Ability of Non-Hosts and Cucurbitaceous Weeds to Transmit Cucumber Green Mottle Mosaic Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth and Maintenance of Non-Hosts and Weeds
2.2. Non-Host Field Site Preparation
2.3. Positive CGMMV Material Confirmation for Inoculations
2.4. Screenhouse Trials
2.5. Isolation of Viral RNA, PCR Primers, and Conditions
3. Results
3.1. Infectivity of Non-Host Plants Grown in Field and Screenhouse
3.1.1. Infectivity and Spread of CGMMV through Weeds
3.1.2. Amaranthus viridis as a Viable Host for CGMMV
4. Discussion
4.1. Susceptibility of Non-Host Plants
4.2. Infectivity of CGMMV in Weeds
4.3. A. viridis as a Weed Host of CGMMV
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ainsworth, G.C. Mosaic diseases of cucumber. Ann. Appl. Biol. 1935, 22, 55–67. [Google Scholar] [CrossRef]
- Tesoriero, L.A.; Chambers, G.; Srivastava, M.; Smith, S.; Conde, B.; Tran-Nguyen, L.T.T. First report of Cucumber green mottle mosaic virus in Australia. Australas. Plant Dis. Notes 2015, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Shargil, D.; Smith, E.; Lachman, O.; Reingold, V.; Darzi, E.; Tam, Y.; Dombrovsky, A. New weed hosts for Cucumber green mottle mosaic virus in wild Mediterranean vegetation. Eur. J. Plant Pathol. 2017, 148, 473–480. [Google Scholar] [CrossRef]
- Dombrovsky, A.; Tran-Nguyen, L.T.T.; Jones, R.A.C. Cucumber green mottle mosaic virus: Rapidly Increasing Global Distribution, Etiology, Epidemiology, and Management. Annu. Rev. Phytopathol. 2017, 55, 231–256. [Google Scholar] [CrossRef] [PubMed]
- Kehoe, M.A.; Webster, C.; Wang, C.; Jones, R.A.C.; Coutts, B.A. Occurrence of cucumber green mottle mosaic virus in Western Australia. Australas. Plant Pathol. 2022, 51, 1–8. [Google Scholar] [CrossRef]
- Sokmen, M.A.; Yilmaz, N.D.K.; Mennan, H.; Sevik, M.A. Natural Weed Hosts of Apple Mosaic Virus in Hazelnut Orchards in Turkey. J. Plant Pathol. 2005, 87, 239–242. Available online: http://www.jstor.org/stable/41998245 (accessed on 5 February 2019).
- Adkins, S.; Rosskopf, E.N. Key West Nightshade, a New Experimental Host for Plant Viruses. Plant Dis. 2002, 86, 1310–1314. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Luo, H.; Jones, M.G.K.; Sivasithamparam, K.; Koh, S.H.; Ong, J.W.L.; Wylie, S.J. Yellow Tailflower Mild Mottle Virus and Pelargonium Zonate Spot Virus Co-infect a Wild Plant of Red-Striped Tailflower in Australia. Plant Pathol. 2015, 65, 503–509. [Google Scholar] [CrossRef]
- Wylie, S.J.; Zhang, C.; Long, V.; Roossinck, M.J.; Koh, S.H.; Jones, M.; Iqbal, S.; Li, H. Differential Responses to Virus Challenge of Laboratory and Wild Accessions of Australian Species of Nicotiana, and Comparative Analysis of RDR1 Gene Sequences. PLoS ONE 2015, 10, e0121787. [Google Scholar] [CrossRef]
- Coleman, M.; Fyfe, C.; Pkhrel, S.T.; Marshall, G.; Sindel, B.; Kristiansen, P. Exploring and extending integrated weed management opportunities in the Australian vegetable industry. In Proceedings of the 21st Annual Weeds Conference, Sydney, Australia, 9–12 September 2018; pp. 49–53. [Google Scholar]
- Boubourakas, I.; Hatziloukas, E.; Antignus, Y.; Katis, N. Etiology of Leaf Chlorosis and Deterioration of the Fruit Interior of Watermelon Plants. J. Phytopathol. 2004, 152, 580–588. [Google Scholar] [CrossRef]
- Aguiar, R.W.S.; Alves, G.B.; Queiroz, A.P.; Nascimento, I.R.; Lima, M.F. Evaluation of Weeds as Virus Reservoirs in Watermelon Crops. Planta Daninha 2018, 36, 1–10. [Google Scholar] [CrossRef]
- Park, J.-W.; Jang, T.-H.; Song, S.-H.; Choi, H.-S.; Ko, S.-J. Studies on the Soil Transmission of CGMMV and Its Control with Crop Rotation. Korean J. Pestic. Sci. 2010, 14, 473–477. [Google Scholar]
- Lovelock, D.; Mintoff, S.; Kurz, N.; Neilsen, M.; Patel, S.; Constable, F.; Tran-Nguyen, L. Investigating the Longevity and Infectivity of Cucumber green mottle mosaic virus in Soils of the Northern Territory, Australia. Plants 2022, 25, 883. [Google Scholar] [CrossRef]
- Reingold, V.; Lachman, O.; Blaosov, E.; Dombrovsky, A. Seed disinfection treatments do not sufficiently eliminate the infectivity of Cucumber green mottle mosaic virus (CGMMV) on cucurbit seeds. Plant Pathol. 2015, 64, 245–255. [Google Scholar] [CrossRef]
- Ling, K.-S.; Li, R.; Zhang, W. First report of Cucumber green mottle mosaic virus infecting greenhouse Cucumber in Canada. Plant Dis. 2014, 98, 701. [Google Scholar] [CrossRef]
- Shargil, D.; Zemach, H.; Belausov, E.; Lachman, O.; Luria, N.; Molad, O.; Smith, E.; Kamenetsky, R.; Dombrovsky, A. Insights into the maternal pathway for Cucumber green mottle mosaic virus infection of cucurbit seeds. Protoplasma 2019, 256, 1109–1118. [Google Scholar] [CrossRef]
- Berendsen, S.; Oosterhof, J. TaqMan Assays Designed on the Coding Sequence of the Movement Protein of Cucumber green mottle mosaic virus for its Detection in Cucurbit Seeds. In Proceedings of the 2015 APS Annual Meeting, New York, NY, USA, 21–24 May 2015. [Google Scholar] [CrossRef]
- Thompson, J.R.; Wetzel, S.; Klerks, M.M.; Vaskova, D.; Schoen, C.D.; Spak, J.; Jelkmann, W. Multiplex RT-PCR detection of four aphid-borne strawberry viruses in Fragaria spp. In combination with a plant mRNA specific internal control. J. Virol. Methods 2003, 111, 85–93. [Google Scholar] [CrossRef]
- Mickel, M.A.; D’Arcy, C.J.; Ford, R.E. Seed transmission of maize dwarf mosaic virus in sweet corn. Phytopath. Z. 1984, 110, 185–191. [Google Scholar] [CrossRef]
- Webster, C.; Jones, R. Cucumber green mottle mosaic virus. Invasive Species. CABI. 2018. Available online: https://www.cabi.org/isc/datasheet/16951 (accessed on 21 February 2019).
- Adkins, S.; Kamenova, I.; Achor, D.; Lewandowski, D. Biological and Molecular Characterization of a Novel Tobamovirus with a Unique Host Range. Plant Dis. 2003, 87, 1190–1196. [Google Scholar] [CrossRef] [Green Version]
- Rahimian, H.; Izadpanah, K. A new strain of Cucumber green mottle mosaic virus from Iran. Iran. J. Agric. Res. 1977, 5, 25–34. [Google Scholar] [CrossRef]
- Listihani, S.; Hidayat, H.; Wiyono, S.; Damayanti, T.A. First Report of Tobacco Mosaic Virus on Cucumber [Cucumis sativus (L.)] in Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 197, 012043. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Mulatu, F.; Assefa, Y.; Hanson, J.; Jones, C.S. First Report of Johnsongrass mosaic virus Infecting Urochloa mosambicensis in Ethiopia. Plant Dis. 2018, 102, 459. [Google Scholar] [CrossRef]
- Duan, C.G.; Wang, C.H.; Guo, H.S. Application of RNA silencing to plant disease resistance. Silence 2012, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, T.; Zhang, F.; Zhang, Y.; Liang, Y. RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells 2019, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Barreto, S.S.; Hallwass, M.; Aquino, O.M.; Inoue-Nagata, A.K. A study of weeds as potential inoculum sources for a tomato-infecting begomovirus in central Brazil. Phytopathology 2013, 103, 436–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Non-Host Crop | Season | Field Trial | Pot Trial |
---|---|---|---|
Zea mays (sweetcorn) | Dry | − 1 | − |
Vigna unguiculata ssp. Sesquipedalis (snake bean) | Dry | NA 2 | − |
Capsicum annum (capsicum) | Dry | − | − |
Abelmoschus esculentus (okra) | Wet | NA | − |
Sorghum bicolor (sorghum) | Wet | − | − |
Arachis hypogaea (peanut) | Wet | − | − |
Non-Host Weeds | RT-PCR 1 | RT-qPCR |
---|---|---|
Amaranthus viridis (Amaranth) | + 2 | + (Ct 27) 3 |
Portulaca oleracea (pigweed) * | − | + (Ct 26) |
Solanum nigrum (black nightshade) | − | + (Ct 31) |
Physalis angulata (wild gooseberry) | − | − |
Chenopodium album (fat hen) | − | + (Ct 30) |
Urochloa mosambicensis (Sabi grass) | − | + (Ct 31) |
Sample (Pots) | RT-PCR 1 | RT-qPCR |
---|---|---|
1 (Pots 1–10) | − 2 | + (Ct 29) |
2 (Pots 11–20) | − | + (Ct 26) |
3 (Pots 21–30) | − | + (Ct 26) |
4 (Pots 31–40) * | + | + (Ct 27) |
5 (Pots 41–50) | + | + (Ct 27) |
6 (Pots 51–60) | + | + (Ct 25) |
7 (Pots 61–70) | − | − |
8 (Pots 71–80) | − | + (Ct 28) |
Sample (Pots) | RT-PCR 1 | RT-qPCR |
---|---|---|
1 (1–5) | − 2 | − |
2 (6–10) | − | + (Ct 27) |
3 (11–15) | + | + (Ct 24) |
4 (16–20) | − | − |
5 (21–25) | + | + (Ct 20) |
6 (26–30) * | + | + (Ct 21) |
7 (31–35) * | + | + (Ct 21) |
8 (36–40) * | + | + (Ct 19) |
9 (41–45) | + | + (Ct 21) |
10 (46–50) | − | − |
11 (51–55) | − | + (Ct 29) |
12 (56–60) | + | + (Ct 22) |
13 (61–65) | − | − |
14 (66–70) | − | + (Ct 33) |
15 (71–75) | + | + (Ct 30) |
16 (76–80) | − | + (Ct 24) |
Sample (Pots) | RT-PCR 1 | RT-qPCR |
---|---|---|
1 (Pot 36) * | + 2 | + (Ct 27) |
2 (Pot 37) | − | − |
3 (Pot 38) | − | + (Ct 29) |
4 (Pot 39) * | + | + (Ct 31) |
5 (Pot 40) | − | + (Ct 31) |
6 (Pot 41) | − | + (Ct 33) |
7 (Pot 42) | − | − |
8 (Pot 43) | − | + (Ct 33) |
9 (Pot 44) | − | − |
10 (Pot 45) | − | + (Ct 28) |
11 (Pot 71) | − | − |
12 (Pot 72) | − | − |
13 (Pot 73) | − | + (Ct 28) |
14 (Pot 74) * | + | + (Ct 33) |
15 (Pot 75) | − | − |
Sample (Pots) | RT-PCR 1 | RT-qPCR |
---|---|---|
1 (Bulk Sample 5) | − 2 | − |
2 (Bulk Sample 6) | − | − |
3 (Bulk Sample 7) | + | + (Ct 30) |
4 (Bulk Sample 8) | − | − |
5 (Single Pot 36) * | + | + (Ct 24) |
6 (Single Pot 39) * | + | + (Ct 25) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovelock, D.A.; Mintoff, S.J.L.; Kurz, N.; Neilsen, M.; Patel, S.; Constable, F.E.; Tran-Nguyen, L.T.T. Ability of Non-Hosts and Cucurbitaceous Weeds to Transmit Cucumber Green Mottle Mosaic Virus. Viruses 2023, 15, 683. https://doi.org/10.3390/v15030683
Lovelock DA, Mintoff SJL, Kurz N, Neilsen M, Patel S, Constable FE, Tran-Nguyen LTT. Ability of Non-Hosts and Cucurbitaceous Weeds to Transmit Cucumber Green Mottle Mosaic Virus. Viruses. 2023; 15(3):683. https://doi.org/10.3390/v15030683
Chicago/Turabian StyleLovelock, David A., Sharl J. L. Mintoff, Nadine Kurz, Merran Neilsen, Shreya Patel, Fiona E. Constable, and Lucy T. T. Tran-Nguyen. 2023. "Ability of Non-Hosts and Cucurbitaceous Weeds to Transmit Cucumber Green Mottle Mosaic Virus" Viruses 15, no. 3: 683. https://doi.org/10.3390/v15030683
APA StyleLovelock, D. A., Mintoff, S. J. L., Kurz, N., Neilsen, M., Patel, S., Constable, F. E., & Tran-Nguyen, L. T. T. (2023). Ability of Non-Hosts and Cucurbitaceous Weeds to Transmit Cucumber Green Mottle Mosaic Virus. Viruses, 15(3), 683. https://doi.org/10.3390/v15030683