Chem. 2001, 276, 19160–19165. [Google Scholar] [CrossRef] [Green Version]
- Goldblum, S.E.; Rai, U.; Tripathi, A.; Thakar, M.; De Leo, L.; Di Toro, N.; Not, T.; Ramachandran, R.; Puche, A.C.; Hollenberg, M.D.; et al. The Active Zot Domain (aa 288–293) Increases ZO-1 and Myosin 1C Serine/Threonine Phosphorylation, Alters Interaction between ZO-1 and Its Binding Partners, and Induces Tight Junction Disassembly through Proteinase Activated Receptor 2 Activation. FASEB J. 2011, 25, 144–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de O Santos, E.; Alves, N.; Dias, G.; Mazotto, A.M.; Vermelho, A.; Vora, G.J.; Wilson, B.; Beltran, V.H.; Bourne, D.G.; Le Roux, F.; et al. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISME J. 2011, 5, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Kayansamruaj, P.; Dong, H.T.; Hirono, I.; Kondo, H.; Senapin, S.; Rodkhum, C. Genomic characterization of piscine ‘Scale drop and Muscle Necrosis Syndrome’-associated strain of Vibrio harveyi focusing on bacterial virulence determinants. J. Appl. Microbiol. 2018, 124, 652–666. [Google Scholar] [CrossRef]
- Silveira, C.B.; Coutinho, F.H.; Cavalcanti, G.S.; Benler, S.; Doane, M.P.; Dinsdale, E.A.; Edwards, R.A.; Francini-Filho, R.B.; Thompson, C.C.; Luque, A.; et al. Genomic and Ecological Attributes of Marine Bacteriophages Encoding Bacterial Virulence Genes. BMC Genom. 2020, 21, 126. [Google Scholar] [CrossRef]
- Campos, J.; Martínez, E.; Suzarte, E.; Rodríguez, B.L.; Marrero, K.; Silva, Y.; Ledón, T.; del Sol, R.; Fando, R. VGJφ, a Novel Filamentous Phage of Vibrio cholerae, Integrates into the Same Chromosomal Site as CTXφ. J. Bacteriol. 2003, 185, 5685–5696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, B.; Bischerour, J.; Val, M.-E.; Barre, F.-X. Molecular Keys of the Tropism of Integration of the Cholera Toxin Phage. Proc. Natl. Acad. Sci. USA 2010, 107, 4377–4382. [Google Scholar] [CrossRef] [Green Version]
- Baker-Austin, C.; Trinanes, J.A.; Taylor, N.G.H.; Hartnell, R.; Siitonen, A.; Martinez-Urtaza, J. Emerging Vibrio Risk at High Latitudes in Response to Ocean Warming. Nat. Clim. Chang. 2013, 3, 73–77. [Google Scholar] [CrossRef]
- Rønneseth, A.; Castillo, D.; D’Alvise, P.; Tønnesen, Ø.; Haugland, G.; Grotkjaer, T.; Engell-Sørensen, K.; Nørremark, L.; Bergh, Ø.; Wergeland, H.I.; et al. Comparative assessment of Vibrio virulence in marine fish larvae. J. Fish. Dis. 2017, 40, 1373–1385. [Google Scholar] [CrossRef]
- Campos, J.; Martínez, E.; Izquierdo, Y.; Fando, R. VEJϕ, a novel filamentous phage of Vibrio cholerae able to transduce the cholera toxin genes. Microbiology 2010, 156, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kar, S.; Ghosh, R.K.; Ghosh, A.N.; Ghosh, A. Integration of the DNA of a Novel Filamentous Bacteriophage VSK from Vibrio cholerae O139 Into the Host Chromosomal DNA. FEMS Microbiol. Lett. 1996, 145, 17–22. [Google Scholar] [CrossRef]
- Mitra, S.N.; Kar, S.; Ghosh, R.K.; Pajni, S.; Ghosh, A. Presence of Lysogenic Phage in the Outbreak Strains of Vibrio cholerae O139. J. Med. Microbiol. 1995, 42, 399–403. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.T.; Ngo, T.C.; Tran, H.H.; Le, T.H.; Nguyen, H.T.; Nguyen, B.M.; Tran, N.D.; Yamashiro, T.; Ehara, M. Characterization of Vibrio cholerae O139 of an Aquatic Isolate in Northern Vietnam. Open Microbiol. J. 2012, 6, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Kan, B.; Wang, R. Isolation and Characterization of the New Mosaic Filamentous Phage VFJϕ of Vibrio cholerae. PLoS ONE 2013, 8, e70934. [Google Scholar]
- Ehara, M.; Shimodori, S.; Kojima, F.; Ichinose, Y.; Hirayama, T.; Albert, M.J.; Supawat, K.; Honma, Y.; Iwanaga, M.; Amako, K. Characterization of Filamentous Phages of Vibrio cholerae O139 and O1. FEMS Microbiol. Lett. 1997, 154, 293–301. [Google Scholar] [CrossRef]
- Ikema, M.; Honma, Y. A Novel Filamentous Phage, fs-2, of Vibrio cholerae O139. Microbiology 1998, 144, 1901–1906. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.; Miyamoto, H.; Taniguchi, H.; Yoshida, S. Isolation and Genetic Characterization of a Novel Filamentous Bacteriophage, a Deleted Form of Phage f237, from a Pandemic Vibrio parahaemolyticus O4:K68 Strain. Micriol. Immunol. 2002, 46, 565–569. [Google Scholar] [CrossRef]
- Liu, F.; Lee, H.; Lan, R.; Zhang, L. Zonula Occludens Toxin and their prophages in Campylobacter species. Gut Pathog. 2016, 8, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Vibrio anguillarum Strains | Isolated From | zot-Encoding Prophage Detected | Virulence [44] * | Reference |
---|---|---|---|---|
PF4 | Atlantic salmon, Chile | + | High | [45] |
PF4-zot-prophage+ | Derivative of PF4 | + | − | This study |
PF4-zot-prophage− | Derivative of PF4 | − | − | This study |
PF4-zot-prophage−-VAIϕ | PF4-zot-prophage− infected with VAI1ϕ | + | − | This study |
PF430-3 | Derivative of PF4 | − | High | [46] |
PF430-3-VAIϕ | PF430-3 infected with VAI1ϕ | + | − | This study |
T265 | Atlantic salmon, UK | + | Low | [29] |
Ba35 | Sockeye salmon, USA | + | Low | [29] |
NB10 | Rainbow trout, Sweden | − | Low | [47] |
850610-1/6a | Rainbow trout, Denmark | − | Low | [29] |
51/82/2 | Rainbow trout, Germany | − | Low | [29] |
90-11-286 | Rainbow trout, Denmark | − | High | [48] |
HWU53 | Rainbow trout, Denmark | − | Medium | [29] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauritzen, J.J.; Castillo, D.; Tan, D.; Svenningsen, S.L.; Middelboe, M. Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses 2020, 12, 730. https://doi.org/10.3390/v12070730
Mauritzen JJ, Castillo D, Tan D, Svenningsen SL, Middelboe M. Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses. 2020; 12(7):730. https://doi.org/10.3390/v12070730
Chicago/Turabian StyleMauritzen, Jesper Juel, Daniel Castillo, Demeng Tan, Sine Lo Svenningsen, and Mathias Middelboe. 2020. "Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum" Viruses 12, no. 7: 730. https://doi.org/10.3390/v12070730
APA StyleMauritzen, J. J., Castillo, D., Tan, D., Svenningsen, S. L., & Middelboe, M. (2020). Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses, 12(7), 730. https://doi.org/10.3390/v12070730