Unique Variants of Avian Coronaviruses from Indigenous Chickens in Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. RNA Extraction
2.3. Library Construction and Next-Generation Sequencing
2.4. Genome Sequence Assembly and Characterization
2.5. Sanger Sequencing
2.6. Phylogenetic Analysis
3. Results
3.1. NGS-Based Nontargeted Virus Discovery
3.2. Sequence Assembly
3.3. Genomic Organization, Sequence, and Phylogenetic Analysis of the Kenyan IBVs
3.4. Analysis of the S Glycoprotein
3.4.1. Domain Features of Isolate A374/17
3.4.2. Mutations in the S1 Subunit Hypervariable Regions (HVRs)
3.4.3. Domain Features of Isolate A376/17
3.5. Analysis of Recombination Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackwood, M.W.; de Wit, S. CHAPTER 4: Infectious Bronchitis. In Diseases of Poultry; Swayne, D.E., Boulianne, C.M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., de Wit, S., Grimes, T., Johnson, D., Kromm, M., et al., Eds.; John Wiley & Sons, Ltd.: New York, NY, USA, 2020; Volume 1, pp. 167–188. ISBN 978-1-119-37119-9. [Google Scholar]
- Beach, J.; Schalm, O. A Filterable Virus, Distinct from That of Laryngotracheitis, the Cause of a Respiratory Disease of Chicks. Poult. Sci. 1936, 15, 199–206. [Google Scholar] [CrossRef]
- Cavanagh, D. Coronavirus Avian Infectious Bronchitis Virus. Vet. Res. 2007, 38, 281–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakrishnan, S.; Kappala, D. Avian Infectious Bronchitis Virus. In Recent Advances in Animal Virology; Malik, Y.S., Singh, R.K., Yadav, M.P., Eds.; Springer: Singapore, 2019; pp. 301–319. ISBN 978-981-13-9073-9. [Google Scholar]
- Gallardo, R.A. Infectious Bronchitis Virus Variants in Chickens: Evolution, Surveillance, Control and Prevention. Austral J. Vet. Sci. 2021, 53, 55–62. [Google Scholar] [CrossRef]
- Denison, M.R.; Graham, R.L.; Donaldson, E.F.; Eckerle, L.D.; Baric, R.S. Coronaviruses: An RNA Proofreading Machine Regulates Replication Fidelity and Diversity. RNA Biol. 2011, 8, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Simon-Loriere, E.; Holmes, E.C. Why Do RNA Viruses Recombine? Nat. Rev. Microbiol. 2011, 9, 617–626. [Google Scholar] [CrossRef]
- Weiss, S.R.; Navas-Martin, S. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiol. Mol. Biol. Rev. 2005, 69, 635–664. [Google Scholar] [CrossRef] [Green Version]
- Ziebuhr, J. The Coronavirus Replicase. In Coronavirus Replication and Reverse Genetics; Enjuanes, L.J., Ed.; Current Topics in Microbiology and Immunology; Springer: Heidelberg, Germany, 2005; Volume 287, pp. 57–94. ISBN 978-3-540-26765-2. [Google Scholar]
- Sawicki, S.G.; Sawicki, D.L.; Siddell, S.G. A Contemporary View of Coronavirus Transcription. J. Virol. 2007, 81, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Kariithi, H.M.; Volkening, J.D.; Leyson, C.M.; Afonso, C.L.; Christy, N.; Decanini, E.L.; Lemiere, S.; Suarez, D.L. Genome Sequence Variations of Infectious Bronchitis Virus Serotypes from Commercial Chickens in Mexico. Front. Vet. Sci. 2022, 9, 931272. [Google Scholar] [CrossRef]
- Fehr, A.R.; Perlman, S. CHAPTER 1. Coronaviruses: An Overview of Their Replication and Pathogenesis. In Coronaviruses: Methods and Protocols; Maier, H.J., Bickerton, E., Britton, P., Eds.; Humana Press: New York, NY, USA, 2015; Volume 1282, pp. 1–23. ISBN 978-1-4939-2437-0. [Google Scholar]
- Hodgson, T.; Britton, P.; Cavanagh, D. Neither the RNA nor the Proteins of Open Reading Frames 3a and 3b of the Coronavirus Infectious Bronchitis Virus Are Essential for Replication. J. Virol. 2006, 80, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Masters, P.S. The Molecular Biology of Coronaviruses. Adv. Virus Res. 2006, 66, 193–292. [Google Scholar] [CrossRef]
- Feng, K.; Chen, T.; Zhang, X.; Shao, G.; Cao, Y.; Chen, D.; Lin, W.; Chen, F.; Xie, Q. Molecular Characteristic and Pathogenicity Analysis of a Virulent Recombinant Avian Infectious Bronchitis Virus Isolated in China. Poult. Sci. 2018, 97, 3519–3531. [Google Scholar] [CrossRef] [PubMed]
- Laconi, A.; van Beurden, S.J.; Berends, A.J.; Krämer-Kühl, A.; Jansen, C.A.; Spekreijse, D.; Chénard, G.; Philipp, H.-C.; Mundt, E.; Rottier, P.J. Deletion of Accessory Genes 3a, 3b, 5a or 5b from Avian Coronavirus Infectious Bronchitis Virus Induces an Attenuated Phenotype Both in vitro and in vivo. J. Gen. Virol. 2018, 99, 1381. [Google Scholar] [CrossRef]
- Wickramasinghe, I.A.; Van Beurden, S.; Weerts, E.; Verheije, M. The Avian Coronavirus Spike Protein. Virus Res. 2014, 194, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Quinteros, J.; Noormohammadi, A.; Lee, S.; Browning, G.; Diaz-Méndez, A. Genomics and Pathogenesis of the Avian Coronavirus Infectious Bronchitis Virus. Aust. Vet. J. 2022, 100, 496–512. [Google Scholar] [CrossRef] [PubMed]
- Valastro, V.; Holmes, E.C.; Britton, P.; Fusaro, A.; Jackwood, M.W.; Cattoli, G.; Monne, I. S1 Gene-Based Phylogeny of Infectious Bronchitis Virus: An Attempt to Harmonize Virus Classification. Infect. Genet. Evol. 2016, 39, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Petzoldt, D.; Vogel, N.; Bielenberg, W.; Haneke, J.; Bischoff, H.; Liman, M.; Rönchen, S.; Behr, K.-P.; Menke, T. IB80—A Novel Infectious Bronchitis Virus Genotype (GVIII). Avian Dis. 2022, 66, 291–298. [Google Scholar] [CrossRef]
- Ma, T.; Xu, L.; Ren, M.; Shen, J.; Han, Z.; Sun, J.; Zhao, Y.; Liu, S. Novel Genotype of Infectious Bronchitis Virus Isolated in China. Vet. Microbiol. 2019, 230, 178–186. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, L.; Zhao, W.; Liu, L.; Zhao, Y.; Shao, Y.; Li, H.; Han, Z.; Liu, S. Identification and Molecular Characterization of a Novel Serotype Infectious Bronchitis Virus (GI-28) in China. Vet. Microbiol. 2017, 198, 108–115. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, W.; Han, Z.; Chen, Y.; Zhao, Y.; Sun, J.; Li, H.; Shao, Y.; Liu, L.; Liu, S. Genome Characterization, Antigenicity and Pathogenicity of a Novel Infectious Bronchitis Virus Type Isolated from South China. Infect. Genet. Evol. 2017, 54, 437–446. [Google Scholar] [CrossRef]
- Brown Jordan, A.; Fusaro, A.; Blake, L.; Milani, A.; Zamperin, G.; Brown, G.; Carrington, C.V.; Monne, I.; Oura, C.A. Characterization of Novel, Pathogenic Field Strains of Infectious Bronchitis Virus (IBV) in Poultry in Trinidad and Tobago. Transbound. Emerg. Dis. 2020, 67, 2775–2788. [Google Scholar] [CrossRef]
- Bali, K.; Kaszab, E.; Marton, S.; Hamdiou, S.H.; Bentaleb, R.K.; Kiss, I.; Palya, V.; Bányai, K. Novel Lineage of Infectious Bronchitis Virus from Sub-Saharan Africa Identified by Random Amplification and next-Generation Sequencing of Viral Genome. Life 2022, 12, 475. [Google Scholar] [CrossRef] [PubMed]
- Lachheb, J.; Turki, A.; Nsiri, J.; Fathallah, I.; Larbi, I.; Ghram, A. Molecular Characterization of a Unique Variant of Avian Infectious Bronchitis Virus in Tunisia. Poult. Sci. 2019, 98, 4338–4345. [Google Scholar] [CrossRef] [PubMed]
- Bande, F.; Arshad, S.S.; Omar, A.R.; Hair-Bejo, M.; Mahmuda, A.; Nair, V. Global Distributions and Strain Diversity of Avian Infectious Bronchitis Virus: A Review. Anim. Health Res. Rev. 2017, 18, 70–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moharam, I.; Sultan, H.; Hassan, K.; Ibrahim, M.; Shany, S.; Shehata, A.A.; Abo-ElKhair, M.; Pfaff, F.; Höper, D.; Kady, M.E. Emerging Infectious Bronchitis Virus (IBV) in Egypt: Evidence for an Evolutionary Advantage of a New S1 Variant with a Unique Gene 3ab Constellation. Infect. Genet. Evol. 2020, 85, 104433. [Google Scholar] [CrossRef]
- Kariithi, H.M.; Ferreira, H.L.; Welch, C.N.; Ateya, L.O.; Apopo, A.A.; Zoller, R.; Volkening, J.D.; Williams-Coplin, D.; Parris, D.J.; Olivier, T.L.; et al. Surveillance and Genetic Characterization of Virulent Newcastle Disease Virus Subgenotype V.3 in Indigenous Chickens from Backyard Poultry Farms and Live Bird Markets in Kenya. Viruses 2021, 13, 103. [Google Scholar] [CrossRef]
- Kemboi, D.; Chegeh, H.; Bebora, L.; Maingi, N.; Nyaga, P.; Mbuthia, P.; Njagi, L.; Githinji, J. Seasonal Newcastle Disease Antibody Titer Dynamics in Village Chickens of Mbeere District, Eastern Province, Kenya. Livest. Res. Rural. Dev. 2013, 25, 9. [Google Scholar]
- Kingori, A.; Wachira, A.; Tuitoek, J. Indigenous Chicken Production in Kenya: A Review. Int. J. Poult. Sci. 2010, 9, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Magothe, T.M.; Okeno, T.O.; Muhuyi, W.B.; Kahi, A.K. Indigenous Chicken Production in Kenya: I. Current Status. Worlds Poult. Sci. 2012, 68, 119–132. [Google Scholar] [CrossRef]
- Parris, D.J.; Kariithi, H.M.; Suarez, D.L. Non-Target RNA Depletion Strategy to Improve Sensitivity of next-Generation Sequencing for the Detection of RNA Viruses in Poultry. J. Vet. Diagn. Investig. 2022, 34, 638–645. [Google Scholar] [CrossRef]
- Chrzastek, K.; Lee, D.; Smith, D.; Sharma, P.; Suarez, D.L.; Pantin-Jackwood, M.; Kapczynski, D.R. Use of Sequence-Independent, Single-Primer-Amplification (SISPA) for Rapid Detection, Identification, and Characterization of Avian RNA Viruses. Virology 2017, 509, 159–166. [Google Scholar] [CrossRef]
- Kariithi, H.M.; Christy, N.; Decanini, E.L.; Lemiere, S.; Volkening, J.D.; Afonso, C.L.; Suarez, D.L. Detection and Genome Sequence Analysis of Avian Metapneumovirus Subtype A Viruses Circulating in Commercial Chicken Flocks in Mexico. Vet. Sci. 2022, 9, 579. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duckert, P.; Brunak, S.; Blom, N. Prediction of Proprotein Convertase Cleavage Sites. Protein Eng. Des. Sel. 2004, 17, 107–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and Analysis of Recombination Patterns in Virus Genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. TrimAl: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis V6. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Metsalu, T.; Vilo, J. ClustVis: A Web Tool for Visualizing Clustering of Multivariate Data Using Principal Component Analysis and Heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Tian, S. A 20 Residues Motif Delineates the Furin Cleavage Site and Its Physical Properties May Influence Viral Fusion. Biochem. Insights 2009, 2, BCI-S2049. [Google Scholar] [CrossRef] [Green Version]
- Madu, I.G.; Roth, S.L.; Belouzard, S.; Whittaker, G.R. Characterization of a Highly Conserved Domain within the Severe Acute Respiratory Syndrome Coronavirus Spike Protein S2 Domain with Characteristics of a Viral Fusion Peptide. J. Virol. 2009, 83, 7411–7421. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, D.; Davis, P.J.; Mockett, A.A. Amino Acids within Hypervariable Region 1 of Avian Coronavirus IBV (Massachusetts Serotype) Spike Glycoprotein Are Associated with Neutralization Epitopes. Virus Res. 1988, 11, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Jackwood, M.; Hilt, D. Identification of Amino Acids Involved in a Serotype and Neutralization Specific Epitope with in the S1 Subunit of Avian Infectious Bronchitis Virus. Arch. Virol. 1997, 142, 2249–2256. [Google Scholar] [CrossRef] [PubMed]
- Promkuntod, N.; Van Eijndhoven, R.; De Vrieze, G.; Gröne, A.; Verheije, M. Mapping of the Receptor-Binding Domain and Amino Acids Critical for Attachment in the Spike Protein of Avian Coronavirus Infectious Bronchitis Virus. Virology 2014, 448, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-N.; Loa, C.C.; Ababneh, M.M.-K.; Wu, C.C.; Lin, T.L. Genotyping of Turkey Coronavirus Field Isolates from Various Geographic Locations in the Unites States Based on the Spike Gene. Arch. Virol. 2015, 160, 2719–2726. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-N.; Wu, C.C.; Lin, T.L. Identification and Characterization of a Neutralizing-Epitope-Containing Spike Protein Fragment in Turkey Coronavirus. Arch. Virol. 2011, 156, 1525–1535. [Google Scholar] [CrossRef]
- Maurel, S.; Toquin, D.; Briand, F.-X.; Queguiner, M.; Allee, C.; Bertin, J.; Ravillion, L.; Retaux, C.; Turblin, V.; Morvan, H. First Full-Length Sequences of the S Gene of European Isolates Reveal Further Diversity among Turkey Coronaviruses. Avian Pathol. 2011, 40, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cui, X.; Chen, X.; Yang, S.; Ling, Y.; Song, Q.; Zhu, S.; Sun, L.; Li, C.; Li, Y. A Recombinant Infectious Bronchitis Virus from a Chicken with a Spike Gene Closely Related to That of a Turkey Coronavirus. Arch. Virol. 2020, 165, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Khataby, K.; Fellahi, S.; Loutfi, C.; Mustapha, E.M. Avian Infectious Bronchitis Virus in Africa: A Review. Vet. Q. 2016, 36, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Shittu, I.; Gado, D.A.; Meseko, C.A.; Nyam, D.C.; Olawuyi, K.A.; Moses, G.D.; Chinyere, C.N.; Joannis, T.M. Occurrence of Infectious Bronchitis in Layer Birds in Plateau State, North Central Nigeria. Open Vet. J. 2019, 9, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Thekisoe, M.; Mbati, P.; Bisschop, S. Diseases of Free-Ranging Chickens in the Qwa-Qwa District of the Northeastern Free State Province of South Africa. J. S. Afr. Vet. Assoc. 2003, 74, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.J.; Chitauro, D.; Rohde, C.; Rukwava, J.; Majok, A.; Davelaar, F.; Mason, P.R. Diseases and Management of Backyard Chicken Flocks in Chitungwiza, Zimbabwe. Avian Dis. 1994, 38, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Mushi, E.; Binta, M.; Chabo, R.; Itebeng, K. Diseases of Indigenous Chickens in Bokaa Village, Kgatleng District, Botswana. J. S. Afr. Vet. Assoc. 2006, 77, 131–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoetze, A.D.; Moodley, N.; Abolnik, C. Two Genotypes of Infectious Bronchitis Virus Are Responsible for Serological Variation in KwaZulu-Natal Poultry Flocks Prior to 2012. J. Vet. Res. 2014, 81, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hoerr, F.J. The Pathology of Infectious Bronchitis. Avian Dis. 2021, 65, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Raj, G.D.; Jones, R. Infectious Bronchitis Virus: Immunopathogenesis of Infection in the Chicken. Avian Pathol. 1997, 26, 677–706. [Google Scholar] [CrossRef]
- Kariithi, H.M.; Welch, C.N.; Ferreira, H.L.; Pusch, E.A.; Ateya, L.O.; Binepal, Y.S.; Apopo, A.A.; Dulu, T.D.; Afonso, C.L.; Suarez, D.L. Genetic Characterization and Pathogenesis of the First H9N2 Low Pathogenic Avian Influenza Viruses Isolated from Chickens in Kenyan Live Bird Markets. Infect. Genet. Evol. 2019, 78, 104074. [Google Scholar] [CrossRef]
- Lai, M.M.C.; Cavanagh, D. The Molecular Biology of Coronaviruses. Adv. Virus Res. 1997, 48, 1–100. [Google Scholar] [CrossRef]
- Awad, F.; Chhabra, R.; Baylis, M.; Ganapathy, K. An Overview of Infectious Bronchitis Virus in Chickens. World’s Poult. Sci. J. 2014, 70, 375–384. [Google Scholar] [CrossRef]
- Montassier, H.J. Molecular Epidemiology and Evolution of Avian Infectious Bronchitis Virus. Braz. J. Poult. Sci. 2010, 12, 87–96. [Google Scholar] [CrossRef]
- McCarron, M.; Munyua, P.; Cheng, P.-Y.; Manga, T.; Wanjohi, C.; Moen, A.; Mounts, A.; Katz, M.A. Understanding the Poultry Trade Network in Kenya: Implications for Regional Disease Prevention and Control. Prev. Vet. Med. 2015, 120, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Jackwood, M.W.; Boynton, T.O.; Hilt, D.A.; McKinley, E.T.; Kissinger, J.C.; Paterson, A.H.; Robertson, J.; Lemke, C.; McCall, A.W.; Williams, S.M. Emergence of a Group 3 Coronavirus through Recombination. Virology 2010, 398, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickramasinghe, I.N.A.; de Vries, R.P.; Weerts, E.; van Beurden, S.J.; Peng, W.; McBride, R.; Ducatez, M.; Guy, J.; Brown, P.; Eterradossi, N.; et al. Novel Receptor Specificity of Avian Gammacoronaviruses That Cause Enteritis. J. Virol. 2015, 89, 8783–8792. [Google Scholar] [CrossRef] [Green Version]
- Khataby, K.; Souiri, A.; Kasmi, Y.; Loutfi, C.; Ennaji, M.M. Current Situation, Genetic Relationship and Control Measures of Infectious Bronchitis Virus Variants Circulating in African Regions. J. Basic Appl. Zool. 2016, 76, 20–30. [Google Scholar] [CrossRef] [PubMed]
Isolate | NGS Read Pairs | Median Coverage Depth (Reads) | Consensus Sequence Length (Bases) | Other Agents Detected * | |||
---|---|---|---|---|---|---|---|
Total | Host-Specific | IBV-Specific | Viral | Bacterial | |||
A374/17 | 844,763 | 15% | 9148 | 94× | 27,619 | vNDV; PiPV-B; AvRV-G | ORT |
A376/17 | 328,958 | 3.5% | 17,811 | 186× | 27,767 | NDV | ORT; R. anatipestifer |
Target Genomic Region: Position (Gap Length) | Primer Name | Primer Sequence (5′ to 3′) | Annealing Tm (°C) | Amplicon Size (Genomic Region) |
---|---|---|---|---|
Rep1a (nsp3) gene: 4755–4981 (227 bases) | IBV1F | TGA TGT GGA CTA CAC GAA CG | 62.7 | 635 bases (4539–5173) |
IBV1R | GTG TCA ATG GCA ACT TGG AGT C | |||
Spike gene: 21,211–21,390 (180 bases) | IBV2F | AGG CTG GTA ATG TGG TAG | 59.0 | 701 bases (20,993–21,693) |
IBV2R | TAT AGT GCC AAC GCC TCT G |
Isolate | Feature | 5’-UTR | Gene 1 | Gene 2 | Gene 3 | Gene 4 | Gene 5 | Gene 6 | 3’-UTR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rep1a | Rep1ab | S1 | S2 | 3a | 3b | E | M | 4b | 4c | 5a | 5b | N | 6b | ||||
A374/17 | position | 1–515 | 516–12,347 | 516–20,380 | 20,331–21,947 | 21,948–23,825 | 23,825–23,998 | 23,998–24,177 | 24,170–24,490 | 24,468–25,139 | 24,140–24,424 | 25,345–25,494 | 25,491–25,688 | 25,685–25,933 | 25,876–27,105 | 27,114–27,311 | 27,312–27,616 |
length (nt) | 515 | 11,832 | 19,865 | 1617 | 1878 | 174 | 180 | 321 | 672 | 285 | 150 | 198 | 249 | 1230 | 198 | 305 | |
length (aa) | - | 3943 | 6621 | 539 | 625 | 57 | 59 | 106 | 223 | 94 | 49 | 65 | 82 | 409 | 66 | - | |
A376/17 | position | 1–516 | 517–12,369 | 517–20,402 | 20,353–21,972 | 21,973–23,970 | 23,970–24,143 | 24,143–24,322 | 24,315–24,638 | 24,616–25,287 | 25,288–25,572 | 25,493–25657 | 25,641–25,838 | 25,835–26,083 | 26,026–27,255 | 27,263–27,490 | 27,491–27,763 |
length (nt) | 516 | 11,853 | 19,886 | 1620 | 1998 | 174 | 180 | 324 | 672 | 285 | 165 | 198 | 249 | 1230 | 228 | 273 | |
length (aa) | - | 3950 | 6628 | 540 | 665 | 57 | 59 | 107 | 223 | 94 | 54 | 65 | 82 | 409 | 75 | - | |
similarity to each other | nt | 96.7% | 92.7% | 93.0% | 40.8% | 56.3% | 93.7% | 94.4% | 93.8% | 96.4% | 96.1% | 94.7% | 93.4% | 93.6% | 91.3% | 93.4% | 98.7% |
aa | - | 96.8% | 97.6% | 33.1% | 63.0% | 93.0% | 98.3% | 96.2% | 96.4% | 98.9% | 83.3% | 95.4% | 92.7% | 96.8% | 76.9% | - |
Sequence | Breakpoint | “Major Parent” Sequence (nt) a | “Minor Parent” Sequence (nt) b | Recombination Event Confirmation | |||
---|---|---|---|---|---|---|---|
Start | End | Gene | Detection Algorithm | p-Value | |||
A374/17 | 12,346 | 13,046 | nsp11/12 (RdRp) | EU095850/TCoV/ CA/MG10 (89.4%) | KX272465/SD/ AR251-15 (95.4%) | RDP, GENECONV, BootScan, MaxChi, SiScan, Chimaera, 3Seq | 8.71 × 10−6 |
A376/17 | 12,337 | 13,037 | nsp11/12 (RdRp) | EU095850/TCoV/ CA/MG10 (89.5%) | KX272465/SD/ AR251-15 (99.1%) | RDP, GENECONV, BootScan, MaxChi, SiScan, Chimaera, 3Seq | 2.42 × 10−37 |
19,955 | 23,117 | nsp16/spike | GU213200/TX-1038/98 (93.8%) | MK142676/CN/ahysx-1/16 (85.9%) | GENECONV, BootScan, MaxChi, Chimaera, SiScan, 3Seq | 3.75 × 10−20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kariithi, H.M.; Volkening, J.D.; Goraichuk, I.V.; Ateya, L.O.; Williams-Coplin, D.; Olivier, T.L.; Binepal, Y.S.; Afonso, C.L.; Suarez, D.L. Unique Variants of Avian Coronaviruses from Indigenous Chickens in Kenya. Viruses 2023, 15, 264. https://doi.org/10.3390/v15020264
Kariithi HM, Volkening JD, Goraichuk IV, Ateya LO, Williams-Coplin D, Olivier TL, Binepal YS, Afonso CL, Suarez DL. Unique Variants of Avian Coronaviruses from Indigenous Chickens in Kenya. Viruses. 2023; 15(2):264. https://doi.org/10.3390/v15020264
Chicago/Turabian StyleKariithi, Henry M., Jeremy D. Volkening, Iryna V. Goraichuk, Leonard O. Ateya, Dawn Williams-Coplin, Tim L. Olivier, Yatinder S. Binepal, Claudio L. Afonso, and David L. Suarez. 2023. "Unique Variants of Avian Coronaviruses from Indigenous Chickens in Kenya" Viruses 15, no. 2: 264. https://doi.org/10.3390/v15020264
APA StyleKariithi, H. M., Volkening, J. D., Goraichuk, I. V., Ateya, L. O., Williams-Coplin, D., Olivier, T. L., Binepal, Y. S., Afonso, C. L., & Suarez, D. L. (2023). Unique Variants of Avian Coronaviruses from Indigenous Chickens in Kenya. Viruses, 15(2), 264. https://doi.org/10.3390/v15020264