SARS-CoV-2 Infection and Preeclampsia—How an Infection Can Help Us to Know More about an Obstetric Condition
Abstract
:1. Introduction
2. Discussion
2.1. How COVID-19 and PE
2.1.1. Regarding the Presence or Absence of Symptoms of COVID-19
2.1.2. Considering the Severity of COVID-19
2.1.3. Comparing the Incidence of PE in Relation to Gestational Age at Infection
First Author | Year of Publication | Country | Study Desing | Setting | N | Poblation | Rate of PE (%) | OR PE (IC 95%) |
---|---|---|---|---|---|---|---|---|
Di Mascio [7] | 2020 | UK | SR-M | 19 studies | 79 | 16.2% (4.2–34.1) | ||
C Agudelo [9] | 2021 | USA | SR-M | 28 OS | 790,954 15,524 (+) | SARS + | Infected 7% Non infected 4.8% | 1.62 (1.45–1.82) * Symptoms 2.11 (1.59–2.81) No symptoms 1.59 (1.21–2.10) |
Shu Qin Wei [13] | 2021 | China | SRM | 42 OS | 438,548 | SARS + | Mild 1.33 (1.03–1.73) Severe 4.16 (1.51–11.15) | |
J. Juan [17] | 2020 | China | SR | 24 studies | 324 | SARS + | 1.7% | |
Papageorghiou [11] | 2021 | INTERCOVID | POS | 43 Hospitals 18 Countries | 2184 | SARS +/− PE +/− | Infected 8.1% Non infected 4.4% | RR all 1.77 (1.25–2.52) Nulliparous 1.89 (1.17–3.05) * Parous 1.64 (0.99–2.72) |
Villar [19] | 2021 | UK Multinational | PCS | 43 Hospitals 18 Countries | 2130 | SARS +/− | [RR] 1.76 (1.27–2.43) Asymptomatic 1.63 (1.01–2.63) | |
Mendoza [20] | 2020 | Spain | POS | Terciary Hospital | 42 | SARS + >20 w | 11.9% | |
Cruz Melguiso [23] | 2020 | Spain | PCS | 78 Spanish Hospitals | 2754 | SARS +/− | Infected 40.6% * Non infected 15.6% | 3.69 (1.62–8.39) * |
Lai J. [24] | 2021 | UK | ROS | 14 Health Services | 1223 | SARS + | No symptoms 1.9% * Mild COVID-19 2.2% * Moderate 5.7% * severe 11.1% * | |
Badr DA [25] | 2021 | Belgium Multinational | RCS | 4 European University Hospitals | 10,925 | SARS +/− | Exposed 2.44% vs. Unexposed 1.89% * | |
Rosembloom [26] | 2021 | USA | RCS | Terciary Hospitals | 249 | SARS+/− | Infected 13.3% Non infected 9.4% | |
Birol [27] | 2022 | Turkey/UK | RCS | 2 Terciary Hospitals | 1286 Unvaccinated | SARS + | Delta/Pre-Delta 0.66 (0.27–1.61) Omicron/Pre-Delta 1.851(0.65–5.08) | |
Jie Deng [28] | 2022 | China | SR-M | 18 studies | 133,058 | SARS + | PP Wild Type 1.06% (0.53–1.59) * Pre Delta 23% (16.99–29.03) * Delta 9.63% (1.47–17.80) * Omicron 12.52% (−10.3–35.33) |
2.2. Can the Association between COVID-19 and PE Be Explained?
- (I)
- Direct effects of the virus on trophoblastic function and the arterial wall, which can result in endothelial damage and dysfunction.
- (II)
- Acute atherosis, a specific lesion observed in the spiral arteries similar to atherosclerotic lesions in the coronary arteries [29].
- (III)
- Local inflammation leading to placental ischemia.
- (IV)
- Indirect effects due to exaggerated inflammatory responses in pregnant women, including the release of cytokines such as IL-6.
- (V)
- Thrombotic microangiopathy (TMA).
- (VI)
- Imbalance between pro-angiogenic and anti-angiogenic factors.
- (VII)
- SARS-CoV-2-related myocardial injury, as suggested by recent and ongoing research.
2.2.1. The Door Is the Clue
2.2.2. Interleukins as Possible Explanation
2.2.3. TMA, COVID-19, and PE
2.2.4. Imbalance between Pro-Angiogenic and Anti-Angiogenic Factors. The Usefulness of Angiogenic Markers in the Differential Diagnosis of PE
2.2.5. Maternal Cardiovascular Dysfunction
3. PE in Relation to SARS-CoV-2 Variants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Bio Medica Atenei Parm. 2020, 91, 157. [Google Scholar]
- WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. 2021. Available online: https://covid19.who.int/ (accessed on 16 June 2023).
- Huang, C.; Wang, Y.; Li, X.; Lili, R.; Jianping, Z.; Yi, H.; Li, Z.; Guohui, F.; Jiuyang, X.; Xiaoying, G. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Gurol-Urganci, I.; Jardine, J.E.; Carroll, F.; Draycott, T.; Dunn, G.; Fremeaux, A.; Harris, T.; Hawdon, J.; Morris, E.; Muller, P. Maternal and perinatal outcomes of pregnant women with SARS-CoV-2 infection at the time of birth in England: National cohort study. Am. J. Obstet. Gynecol. 2021, 225, 522-e1. [Google Scholar] [CrossRef] [PubMed]
- WAPM (World Association of Perinatal Medicine) Working Group on COVID-19; Saccone, G.; Sen, C.; Di Mascio, D.; Galindo, A.; Grünebaum, A.; Yoshimatsu, J.; Stanojevic, M.; Kurjak, A.; Chervenak, F.; et al. Maternal and perinatal outcomes of pregnant women with SARS-CoV-2 in-fection. Ultrasound Obstet. Gynecol. 2021, 57, 232–241. [Google Scholar]
- Kwon, J.; Romero, R.; Mor, G. New insights into the relationship between viral infection and pregnancy complications. Am. J. Reprod. Immunol. 2014, 71, 387–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Mascio, D.; Khalil, A.; Saccone, G.; Rizzo, G.; Buca, D.; Liberati, M.; Vecchiet, J.; Nappi, L.; Scambia, G.; Berghella, V. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2020, 2, 100107. [Google Scholar] [CrossRef]
- Longman, R.E.; Johnson, T.R. Viral respiratory disease in pregnancy. Curr. Opin. Obstet. Gynecol. 2007, 19, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Conde-Agudelo, A.; Romero, R. SARS-CoV-2 infection during pregnancy and risk of preeclampsia: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2022, 226, 68–89.e3. [Google Scholar] [CrossRef]
- Vouga, M.; Favre, G.; Martinez-Perez, O.; Pomar, L.; Acebal, L.F.; Abascal-Saiz, A.; Hernandez, M.R.V.; Hcini, N.; Lambert, V.; Carles, G.; et al. Maternal outcomes and risk factors for COVID-19 severity among pregnant women. Sci. Rep. 2021, 11, 13898. [Google Scholar] [CrossRef]
- Papageorghiou, A.T.; Deruelle, P.; Gunier, R.B.; Rauch, S.; García-May, P.K.; Mhatre, M.; Usman, M.A.; Abd-Elsalam, S.; Etuk, S.; Simmons, L.E.; et al. Preeclampsia and COVID-19: Results from the INTERCOVID prospective longitudinal study. Am. J. Obstet. Gynecol. 2021, 225, 289.e1–289.e17. [Google Scholar] [CrossRef]
- Coronado-Arroyo, J.C.; Concepción-Zavaleta, M.J.; Zavaleta-Gutiérrez, F.E.; Concepción-Urteaga, L.A. Is COVID-19 a risk factor for severe preeclampsia? Hospital experience in a developing country. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 256, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.Q.; Bilodeau-Bertrand, M.; Liu, S.; Auger, N. The impact of COVID-19 on pregnancy outcomes: A systematic review and meta-analysis. Can. Med. Assoc. J. 2021, 193, E540–E548. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Groups at Higher Risk for Severe Illness. Available online: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/assesing-risk-factors.html (accessed on 17 July 2022).
- Magee, L.A.; Nicolaides, K.H.; Von Dadelszen, P. Preeclampsia. N. Engl. J. Med. 2022, 386, 1817–1832. [Google Scholar] [CrossRef] [PubMed]
- Garovic, V.D.; Dechend, R.; Easterling, T.; Karumanchi, S.A.; McMurtry Baird, S.; Magee, L.A.; Rana, S.; Vermunt, J.V.; August, P.; on behalf of the American Heart Association Council on Hypertension; et al. Hypertension in Pregnancy: Diagnosis, Blood Pressure Goals, and Pharmacotherapy: A Scientific Statement From the American Heart Association. Hypertension 2022, 79, e21–e41. [Google Scholar] [CrossRef]
- Juan, J.; Gil, M.M.; Rong, Z. Effect of coronavirus disease 2019 (COVID-19) on maternal, perinatal and neonatal outcome: Systematic review. Ultrasound Obstet. Gynecol. 2020, 56, 15–27. [Google Scholar] [CrossRef]
- Álvarez Bartolomé, A.; Abdallah Kassab, N.A.; Cruz Melguizo, S.; De La Cruz Conty, M.L.; Forcen Acebal, L.; Abascal Saiz, A.; Pintado Recarte, P.; Martinez Varea, A.; Cerrillos Gonzalez, L.; García Fernández, J.; et al. Critical Care in SARS-CoV-2 Infected Pregnant Women: A Prospective Multicenter Study. Biomedicines 2022, 10, 475. [Google Scholar] [CrossRef]
- Villar, J.; Ariff, S.; Gunier, R.B.; Thiruvengadam, R.; Rauch, S.; Kholin, A.; Roggero, P.; Prefumo, F.; Do Vale, M.S.; Cardona-Perez, J.A.; et al. Maternal and Neonatal Morbidity and Mortality Among Pregnant Women with and without COVID-19 Infection: The INTERCOVID Multinational Cohort Study. JAMA Pediatr. 2021, 175, 817. [Google Scholar] [CrossRef]
- Mendoza, M.; Garcia-Ruiz, I.; Maiz, N.; Rodo, C.; Garcia-Manau, P.; Serrano, B.; Lopez-Martinez, R.M.; Balcells, J.; Fernandez-Hidalgo, N.; Carreras, E.; et al. Pre-eclampsia-like syndrome induced by severe COVID-19: A prospective observational study. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 1374–1380. [Google Scholar] [CrossRef]
- Amorim, M.M.; Takemoto, M.L.S.; Katz, L. Re: Pre-eclampsia-like syndrome induced by severe coronavirus disease 2019: A prospective observational study. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 1577. [Google Scholar] [CrossRef]
- Serrano, B.; Bonacina, E.; Garcia-Ruiz, I.; Mendoza, M.; Garcia-Manau, P.; Garcia-Aguilar, P.; Gil, J.; Armengol-Alsina, M.; Fernán-dez-Hidalgo, N.; Sulleiro, E.; et al. Confirmation of preeclampsia-like syndrome induced by severe COVID-19: An observational study. Am. J. Obstet. Gynecol. MFM 2023, 5, 100760. [Google Scholar] [CrossRef] [PubMed]
- Cruz Melguizo, S.; De La Cruz Conty, M.; Carmona Payán, P.; Abascal-Saiz, A.; Pintando Recarte, P.; González Rodríguez, L.; Cuenca Marín, C.; Martínez Varea, A.; Oreja Cuesta, A.; Rodríguez, P.; et al. Pregnancy Outcomes and SARS-CoV-2 Infection: The Spanish Obstetric Emergency Group Study. Viruses 2021, 13, 853. [Google Scholar] [CrossRef]
- Lai, J.; Romero, R.; Tarca, A.L.; Iliodromiti, S.; Rehal, A.; Banerjee, A.; Yu, C.; Peeva, G.; Palaniappan, V.; Tan, L.; et al. SARS-CoV-2 and the subsequent development of preeclampsia and preterm birth: Evidence of a dose-response relationship supporting causality. Am. J. Obstet. Gynecol. 2021, 225, 689–693. [Google Scholar] [CrossRef]
- Badr, D.A.; Picone, O.; Bevilacqua, E.; Carlin, A.; Meli, F.; Sibiude, J.; Mattern, J.; Fils, J.F.; Mandelbrot, L.; Lanzone, A.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 and Pregnancy Outcomes According to Gestational Age at Time of Infection. Emerg. Infect. Dis. 2021, 27, 2535–2543. [Google Scholar] [CrossRef]
- Rosenbloom, J.I.; Raghuraman, N.; Carter, E.B.; Kelly, J.C. Coronavirus disease 2019 infection and hypertensive disorders of pregnancy. Am. J. Obstet. Gynecol. 2021, 224, 623–624. [Google Scholar] [CrossRef] [PubMed]
- Birol Ilter, P.; Prasad, S.; Mutlu, M.A.; Tekin, A.B.; O’Brien, P.; Von Dadelszen, P.; Magee, L.A.; Tekin, S.; Tug, N.; Kalafat, E.; et al. Maternal and perinatal outcomes of SARS-CoV-2 infection in unvaccinated pregnancies during Delta and Omicron waves. Ultrasound Obstet. Gynecol. 2022, 60, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Ma, Y.; Liu, Q.; Du, M.; Liu, M.; Liu, J. Association of Infection with Different SARS-CoV-2 Variants during Pregnancy with Maternal and Perinatal Outcomes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 15932. [Google Scholar] [CrossRef]
- Staff, A.C.; Fjeldstad, H.E.; Fosheim, I.K.; Moe, K.; Turowski, G.; Johnsen, G.M.; Alnaes-Katjavivi, P.; Sugulle, M. Failure of physiological transformation and spiral artery atherosis: Their roles in preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S895–S906. [Google Scholar] [CrossRef] [PubMed]
- Young, M.J.; Clyne, C.D.; Chapman, K.E. Endocrine aspects of ACE2 regulation: RAAS, steroid hormones and SARS-CoV-2. J. Endocrinol. 2020, 247, R45–R62. [Google Scholar] [CrossRef]
- Sathiya, R.; Rajendran, J.; Sumathi, S. COVID-19 and Preeclampsia: Overlapping Features in Pregnancy. Rambam Maimonides Med. J. 2022, 13, e0007. [Google Scholar] [CrossRef]
- Shetty, S.; Kshirsagar, S.; Bansal, S.; Rangarajan, S.; Phadke, V. COVID-19 and preeclampsia: The unique and the mutually nonexclusive clinical manifestations. Am. J. Reprod. Immunol. 2023, 89, e13700. [Google Scholar] [CrossRef]
- Jing, Y.; Run-Qian, L.; Hao-Ran, W.; Hao-Ran, C.; Ya-Bin, L.; Yang, G.; Fei, C. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol. Hum. Reprod. 2020, 26, 367–373. [Google Scholar] [CrossRef]
- Bloise, E.; Zhang, J.; Nakpu, J.; Hamada, H.; Dunk, C.E.; Li, S.; Imperio, G.E.; Nadeem, L.; Kibschull, M.; Lye, P.; et al. Expression of severe acute respiratory syndrome coronavirus 2 cell entry genes, angiotensin-converting enzyme 2 and transmembrane protease serine 2, in the placenta across gestation and at the maternal-fetal interface in pregnancies complicated by preterm birth or preeclampsia. Am. J. Obstet. Gynecol. 2021, 224, 298.e1–298.e8. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; HLH Across Speciality Collaboration, UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Chaemsaithong, P.; Romero, R.; Korzeniewski, S.J.; Martinez-Varea, A.; Dong, Z.; Yoon, B.H.; Hassan, S.S.; Chaiworapongsa, T.; Yeo, L. A point of care test for interleukin-6 in amniotic fluid in preterm prelabor rupture of membranes: A step toward the early treatment of acute intra-amniotic inflammation/infection. J. Matern. Fetal Neonatal Med. 2016, 29, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kishimoto, T. The Biology and Medical Implications of Interleukin-6. Cancer Immunol. Res. 2014, 2, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Majidpoor, J.; Mortezaee, K. Interleukin-6 in SARS-CoV-2 induced disease: Interactions and therapeutic applications. Biomed. Pharmacother. 2022, 145, 112419. [Google Scholar] [CrossRef] [PubMed]
- Komine-Aizawa, S.; Takada, K.; Hayakawa, S. Placental barrier against COVID-19. Placenta 2020, 99, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, Y.; Alexander, J.S.; Lewis, D.F. Preeclampsia Status Controls Interleukin-6 and Soluble IL-6 Receptor Release from Neutrophils and Endothelial Cells: Relevance to Increased Inflammatory Responses. Pathophysiology 2021, 28, 202–211. [Google Scholar] [CrossRef]
- Bellos, I.; Karageorgiou, V.; Kapnias, D.; Karamanli, K.E.; Siristatidis, C. The role of interleukins in preeclampsia: A comprehensive review. Am. J. Reprod. Immunol. 2018, 80, e13055. [Google Scholar] [CrossRef]
- Vlachodimitropoulou Koumoutsea, E.; Vivanti, A.J.; Shehata, N.; Benachi, A.; Le Gouez, A.; Desconclois, C.; Whittle, W.; Snelgrove, J.; Malinowski, A.K. COVID-19 and acute coagulopathy in pregnancy. J. Thromb. Haemost. 2020, 18, 1648–1652. [Google Scholar] [CrossRef]
- Tiwari, N.R.; Phatak, S.; Sharma, V.R.; Agarwal, S.K. COVID-19 and thrombotic microangiopathies. Thromb. Res. 2021, 202, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Lopes Da Silva, R. Viral-associated thrombotic microangiopathies. Hematol. Oncol. Stem Cell Ther. 2011, 4, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makatsariya, A.D.; Slukhanchuk, E.V.; Bitsadze, V.O.; Khizroeva, J.K.H.; Tretyakova, M.V.; Tsibizova, V.I.; Elalamy, I.; Gris, J.C.; Grandone, E.; Makatsariya, N.A.; et al. Thrombotic microangiopathy, DIC-syndrome and COVID-19: Link with pregnancy prothrombotic state. J. Matern. Fetal Neonatal Med. 2022, 35, 2536–2544. [Google Scholar] [CrossRef] [PubMed]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 1023–1026. [Google Scholar] [CrossRef] [Green Version]
- Kosinska-Kaczynska, K.; Malicka, E.; Szymusik, I.; Dera, N.; Pruc, M.; Feduniw, S.; Rafique, Z.; Szarpak, L. The sFlt-1/PlGF Ratio in Pregnant Patients Affected by COVID-19. J. Clin. Med. 2023, 12, 1059. [Google Scholar] [CrossRef]
- Soldavini, C.M.; Di Martino, D.; Sabattini, E.; Ornaghi, S.; Sterpi, V.; Erra, R.; Invernizzi, F.; Tine’, G.; Giardini, V.; Vergani, P.; et al. sFlt-1/PlGF ratio in hypertensive disorders of pregnancy in patients affected by COVID-19. Pregnancy Hypertens. 2022, 27, 103–109. [Google Scholar] [CrossRef]
- Huppertz, B. Biology of preeclampsia: Combined actions of angiogenic factors, their receptors and placental proteins. Mol. Basis Dis. 2020, 1866, 1866. [Google Scholar] [CrossRef]
- Stepan, H.; Hund, M.; Andraczek, T. Combining Biomarkers to Predict Pregnancy Complications and Redefine Preeclampsia: The Angiogenic-Placental Syndrome. Hypertension 2020, 75, 918–926. [Google Scholar] [CrossRef]
- Nobrega, G.M.; Guida, J.P.; Novaes, J.M.; Solda, L.M.; Pietro, L.; Luz, A.G.; Lajos, G.J.; Ribeiro-do-Valle, C.C.; Souza, R.T.; Cecatti, J.G.; et al. Role of biomarkers (sFlt-1/PlGF) in cases of COVID-19 for distinguishing preeclampsia and guiding clinical management. Pregnancy Hypertens. 2023, 31, 32–37. [Google Scholar] [CrossRef]
- Herraiz, I.; Simón, E.; Gómez-Arriaga, P.; Quezada, M.; García-Burguillo, A.; López-Jiménez, E.; Galindo, A. Clinical Implementation of the sFlt-1/PlGF ratio to identify preeclampsia and fetal grow restriction; A prospective cohort study. Pregnancy Hypertens. 2018, 13, 279–285. [Google Scholar] [CrossRef]
- Giardini, V.; Casati, M.; Acampora, E.; Vasarri, M.V.; Arienti, F.; Vergani, P. SFLT1 and PLGF levels in pregnancies complicated by SARS-CoV-2 infection. J. Matern. Fetal Neonatal Med. 2021, 34 (Suppl. 1), 117. [Google Scholar] [CrossRef]
- Espino-y-Sosa, S.; Martínez-Portilla, R.J.; Torres-Torres, J.; Solis-Paredes, J.M.; Estrada-Gutierrez, G. Novel Ratio Soluble Fms-like Tyrosine Kinasa-1/Angiotensine-II (sFlt-1/ANG II) in Pregnant Women is Associated with Critical Illness in COVID-19. Viruses 2021, 13, 1906. [Google Scholar] [CrossRef]
- Negro, A.; Fama, A.; Penna, D.; Belloni, L.; Zerbini, A.; Giuri, P.G. Sflt-1 levels in COVID-19 patients Association with outcome and thrombosis. Am. J. Hematol. 2021, 96, E41–E43. [Google Scholar] [CrossRef]
- Tanabe, K.; Sato, Y.; Wada, J. Endogenous Antiangiogenic factors in chronic Kydney disease Potential Biomarkers of Progression. Int. J. Mol. Sci. 2018, 19, 1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, S.; Carter, E.B.; Mysorekar, I.U. SARS-CoV2 and pregnancy: An invisible enemy? Am. J. Reprod. Immunol. 2020, 84, e13308. [Google Scholar] [CrossRef] [PubMed]
- Drenthen, W.; Pieper, P.G.; Roos-Hesselink, J.W.; Van Lottum, W.A.; Voors, A.A.; Mulder, B.J.M.; Van Dijk, A.P.J.; Vliegen, H.W.; Yap, S.C.; Moons, P.; et al. Outcome of Pregnancy in Women with Congenital Heart Disease. J. Am. Coll. Cardiol. 2007, 49, 2303–2311. [Google Scholar] [CrossRef] [Green Version]
- Drenthen, W.; Boersma, E.; Balci, A.; Moons, P.; Roos-Hesselink, J.W.; Mulder, B.J.M.; Vliegen, H.W.; Van Dijk, A.P.J.; Voors, A.A.; Yap, S.C.; et al. Predictors of pregnancy complications in women with congenital heart disease. Eur. Heart J. 2010, 31, 2124–2132. [Google Scholar] [CrossRef] [Green Version]
- Hayward, R.M.; Foster, E.; Tseng, Z.H. Maternal and Fetal Outcomes of Admission for Delivery in Women with Congenital Heart Disease. JAMA Cardiol. 2017, 2, 664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivagami Sengodan, S.; Dhanapal, M.; Pandian, A. Left ventricular dysfunction in preeclampsia: An echocardiographic study. Int. J. Reprod. Contracept Obstet. Gynecol. 2017, 6, 4895–4899. [Google Scholar] [CrossRef] [Green Version]
- Castleman, J.S.; Ganapathy, R.; Taki, F.; Lip, G.Y.H.; Steeds, R.P.; Kotecha, D. Echocardiographic Structure and Function in Hypertensive Disorders of Pregnancy: A Systematic Review. Circ. Cardiovasc. Imaging 2016, 9, e004888. [Google Scholar] [CrossRef] [Green Version]
- Borges, V.T.M.; Zanati, S.G.; Peraçoli, M.T.S.; Poiati, J.R.; Romão-Veiga, M.; Peraçoli, J.C.; Thilaganathan, B. Maternal left ventricular hypertrophy and diastolic dysfunction and brain natriuretic peptide concentration in early- and late-onset pre-eclampsia: BNP and pre-eclampsia. Ultrasound Obstet. Gynecol. 2018, 51, 519–523. [Google Scholar] [CrossRef] [Green Version]
- Long, B.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 2020, 38, 1504–1507. [Google Scholar] [CrossRef]
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; et al. COVID-19 and Cardiovascular Disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef] [Green Version]
- Goha, A.; Mezue, K.; Edwards, P.; Nunura, F.; Baugh, D.; Madu, E. COVID-19 and the heart: An update for clinicians. Clin. Cardiol. 2020, 43, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Antman, E.; Bassand, J.P.; Klein, W.; Ohman, M.; Lopez Sendon, J.L.; Rydén, L.; Simoons, M.; Tendera, M. Myocardial infarction redefined—A consensus document of The Joint European Society of Cardiology/American College of Cardiology Commitee for the Redefinition of Myocardial infarction. J. Am. Coll. Cardiol. 2000, 36, 959–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pachtman Shetty, S.L.; Meirowitz, N.; Blitz, M.J.; Gadomski, T.; Weinberg, C.R. Myocardial injury associated with coronavirus disease 2019 in pregnancy. Am. J. Obstet. Gynecol. 2021, 224, 229–232. [Google Scholar] [CrossRef]
- Mercedes, B.R.; Serwat, A.; Naffaa, L.; Ramirez, N.; Khalid, F.; Steward, S.B.; Feliz, O.G.C.; Kassab, M.B.; Karout, L. New-onset myocardial injury in pregnant patients with coronavirus disease 2019: A case series of 15 patients. Am. J. Obstet. Gynecol. 2021, 224, 387.e1–387.e9. [Google Scholar] [CrossRef] [PubMed]
- Juusela, A.; Nazir, M.; Gimovsky, M. Two cases of coronavirus 2019-related cardiomyopathy in pregnancy. Am. J. Obstet. Gynecol. MFM 2020, 2, 100113. [Google Scholar] [CrossRef]
- Melchiorre, K.; Giorgione, V.; Thilaganathan, B. The placenta and preeclampsia: Villain or victim? Am. J. Obstet. Gynecol. 2022, 226, S954–S962. [Google Scholar] [CrossRef]
- Kalafat, E.; Thilaganathan, B. Cardiovascular origins of preeclampsia. Curr. Opin. Obstet. Gynecol. 2017, 29, 383–389. [Google Scholar] [CrossRef]
- Ravichandran, J.; Woon, S.Y.; Quek, Y.S.; Lim, Y.C.; Noor, E.M.; Suresh, K.; Vigneswaran, R.; Vasile, V.; Shah, A.; Mills, N.L.; et al. High-Sensitivity Cardiac Troponin I Levels in Normal and Hypertensive Pregnancy. Am. J. Med. 2019, 132, 362–366. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Romero, R. Mechanisms that may underlie a causal association between SARS-COV-2 infection and preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, 280–281. [Google Scholar] [CrossRef] [PubMed]
- Giorgione, V.; Thilaganathan, B. SARS-CoV-2 related myocardial injury might explain the predisposition to preeclampsia with maternal SARS-CoV-2 infection. Am. J. Obstet. Gynecol. 2022, 226, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, E.H.; MacDonald, L.; SoRelle, J.A.; Morse, J.; Pruszynski, J.; Spong, C.Y. COVID-19 Cases and Disease Severity in Pregnancy and Neonatal Positivity Associated With Delta (B.1.617.2) and Omicron (B.1.1.529) Variant Predominance. JAMA 2022, 327, 1500. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Vanegas, O.; Martinez-Perez, O. SARS-CoV-2 Infection and Preeclampsia—How an Infection Can Help Us to Know More about an Obstetric Condition. Viruses 2023, 15, 1564. https://doi.org/10.3390/v15071564
González-Vanegas O, Martinez-Perez O. SARS-CoV-2 Infection and Preeclampsia—How an Infection Can Help Us to Know More about an Obstetric Condition. Viruses. 2023; 15(7):1564. https://doi.org/10.3390/v15071564
Chicago/Turabian StyleGonzález-Vanegas, Otilia, and Oscar Martinez-Perez. 2023. "SARS-CoV-2 Infection and Preeclampsia—How an Infection Can Help Us to Know More about an Obstetric Condition" Viruses 15, no. 7: 1564. https://doi.org/10.3390/v15071564
APA StyleGonzález-Vanegas, O., & Martinez-Perez, O. (2023). SARS-CoV-2 Infection and Preeclampsia—How an Infection Can Help Us to Know More about an Obstetric Condition. Viruses, 15(7), 1564. https://doi.org/10.3390/v15071564