Investigation of the Molecular Epidemiology and Evolution of Circulating Severe Acute Respiratory Syndrome Coronavirus 2 in Thailand from 2020 to 2022 via Next-Generation Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Genomic Sequencing of SARS-CoV-2
2.3. Phylogenetic Analysis and Evolutionary Dynamics
2.4. Nucleotide Sequence Accession IDs
3. Results
3.1. Divergence and Amino Acid Variations in SARS-CoV-2 Strains Detected before the Predominance of the B.1.1.529 Omicron Variant
3.2. Evaluation of the Evolutionary History of SARS-CoV-2 in Thailand
3.3. SARS-CoV-2 Omicron Sublineage BA.1 Genetic Characterization
3.4. SARS-CoV-2 Omicron Sublineage BA.2 Genetic Characterization
3.5. SARS-CoV-2 Omicron Sublineage BA.4 and BA.5 Genetic Characterization
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhong, N.S.; Zheng, B.J.; Li, Y.M.; Poon, L.L.M.; Xie, Z.H.; Chan, K.H.; Li, P.H.; Tan, S.Y.; Chang, Q.; Xie, J.P.; et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 2003, 362, 1353–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Available online: www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab_1 (accessed on 2 June 2023).
- WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 11 March 2020. Available online: www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 5 June 2023).
- WHO Coronavirus (COVID-19) Dashboard. Available online: covid19.who.int/ (accessed on 2 June 2023).
- Wang, M.Y.; Zhao, R.; Gao, L.J.; Gao, X.F.; Wang, D.P.; Cao, J.M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell. Infect. Microbiol. 2020, 10, 587269. [Google Scholar] [CrossRef] [PubMed]
- Baddock, H.T.; Brolih, S.; Yosaatmadja, Y.; Ratnaweera, M.; Bielinski, M.; Swift, L.P.; Cruz-Migoni, A.; Fan, H.; Keown, J.R.; Walker, A.P.; et al. Characterization of the SARS-CoV-2 ExoN (nsp14ExoN-nsp10) complex: Implications for its role in viral genome stability and inhibitor identification. Nucleic Acids Res. 2022, 50, 1484–1500. [Google Scholar] [CrossRef] [PubMed]
- Robson, F.; Khan, K.S.; Le, T.K.; Paris, C.; Demirbag, S.; Barfuss, P.; Rocchi, P.; Ng, W.L. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Mol. Cell 2020, 79, 710–727. [Google Scholar] [CrossRef] [PubMed]
- Jaimes, J.A.; André, N.M.; Chappie, J.S.; Millet, J.K.; Whittaker, G.R. Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. J. Mol. Biol. 2020, 432, 3309–3325. [Google Scholar] [CrossRef]
- Wrobel, A.G.; Benton, D.J.; Roustan, C.; Borg, A.; Hussain, S.; Martin, S.R.; Rosenthal, P.B.; Skehel, J.J.; Gamblin, S.J. Evolution of the SARS-CoV-2 spike protein in the human host. Nat. Commun. 2022, 13, 1178. [Google Scholar] [CrossRef]
- Tracking SARS-CoV-2 Variants. Available online: www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 15 April 2023).
- Full Genome Tree Derived from All Outbreak Sequences. Available online: www.epicov.org/epi3/frontend# (accessed on 2 June 2023).
- COVID-19 Situation, Thailand. 24 May 2023. Available online: cdn.who.int/media/docs/default-source/searo/thailand/2023_05_24_tha-sitrep-264-covid-19.pdf?sfvrsn=cc6f41de_1 (accessed on 2 June 2023).
- Puenpa, J.; Suwannakarn, K.; Chansaenroj, J.; Nilyanimit, P.; Yorsaeng, R.; Auphimai, C.; Kitphati, R.; Mungaomklang, A.; Kongklieng, A.; Chirathaworn, C.; et al. Molecular epidemiology of the first wave of severe acute respiratory syndrome coronavirus 2 infection in Thailand in 2020. Sci. Rep. 2020, 10, 16602. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [Green Version]
- Puenpa, J.; Rattanakomol, P.; Saengdao, N.; Chansaenroj, J.; Yorsaeng, R.; Suwannakarn, K.; Thanasitthichai, S.; Vongpunsawad, S.; Poovorawan, Y. Molecular characterisation and tracking of severe acute respiratory syndrome coronavirus 2 in Thailand, 2020–2022. Arch. Virol. 2023, 168, 26. [Google Scholar] [CrossRef]
- Aksamentov, I.; Roemer, C.; Hodcroft, E.; Neher, R. Nextclade: Clade assignment, mutation calling and quality control for viral genomes. J. Open Source Softw. 2021, 6, 3773. [Google Scholar] [CrossRef]
- Tan, K.K.; Tan, J.Y.; Wong, J.E.; Teoh, B.T.; Tiong, V.; Abd-Jamil, J.; Nor’e, S.S.; Khor, C.S.; Johari, J.; Yaacob, C.N. Emergence of B.1.524(G) SARS-CoV-2 in Malaysia during the third COVID-19 epidemic wave. Sci. Rep. 2021, 11, 22105. [Google Scholar] [CrossRef]
- Gu, H.; Xie, R.; Adam, D.C.; Tsui, J.L.; Chu, D.K.; Chang, L.D.J.; Cheuk, S.S.Y.; Gurung, S.; Krishnan, P.; Ng, D.Y.M. Genomic epidemiology of SARS-CoV-2 under an elimination strategy in Hong Kong. Nat. Commun. 2022, 13, 736. [Google Scholar] [CrossRef]
- Joshi, M.; Puvar, A.; Kumar, D.; Ansari, A.; Pandya, M.; Raval, J.; Patel, Z.; Trivedi, P.; Gandhi, M.; Pandya, L. Genomic Variations in SARS-CoV-2 Genomes From Gujarat: Underlying Role of Variants in Disease Epidemiology. Front. Genet. 2021, 12, 586569. [Google Scholar] [CrossRef]
- Li, X.; Zai, J.; Zhao, Q.; Nie, Q.; Li, Y.; Foley, B.T.; Chaillon, A. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J. Med. Virol. 2020, 92, 602–611. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Zhao, X.; Zai, J.; Zhao, Q.; Li, Y.; Chaillon, A. Transmission dynamics and evolutionary history of 2019-nCoV. J. Med. Virol. 2020, 92, 501–511. [Google Scholar] [CrossRef]
- Duchene, S.; Featherstone, L.; Haritopoulou-Sinanidou, M.; Rambaut, A.; Lemey, P.; Baele, G. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol. 2020, 6, veaa061. [Google Scholar] [CrossRef]
- Nie, Q.; Li, X.; Chen, W.; Liu, D.; Chen, Y.; Li, H.; Li, D.; Tian, M.; Tan, W.; Zai, J. Phylogenetic and phylodynamic analyses of SARS-CoV-2. Virus Res. 2020, 287, 198098. [Google Scholar] [CrossRef]
- Cotten, M.; Watson, S.J.; Zumla, A.I.; Makhdoom, H.Q.; Palser, A.L.; Ong, S.H.; Al Rabeeah, A.A.; Alhakeem, R.F.; Assiri, A.; Al-Tawfiq, J.A.; et al. Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. mBio 2014, 5, e01062-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobusawa, E.; Sato, K. Comparison of the mutation rates of human influenza A and B viruses. J. Virol. 2006, 80, 3675–3678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, S.; Zhang, Z.; He, F. The phylogenetic relationship within SARS-CoV-2s: An expanding basal Glade. Mol. Phylogenet. Evol. 2021, 157, 107017. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wu, Y.; Kummer, A.G.; Zhao, Y.; Hu, Z.; Wang, Y.; Liu, H.; Ajelli, M.; Yu, H. Assessing changes in incubation period, serial interval, and generation time of SARS-CoV-2 variants of concern: A systematic review and meta-analysis. medRxiv 2023. [Google Scholar] [CrossRef]
- Zhang, L.; Jackson, C.B.; Mou, H.; Ojha, A.; Peng, H.; Quinlan, B.D.; Rangarajan, E.S.; Pan, A.; Vanderheiden, A.; Suthar, M.S.; et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 2020, 11, 6013. [Google Scholar] [CrossRef]
- Laha, S.; Chakraborty, J.; Das, S.; Manna, S.K.; Biswas, S.; Chatterjee, R. Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission. Infect. Genet. Evol. 2020, 85, 104445. [Google Scholar] [CrossRef]
- Zhang, J.; Ejikemeuwa, A.; Gerzanich, V.; Nasr, M.; Tang, Q.; Simard, J.M.; Zhao, R.Y. Understanding the Role of SARS-CoV-2 ORF3a in Viral Pathogenesis and COVID-19. Front. Microbiol. 2022, 13, 854567. [Google Scholar] [CrossRef]
- Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 2020, 182, 812–827.e19. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Chu, D.K.W.; Pan, Y.; Cheng, S.M.S.; Hui, K.P.Y.; Krishnan, P.; Liu, Y.; Ng, D.Y.M.; Wan, C.K.C.; Yang, P.; Wang, Q.; et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin. Chem. 2020, 66, 549–555. [Google Scholar] [CrossRef] [Green Version]
- Starr, T.N.; Greaney, A.J.; Hilton, S.K.; Ellis, D.; Crawford, K.H.D.; Dingens, A.S.; Navarro, M.J.; Bowen, J.E.; Tortorici, M.A.; Walls, A.C.; et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 2020, 182, 1295–1310.e20. [Google Scholar] [CrossRef]
- Greaney, A.J.; Starr, T.N.; Gilchuk, P.; Zost, S.J.; Binshtein, E.; Loes, A.N.; Hilton, S.K.; Huddleston, J.; Eguia, R.; Crawford, K.H.D.; et al. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 2021, 29, 44–57.e9. [Google Scholar] [CrossRef]
- Gao, T.; Gao, Y.; Liu, X.; Nie, Z.; Sun, H.; Lin, K.; Peng, H.; Wang, S. Identification and functional analysis of the SARS-CoV-2 nucleocapsid protein. BMC Microbiol. 2021, 21, 58. [Google Scholar] [CrossRef]
- Wu, W.; Cheng, Y.; Zhou, H.; Sun, C.; Zhang, S. The SARS-CoV-2 nucleocapsid protein: Its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol. J. 2023, 20, 6. [Google Scholar] [CrossRef]
- Diao, B.; Wen, K.; Zhang, J.; Chen, J.; Han, C.; Chen, Y.; Wang, S.; Deng, G.; Zhou, H.; Wu, Y. Accuracy of a nucleocapsid protein antigen rapid test in the diagnosis of SARS-CoV-2 infection. Clin. Microbiol. Infect. 2021, 27, 289.e1–289.e4. [Google Scholar] [CrossRef]
- Matchett, W.E.; Joag, V.; Stolley, J.M.; Shepherd, F.K.; Quarnstrom, C.F.; Mickelson, C.K.; Wijeyesinghe, S.; Soerens, A.G.; Becker, S.; Thiede, J.M.; et al. Nucleocapsid vaccine elicits spike-independent SARS-CoV-2 protective immunity. bioRxiv 2021. [Google Scholar] [CrossRef]
- Wu, H.; Xing, N.; Meng, K.; Fu, B.; Xue, W.; Dong, P.; Tang, W.; Xiao, Y.; Liu, G.; Luo, H.; et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe 2021, 29, 1788–1801.e6. [Google Scholar] [CrossRef]
- Mourier, T.; Shuaib, M.; Hala, S.; Mfarrej, S.; Alofi, F.; Naeem, R.; Alsomali, A.; Jorgensen, D.; Subudhi, A.K.; Rached, F.B.; et al. SARS-CoV-2 genomes from Saudi Arabia implicate nucleocapsid mutations in host response and increased viral load. Nat. Commun. 2022, 13, 601. [Google Scholar] [CrossRef]
Lineage | Gene | nt Position | aa Position | Genome Count | Frequency |
---|---|---|---|---|---|
BA.1 | ORF1ab | T2019C | M585T | 135 | 16.40 |
(n = 823) | C2470T | 89 | 10.81 | ||
G5515T | 5 | 0.61 | |||
G6850T | 146 | 17.74 | |||
C15952T | 3 | 0.36 | |||
S | G23628A | S689N | 99 | 12.03 | |
C26936T | 58 | 7.05 | |||
BA.1.1 | ORF1ab | C2470T | 1374 | 96.83 | |
(n = 1419) | G3692A | V1143I | 8 | 0.56 | |
G3896T | V1211F | 21 | 1.48 | ||
G6109A | 75 | 5.29 | |||
C11750T | L3829F | 11 | 0.78 | ||
G12661A | 116 | 8.17 | |||
C14805T | 735 | 51.80 | |||
G18433A | D1656N | 35 | 2.47 | ||
T19632C | 744 | 52.43 | |||
ORF3a | G25634A | C81Y | 8 | 0.56 | |
E | G26428T | V62F | 12 | 0.85 | |
M | A26530G | D3G | 1060 | 74.70 | |
N | C28838T | R189C | 29 | 2.04 | |
BA.1.1.5 | ORF1ab | C14117T | T217M | 51 | 64.56 |
(n = 79) | S | C21597T | S12F | 6 | 7.59 |
M | A26530G | D3G | 65 | 82.28 | |
BA.1.1.8 | ORF1ab | G2894A | D877N | 10 | 13.70 |
(n = 73) | ORF3a | G26167T | V259L | 9 | 12.33 |
BA.1.15.1 | M | A26530G | D3G | 12 | 46.15 |
(n = 26) | |||||
BA.1.16.1 | ORF1ab | G1806A | G514E | 13 | 9.35 |
(n = 139) | C6401T | P2046S | 18 | 12.95 | |
M | A26530G | D3G | 127 | 91.37 | |
N | G29162A | D297N | 4 | 2.88 | |
C29274T | T334I | 4 | 2.88 | ||
BA.1.17 | ORF1ab | T851C | Y196H | 15 | 3.98 |
(n = 377) | C4113T | A1283V | 176 | 46.68 | |
C5672T | P1803S | 156 | 41.38 | ||
C10605T | P3447L | 12 | 3.18 | ||
C12084T | T3940I | 13 | 3.45 | ||
G15850A | D795N | 30 | 7.96 | ||
M | A26530G | D3G | 322 | 85.41 | |
N | G28436T | A55S | 5 | 1.33 | |
BA.1.20 | ORF1ab | C15830T | A788V | 4 | 26.67 |
(n = 15) | M | A26530G | D3G | 5 | 33.30 |
BA.1.22 | ORF1ab | G11083T | L3606F | 7 | 7.87 |
(n = 89) | C15928T | P821S | 6 | 6.74 | |
N | C29466T | A398V | 7 | 7.87 |
Lineage | Gene | nt Position | aa Position | Genome Count | Frequency |
---|---|---|---|---|---|
BA.2 | 5′ UTR | C241T | 1274 | 87.26 | |
(n = 1460) | ORF1ab | C6196T | 194 | 13.29 | |
C7471T | 610 | 41.78 | |||
C854T | P197S | 26 | 1.78 | ||
C3653T | L1130F | 26 | 1.78 | ||
C3686T | H1141Y | 64 | 4.38 | ||
C4893T | T1543I | 32 | 2.19 | ||
A4916G | I1551V | 10 | 0.68 | ||
C6401T | P2046S | 45 | 3.08 | ||
G7798T | K2511N | 12 | 0.82 | ||
C10789T | 16 | 1.10 | |||
C11109T | A3615V | 26 | 1.78 | ||
G14188A | A241T | 42 | 2.88 | ||
C15240T | 194 | 13.29 | |||
G15451A | G662S | 13 | 0.89 | ||
C16362T | 88 | 6.03 | |||
A19133C | E1889A | 15 | 1.03 | ||
ORF3a | A25411G | I7V | 17 | 1.16 | |
C25613T | S74F | 21 | 1.44 | ||
S | C22120A | F186L | 15 | 1.03 | |
G22632A | R357K | 17 | 1.16 | ||
T22882G | N440K | 1270 | 86.99 | ||
C23280T | T573I | 49 | 3.36 | ||
C23854A | N764K | 1418 | 97.12 | ||
T25224C | I1221T | 25 | 1.71 | ||
C25416T | 582 | 39.86 | |||
N | G29468T | D399Y | 44 | 3.01 | |
BA.2.27 | 5′ UTR | C241T | 222 | 84.73 | |
(n = 262) | ORF1ab | C10198T | 242 | 92.37 | |
C12403T | 58 | 22.14 | |||
C17745T | 20 | 7.63 | |||
C19610T | T2048I | 12 | 4.58 | ||
ORF3a | C25672T | L94F | 15 | 5.73 | |
N | G28739T | A156S | 10 | 3.82 | |
BA.2.3 | 5′ UTR | C241T | 402 | 88.55 | |
(n = 454) | ORF1ab | C832T | 98 | 21.59 | |
T7282C | 144 | 31.72 | |||
C14267T | T267M | 39 | 8.59 | ||
C18508T | L1681F | 37 | 8.15 | ||
A21222G | 358 | 78.85 | |||
BA.2.9 | 5′ UTR | C241T | 451 | 86.90 | |
(n = 519) | ORF1ab | G1820A | G519S | 78 | 15.03 |
A2442C | E726A | 36 | 6.94 | ||
T4443C | V1393A | 87 | 16.76 | ||
C5051T | P1596S | 58 | 11.18 | ||
C5672T | P1803S | 42 | 8.09 | ||
C12789T | T4175I | 32 | 6.17 | ||
A14109G | I214M | 38 | 7.32 | ||
A15553G | N696D | 13 | 2.50 | ||
T16494C | 36 | 6.94 | |||
C18457T | P1664S | 11 | 2.12 | ||
ORF9b | A28389T | N36Y | 28 | 5.39 | |
S | T21752A | W64R | 59 | 11.37 | |
T22882G | N440K | 448 | 86.32 | ||
G24348T | S929I | 10 | 1.93 | ||
BA.2.10 | 5′ UTR | C241T | 871 | 94.16 | |
(n = 925) | ORF1ab | C2676T | P804L | 15 | 1.62 |
A4457G | I1398V | 21 | 2.27 | ||
T7813C | 262 | 28.32 | |||
C17528T | T1354I | 71 | 7.68 | ||
ORF3a | C25961T | T190I | 120 | 12.97 |
Lineage | Gene | nt Position | aa Position | Genome Count | Frequency |
---|---|---|---|---|---|
BA.4 | 5′ UTR | C241T | 150 | 81.97 | |
(n = 183) | ORF1ab | G6680A | A2139T | 158 | 86.34 |
T15521A | F685Y | 9 | 4.92 | ||
S | A22786C | R408S | 154 | 83.70 | |
T22882G | N440K | 134 | 73.22 | ||
T24163C | 160 | 87.43 | |||
BA.5.2 | 5′ UTR | C241T | 1406 | 79.98 | |
(n = 1758) | ORF1ab | C823T | 140 | 7.96 | |
C5497T | 712 | 40.50 | |||
C13551T | 82 | 4.66 | |||
T16023C | 716 | 40.73 | |||
C16616A | T1050N | 1708 | 97.16 | ||
A18163G | I1566V | 1617 | 91.98 | ||
S | T22882G | N440K | 1412 | 80.32 | |
C23854A | N764K | 1596 | 90.78 | ||
E | C26270T | T9I | 1342 | 76.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puenpa, J.; Sawaswong, V.; Nimsamer, P.; Payungporn, S.; Rattanakomol, P.; Saengdao, N.; Chansaenroj, J.; Yorsaeng, R.; Suwannakarn, K.; Poovorawan, Y. Investigation of the Molecular Epidemiology and Evolution of Circulating Severe Acute Respiratory Syndrome Coronavirus 2 in Thailand from 2020 to 2022 via Next-Generation Sequencing. Viruses 2023, 15, 1394. https://doi.org/10.3390/v15061394
Puenpa J, Sawaswong V, Nimsamer P, Payungporn S, Rattanakomol P, Saengdao N, Chansaenroj J, Yorsaeng R, Suwannakarn K, Poovorawan Y. Investigation of the Molecular Epidemiology and Evolution of Circulating Severe Acute Respiratory Syndrome Coronavirus 2 in Thailand from 2020 to 2022 via Next-Generation Sequencing. Viruses. 2023; 15(6):1394. https://doi.org/10.3390/v15061394
Chicago/Turabian StylePuenpa, Jiratchaya, Vorthon Sawaswong, Pattaraporn Nimsamer, Sunchai Payungporn, Patthaya Rattanakomol, Nutsada Saengdao, Jira Chansaenroj, Ritthideach Yorsaeng, Kamol Suwannakarn, and Yong Poovorawan. 2023. "Investigation of the Molecular Epidemiology and Evolution of Circulating Severe Acute Respiratory Syndrome Coronavirus 2 in Thailand from 2020 to 2022 via Next-Generation Sequencing" Viruses 15, no. 6: 1394. https://doi.org/10.3390/v15061394
APA StylePuenpa, J., Sawaswong, V., Nimsamer, P., Payungporn, S., Rattanakomol, P., Saengdao, N., Chansaenroj, J., Yorsaeng, R., Suwannakarn, K., & Poovorawan, Y. (2023). Investigation of the Molecular Epidemiology and Evolution of Circulating Severe Acute Respiratory Syndrome Coronavirus 2 in Thailand from 2020 to 2022 via Next-Generation Sequencing. Viruses, 15(6), 1394. https://doi.org/10.3390/v15061394