Exploring New Routes for Genetic Resistances to Potyviruses: The Case of the Arabidopsis thaliana Phosphoglycerates Kinases (PGK) Metabolic Enzymes
Abstract
:1. Introduction
2. Arabidopsis Encodes Two Types of Homologous PGKs Differentially Localized inside the Cell
3. Phylogenetic Studies Confirm the Existence of a Major Clade of PGK, Grouping Cytosolic and Chloroplastic Forms, While Identifying a New Clade of Atypical PGKs
4. 3D Protein Models of Arabidopsis PGKs Confirm the High Similarity between Cytosolic and Chloroplastic Forms
5. PGKs Fill Central Roles in Plant Metabolism and Present Both Specific and Redundant Functions
6. PGKs Act as Host Pro-Viral Enzymes
7. PGKs Emerging Role for Viruses: An Energy-Producing Enzyme during Virus Cycle
- 1-
- Do PGKs perform redundant functions in crops, as has been shown in Arabidopsis thaliana?
- 2-
- Do viruses use either plant cytosolic and/or chloroplastic PGKs to realize their infection cycle?
- 3-
- How do viruses proceed to recruit plant PGKs?
- 4-
- Are the Cvi ecotype’s resistance to WMV and PPV associated to the cPGK2 gene polymorphic? What could be the mechanism of cPGK2-based resistance in the Cvi ecotype?
- 5-
- Can we design, using CRISPR strategy, PGKs-resistant alleles based on PGKs natural resistant allele polymorphism?
8. Conclusions: PGKs as Potential New Genetic Resistances to Cope with Viruses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Schmitt-Keichinger, C. Manipulating cellular factors to combat viruses: A case study from the plant eukaryotic translation initiation factors eIF4. Front. Microbiol. 2019, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicaise, V. Crop immunity against viruses: Outcomes and future challenges. Front. Plant Sci. 2014, 5, 660. [Google Scholar] [CrossRef] [PubMed]
- Fraser, R.S.S. The genetics of plant-virus interactions: Implications for plant breeding. Euphytica 1992, 63, 175–185. [Google Scholar] [CrossRef]
- Soler-Garzón, A.; Mcclean, P.E.; Miklas, P.N. Coding Mutations in Vacuolar Protein-Sorting 4 AAA + ATPase Endosomal Sorting Complexes Required for Transport Protein Homologs Underlie bc-2 and New bc-4 Gene Conferring Resistance to Bean Common Mosaic Virus in Common Bean. Front. Plant Sci. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Amano, M.; Mochizuki, A.; Kawagoe, Y.; Iwahori, K.; Niwa, K.; Svoboda, J.; Maeda, T.; Imura, Y. High-resolution mapping of zym, a recessive gene for Zucchini yellow mosaic virus resistance in cucumber. Theor. Appl. Genet. 2013, 126, 2983–2993. [Google Scholar] [CrossRef]
- Essafi, A.; Díaz-Pendón, J.A.; Moriones, E.; Monforte, A.J.; Garcia-Mas, J.; Martín-Hernández, A.M. Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession PI 161375. Theor. Appl. Genet. 2009, 118, 275–284. [Google Scholar] [CrossRef]
- Guiu-Aragonés, C.; Díaz-Pendón, J.A.; Martín-Hernández, A.M. Four sequence positions of the movement protein of Cucumber mosaic virus determine the virulence against cmv1-mediated resistance in melon. Mol. Plant Pathol. 2015, 16, 675–684. [Google Scholar] [CrossRef]
- Thiémélé, D.; Boisnard, A.; Ndjiondjop, M.N.; Chéron, S.; Séré, Y.; Aké, S.; Ghesquière, A.; Albar, L. Identification of a second major resistance gene to Rice yellow mottle virus, RYMV2, in the African cultivated rice species, O. glaberrima. Theor. Appl. Genet. 2010, 121, 169–179. [Google Scholar] [CrossRef]
- Bauer, E.; Weyen, J.; Schiemann, A.; Graner, A.; Ordon, F. Molecular mapping of novel resistance genes against Barley Mild Mosaic Virus (BaMMV). Theor. Appl. Genet. 1997, 95, 1263–1269. [Google Scholar] [CrossRef]
- Nissan-Azzouz, F.; Graner, A.; Friedt, W.; Ordon, F. Fine-mapping of the BaMMV, BaYMV-1 and BaYMV-2 resistance of barley (Hordeum vulgare) accession PI1963. Theor. Appl. Genet. 2005, 110, 212–218. [Google Scholar] [CrossRef]
- Yang, P.; Lüpken, T.; Habekuss, A.; Hensel, G.; Steuernagel, B.; Kilian, B.; Ariyadasa, R.; Himmelbach, A.; Kumlehn, J.; Scholz, U.; et al. Protein disulfide isomerase like 5-1 is a susceptibility factor to plant viruses. Proc. Natl. Acad. Sci. USA 2014, 111, 2104–2109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, P.; Avni, A.; Bendahmane, A. Translational Research: Exploring and Creating Genetic Diversity. Trends Plant Sci. 2018, 23, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ruiz, H. Susceptibility genes to plant viruses. Viruses 2018, 10, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, M.; Neriya, Y.; Yamaji, Y.; Namba, S. Recessive resistance to plant viruses: Potential resistance genes beyond translation initiation factors. Front. Microbiol. 2016, 7, 1695. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, K.; Hafrén, A. Intracellular coordination of potyviral RNA functions in infection. Front. Plant Sci. 2014, 5, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanaka, T.; Ohta, T.; Takahashi, M.; Meshi, T.; Schmidt, R.; Dean, C.; Naito, S.; Ishikawa, M. TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc. Natl. Acad. Sci. USA 2000, 97, 10107–10112. [Google Scholar] [CrossRef] [Green Version]
- Tsujimoto, Y.; Numaga, T.; Ohshima, K.; Yano, M.A.; Ohsawa, R.; Goto, D.B.; Naito, S.; Ishikawa, M. Arabidopsis tobamovirus multiplication (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J. 2003, 22, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Bastet, A.; Lederer, B.; Giovinazzo, N.; Arnoux, X.; German-Retana, S.; Reinbold, C.; Brault, V.; Garcia, D.; Djennane, S.; Gersch, S.; et al. Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnol. J. 2018, 16, 1569–1581. [Google Scholar] [CrossRef]
- Contreras-Paredes, C.A.; Silva-Rosales, L.; Daròs, J.A.; Alejandri-Ramírez, N.D.; Dinkova, T.D. The absence of eukaryotic initiation factor eIF(iso)4E affects the systemic spread of a Tobacco etch virus isolate in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 2013, 26, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Duprat, A.; Caranta, C.; Revers, F.; Menand, B.; Browning, K.S.; Robaglia, C. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 2002, 32, 927–934. [Google Scholar] [CrossRef]
- Pyott, D.E.; Sheehan, E.; Molnar, A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 2016, 17, 1276–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasanth, K.R.; Chuang, C.; Nagy, P.D. Co-opting ATP-generating glycolytic enzyme PGK1 phosphoglycerate kinase facilitates the assembly of viral replicase complexes. PLoS Pathog. 2017, 13, e1006689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.W.; Ding, M.P.; Hsu, Y.H.; Tsai, C.H. Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus. Nucleic Acids Res. 2007, 35, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Ouibrahim, L.; Mazier, M.; Estevan, J.; Pagny, G.; Decroocq, V.; Desbiez, C.; Moretti, A.; Gallois, J.L.; Caranta, C. Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J. 2014, 79, 705–716. [Google Scholar] [CrossRef]
- Poque, S.; Pagny, G.; Ouibrahim, L.; Chague, A.; Eyquard, J.P.; Caballero, M.; Candresse, T.; Caranta, C.; Mariette, S.; Decroocq, V. Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana. BMC Plant Biol. 2015, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Longstaff, M.; Raines, C.A.; Mcmorrowl, E.M.; Bradbeerl, J.W.; Dyer, T.A.; Press, I.R.L. Wbeat phosphoglycerate kinase: Evidence for recombination between the genes for the chloroplastic. Nucleic Acids Res. 1989, 17, 6569–6580. [Google Scholar] [CrossRef] [Green Version]
- Rosa-Téllez, S.; Anoman, A.D.; Flores-Tornero, M.; Toujani, W.; Alseek, S.; Fernie, A.R.; Nebauer, S.G.; Muñoz-Bertomeu, J.; Segura, J.; Ros, R. Phosphoglycerate kinases are co-regulated to adjust metabolism and to optimize growth. Plant Physiol. 2018, 176, 1182–1198. [Google Scholar] [CrossRef] [Green Version]
- Troncoso-Ponce, M.A.; Rivoal, J.; Venegas-Calerón, M.; Dorion, S.; Sánchez, R.; Cejudo, F.J.; Garcés, R.; Martínez-Force, E. Molecular cloning and biochemical characterization of three phosphoglycerate kinase isoforms from developing sunflower (Helianthus annuus L.) seeds. Phytochemistry 2012, 79, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, H.; Martin, W. Higher-plant chloroplast and cytosolic 3-phosphoglycerate kinases: A case of endosymbiotic gene replacement. Plant Mol. Biol. 1996, 30, 65–75. [Google Scholar] [CrossRef]
- Massange-Sánchez, J.A.; Casados-Vázquez, L.E.; Juarez-Colunga, S.; Sawers, R.J.H.; Tiessen, A. The phosphoglycerate kinase (Pgk) gene family of maize (Zea mays var. b73). Plants 2020, 9, 1639. [Google Scholar] [CrossRef]
- Becker, B.; Marin, B. Streptophyte algae and the origin of embryophytes. Ann. Bot. 2009, 103, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Hori, K.; Maruyama, F.; Fujisawa, T.; Togashi, T.; Yamamoto, N.; Seo, M.; Sato, S.; Yamada, T.; Mori, H.; Tajima, N.; et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 2014, 5, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Jindal, H.K.; Vishwanatha, J.K. Functional identity of a primer recognition protein as phosphoglycerate kinase. J. Biol. Chem. 1990, 265, 6540–6543. [Google Scholar] [CrossRef]
- Bryant, T.N.; Watson, H.C.; Wendell, P.L. Structure of Yeast Phosphoglycerate Kinase. Nat. Publ. Gr. 1974, 247, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Banks, R.D.; Blake, C.C.F.; Evans, P.R.; Hasert, R.; Rice, D.W. Sequence, structure and activity of phosphoglycerate kinase: A possible hinge-bending enzyme. Nat. Publ. Gr. 1979, 279, 773–777. [Google Scholar] [CrossRef]
- Watson, H.C.; Walker, N.P.; Shaw, P.J.; Bryant, T.N.; Wendell, P.L.; Fothergill, L.A.; Perkins, R.E.; Conroy, S.C.; Dobson, M.J.; Tuite, M.F. Sequence and structure of yeast phosphoglycerate kinase. EMBO J. 1982, 1, 1635–1640. [Google Scholar] [CrossRef]
- Goodsell, D.S. Representing structural information with RasMol. Curr. Protoc. Bioinform. 2005, 5, 5.4.1–5.4.23. [Google Scholar] [CrossRef]
- Li, R.; Qiu, Z.; Wang, X.; Gong, P.; Xu, Q.; Yu, Q.B.; Guan, Y. Pooled CRISPR/Cas9 reveals redundant roles of plastidial phosphoglycerate kinases in carbon fixation and metabolism. Plant J. 2019, 98, 1078–1089. [Google Scholar] [CrossRef]
- Pilon, M.; America, T.; van’t Hof, R.; de Kruijff, B.; Weisbeek, P. Protein translocation into chloroplasts. Membr. Protein Transp. 1995, 1, 229–256. [Google Scholar] [CrossRef]
- Jeffery, C.J. Moonlighning proteins. Trends Biochem. Sci. 1999, 24, 8–11. [Google Scholar] [CrossRef]
- Ogino, T.; Iwama, M.; Kinouchi, J.; Shibagaki, Y.; Tsukamoto, T.; Mizumoto, K. Involvement of a Cellular Glycolytic Enzyme, Phosphoglycerate Kinase, in Sendai Virus Transcription. J. Biol. Chem. 1999, 274, 35999–36008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.F.; Huang, Y.P.; Chen, L.H.; Hsu, Y.H.; Tsai, C.H. Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant Physiol. 2013, 163, 1598–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharyya, D.; Chakraborty, S. Chloroplast: The Trojan horse in plant–virus interaction. Mol. Plant Pathol. 2018, 19, 504–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, P.D.; Lin, W. Taking over cellular energy-metabolism for TBSV replication: The high ATP requirement of an RNA virus within the viral replication organelle. Viruses 2020, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Mendu, V.; Chiu, M.; Barajas, D.; Li, Z.; Nagy, P.D. Cpr1 cyclophilin and Ess1 parvulin prolyl isomerases interact with the tombusvirus replication protein and inhibit viral replication in yeast model host. Virology 2010, 406, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Vivancos, P.; Clemente-Moreno, M.J.; Rubio, M.; Olmos, E.; García, J.A.; Martínez-Gómez, P.; Hernández, J.A. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J. Exp. Bot. 2008, 59, 2147–2160. [Google Scholar] [CrossRef]
- Jiménez, I.; López, L.; Alamillo, J.M.; Valli, A.; García, J.A. Identification of a Plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol. Plant-Microbe Interact. 2006, 19, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Clemente-Moreno, M.J.; Hernández, J.A.; Diaz-Vivancos, P. Sharka: How do plants respond to Plum pox virus infection? J. Exp. Bot. 2015, 66, 25–35. [Google Scholar] [CrossRef] [Green Version]
- García, J.A.; Glasa, M.; Cambra, M.; Candresse, T. Plum pox virus and sharka: A model potyvirus and a major disease. Mol. Plant Pathol. 2014, 15, 226–241. [Google Scholar] [CrossRef]
- Wei, T.; Huang, T.-S.; McNeil, J.; Laliberté, J.-F.; Hong, J.; Nelson, R.S.; Wang, A. Sequential Recruitment of the Endoplasmic Reticulum and Chloroplasts for Plant Potyvirus Replication. J. Virol. 2010, 84, 799–809. [Google Scholar] [CrossRef] [Green Version]
- Filho, P.; Souza, N.; Eulálio, F.; Carvalho, L. Killing two birds with one stone: How do Plant Viruses Break Down Plant Defenses and Manipulate Cellular Processes to Replicate Themselves? J. Plant Biol. 2019, 62, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Veillet, F.; Durand, M.; Kroj, T.; Cesari, S.; Gallois, J.L. Precision Breeding Made Real with CRISPR: Illustration through Genetic Resistance to Pathogens. Plant Commun. 2020, 1, 100102. [Google Scholar] [CrossRef] [PubMed]
- Gauffier, C.; Lebaron, C.; Moretti, A.; Constant, C.; Moquet, F.; Bonnet, G.; Caranta, C.; Gallois, J.L. A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy. Plant J. 2016, 85, 717–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastet, A.; Zafirov, D.; Giovinazzo, N.; Guyon-Debast, A.; Nogué, F.; Robaglia, C.; Gallois, J.L. Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnol. J. 2019, 17, 1736–1750. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Leal, D.; Lemmon, Z.H.; Man, J.; Bartlett, M.E.; Lippman, Z.B. Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell 2017, 171, 470–480.e8. [Google Scholar] [CrossRef] [Green Version]
- Rensink, W.A.; Pilon, M.; Weisbeek, P. Domains of a transit sequence required for in vivo import in arabidopsis chloroplasts. Plant Physiol. 1998, 118, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Liu, Y.; Molho, M.; Zhang, S.; Wang, L.; Xie, L.; Nagy, P.D. Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation. PLoS Pathog. 2019, 15, e1008092. [Google Scholar] [CrossRef]
Genotypes/Agi/Type of Mutant | Phenotypes | References |
---|---|---|
cpgk1 (GK_172A12; GK_908E11) | Mild phenotype, lower photosynthetic capacity, lower starch content, metabolite content variation. | [27] |
cpgk1 CRISPR-Cas9 line | Normal, similar to the wild-type plants. | [36] |
cpgk2 (SALK016097) 1 | 1 The albino phenotype is not caused by cPGK2 loss-of-function. | |
cpgk2 CRISPR-Cas9 line | Normal, plants slightly smaller than wild-type plants. | [23,26,36] |
pgk3 (SALK062377; SALK066422) | Mild phenotype, reduction in growth parameters, higher starch level, metabolite content variation. | |
cpgk1 × cpgk2 (CRISPR-Cas9 line) | Albino plants that die, defective chloroplast development, phenotype can be partially restored by exogenous sugar. | [36] |
cpgk1 × pgk3 (T-DNA line) | Reversion of the smaller phenotype caused by pgk3. | [26] Not available. |
cpgk2 × pgk3 | Not available. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diop, M.; Gallois, J.-L. Exploring New Routes for Genetic Resistances to Potyviruses: The Case of the Arabidopsis thaliana Phosphoglycerates Kinases (PGK) Metabolic Enzymes. Viruses 2022, 14, 1245. https://doi.org/10.3390/v14061245
Diop M, Gallois J-L. Exploring New Routes for Genetic Resistances to Potyviruses: The Case of the Arabidopsis thaliana Phosphoglycerates Kinases (PGK) Metabolic Enzymes. Viruses. 2022; 14(6):1245. https://doi.org/10.3390/v14061245
Chicago/Turabian StyleDiop, Mamoudou, and Jean-Luc Gallois. 2022. "Exploring New Routes for Genetic Resistances to Potyviruses: The Case of the Arabidopsis thaliana Phosphoglycerates Kinases (PGK) Metabolic Enzymes" Viruses 14, no. 6: 1245. https://doi.org/10.3390/v14061245
APA StyleDiop, M., & Gallois, J. -L. (2022). Exploring New Routes for Genetic Resistances to Potyviruses: The Case of the Arabidopsis thaliana Phosphoglycerates Kinases (PGK) Metabolic Enzymes. Viruses, 14(6), 1245. https://doi.org/10.3390/v14061245