Comparison of Routes of Administration, Frequency, and Duration of Favipiravir Treatment in Mouse and Guinea Pig Models of Ebola Virus Disease
Abstract
:1. Introduction
1.1. Zaire ebolavirus and Sudan ebolavirus Epidemiology and Treatments
1.2. Favipiravir as an Antiviral Medication
1.3. Favipiravir for the Treatment of Filoviral Diseases
1.4. Rationale
2. Materials and Methods
2.1. Ethical Approval
2.2. Virus Characterization and Animal Models
2.3. Favipiravir Dosing
2.4. Viral Quantification by qRT-PCR and Plaque Assay
2.5. Figures and Statistics
3. Results
3.1. Favipiravir Treatment of Mouse-Adapted Zaire ebolavirus in BALB/c Mice
3.2. Favipiravir Treatment of Guinea Pig-Adapted Zaire ebolavirus in Hartley Outbred Guinea Pigs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feldmann, H.; Slenczka, W.; Klenk, H.-D. Emerging and Reemerging of Filoviruses; Springer: Vienna, Austria, 1996; pp. 77–100. [Google Scholar]
- Breman, J.G.; Heymann, D.L.; Lloyd, G.; McCormick, J.B.; Miatudila, M.; Murphy, F.A.; Muyembé-Tamfun, J.-J.; Piot, P.; Ruppol, J.-F.; Sureau, P. Discovery and description of Ebola Zaire virus in 1976 and relevance to the West African epidemic during 2013–2016. J. Infect. Dis. 2016, 214, S93–S101. [Google Scholar] [CrossRef] [PubMed]
- Bell, B.P. Overview, control strategies, and lessons learned in the CDC response to the 2014–2016 Ebola epidemic. MMWR Suppl. 2016, 65, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Microbe, T.L. Ebola treatment: Progressing with pragmatism. Lancet Microbe 2022, 3, e723. [Google Scholar] [CrossRef]
- Burki, T. New guidelines for treatment of Ebola virus disease. Lancet Infect. Dis. 2022, 22, 1428–1429. [Google Scholar] [CrossRef] [PubMed]
- Piszczatoski, C.R.; Gums, J.G. Ervebo (Ebola Zaire vaccine, live/rVSVΔG-ZEBOV-GP): The first licensed vaccine for the prevention of Ebola virus disease. J. Pharm. Technol. 2020, 36, 243–250. [Google Scholar] [CrossRef]
- Markham, A. REGN-EB3: First approval. Drugs 2021, 81, 175–178. [Google Scholar] [CrossRef]
- Lee, A. Ansuvimab: First approval. Drugs 2021, 81, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Bockstal, V.; Leyssen, M.; Heerwegh, D.; Spiessens, B.; Robinson, C.; Stoop, J.N.; Roozendaal, R.; Van Effelterre, T.; Gaddah, A.; Van Roey, G.A. Non-human primate to human immunobridging demonstrates a protective effect of Ad26. ZEBOV, MVA-BN-Filo vaccine against Ebola. npj Vaccines 2022, 7, 156. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Y.; Guyatt, G.; Fowler, R.; Kojan, R.; Ge, L.; Tian, J.; Diaz, J.; Lado, M.; Youkee, D. Effects of therapies for Ebola virus disease: A systematic review and network meta-analysis. Lancet Microbe 2022, 3, e683–e692. [Google Scholar] [CrossRef]
- Mulangu, S.; Dodd, L.E.; Davey, R.T., Jr.; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 2019, 381, 2293–2303. [Google Scholar] [CrossRef]
- Yu, X.; Saphire, E.O. Development and Structural Analysis of Antibody Therapeutics for Filoviruses. Pathogens 2022, 11, 374. [Google Scholar] [CrossRef]
- Marathakam, A.; Ashisha, P.; Damodharan, K.A.; Archana, M.; Palathingal, M. A Review on Antiviral Activity of Favipiravir. J. Pharm. Res. Int. 2022, 34, 1–7. [Google Scholar]
- Hayden, F.G.; Lenk, R.P.; Stonis, L.; Oldham-Creamer, C.; Kang, L.L.; Epstein, C. Favipiravir Treatment of Uncomplicated Influenza in Adults: Results of Two Phase 3, Randomized, Double-Blind, Placebo-Controlled Trials. J. Infect. Dis. 2022, 226, 1790–1799. [Google Scholar] [CrossRef] [PubMed]
- Hashemian, S.M.; Farhadi, T.; Velayati, A.A. A review on favipiravir: The properties, function, and usefulness to treat COVID-19. Expert Rev. Anti-Infect. Ther. 2021, 19, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhang, Z.; He, S.; Wong, G.; Banadyga, L.; Qiu, X. Successful treatment of Marburg virus with orally administrated T-705 (Favipiravir) in a mouse model. Antivir. Res. 2018, 151, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Guedj, J.; Piorkowski, G.; Jacquot, F.; Madelain, V.; Nguyen, T.H.T.; Rodallec, A.; Gunther, S.; Carbonnelle, C.; Mentré, F.; Raoul, H. Antiviral efficacy of favipiravir against Ebola virus: A translational study in cynomolgus macaques. PLoS Med. 2018, 15, e1002535. [Google Scholar] [CrossRef]
- Eloy, P.; Laouenan, C.; Beavogui, A.H.; Keita, S.; Manchon, P.; Etard, J.-F.; Sissoko, D.; Mentré, F.; Malvy, D. High doses of favipiravir in two men survivors of Ebola virus disease carrying Ebola virus in semen in Guinea. IDCases 2022, 27, e01412. [Google Scholar] [CrossRef]
- Nguyen, T.H.T.; Guedj, J.; Anglaret, X.; Laouénan, C.; Madelain, V.; Taburet, A.-M.; Baize, S.; Sissoko, D.; Pastorino, B.; Rodallec, A. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Neglected Trop. Dis. 2017, 11, e0005389. [Google Scholar] [CrossRef] [PubMed]
- Sissoko, D.; Laouenan, C.; Folkesson, E.; M’lebing, A.-B.; Beavogui, A.-H.; Baize, S.; Camara, A.-M.; Maes, P.; Shepherd, S.; Danel, C. Experimental treatment with favipiravir for Ebola virus disease (the JIKI Trial): A historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Med. 2016, 13, e1001967. [Google Scholar] [CrossRef]
- Kerber, R.; Lorenz, E.; Duraffour, S.; Sissoko, D.; Rudolf, M.; Jaeger, A.; Cisse, S.D.; Camara, A.-M.; Miranda, O.; Castro, C.M. Laboratory findings, compassionate use of Favipiravir, and outcome in patients with Ebola virus disease, guinea, 2015—A retrospective observational study. J. Infect. Dis. 2019, 220, 195–202. [Google Scholar] [CrossRef]
- Smither, S.J.; Eastaugh, L.S.; Steward, J.A.; Nelson, M.; Lenk, R.P.; Lever, M.S. Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model. Antivir. Res. 2014, 104, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.N.; Zhang, Z.; He, S.; Zhu, W.; Banadyga, L.; Safronetz, D.; Qiu, X. Postexposure protective efficacy of T-705 (Favipiravir) against Sudan virus infection in Guinea pigs. J. Infect. Dis. 2018, 218, S649–S657. [Google Scholar] [CrossRef] [PubMed]
- Oestereich, L.; Lüdtke, A.; Wurr, S.; Rieger, T.; Muñoz-Fontela, C.; Günther, S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antivir. Res. 2014, 105, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Reynard, S.; Gloaguen, E.; Baillet, N.; Madelain, V.; Guedj, J.; Raoul, H.; de Lamballerie, X.; Mullaert, J.; Baize, S. Early control of viral load by favipiravir promotes survival to Ebola virus challenge and prevents cytokine storm in non-human primates. PLoS Neglected Trop. Dis. 2021, 15, e0009300. [Google Scholar] [CrossRef] [PubMed]
- Escaffre, O.; Juelich, T.L.; Neef, N.; Massey, S.; Smith, J.; Brasel, T.; Smith, J.K.; Kalveram, B.; Zhang, L.; Perez, D.; et al. STAT-1 Knockout Mice as a Model for Wild-Type Sudan Virus (SUDV). Viruses 2021, 13, 1388. [Google Scholar] [CrossRef] [PubMed]
- Comer, J.E.; Escaffre, O.; Neef, N.; Brasel, T.; Juelich, T.L.; Smith, J.K.; Smith, J.; Kalveram, B.; Perez, D.D.; Massey, S. Filovirus virulence in interferon α/β and γ double knockout mice, and treatment with favipiravir. Viruses 2019, 11, 137. [Google Scholar] [CrossRef] [PubMed]
- Bixler, S.L.; Bocan, T.M.; Wells, J.; Wetzel, K.S.; Van Tongeren, S.A.; Dong, L.; Garza, N.L.; Donnelly, G.; Cazares, L.H.; Nuss, J. Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus. Antivir. Res. 2018, 151, 97–104. [Google Scholar] [CrossRef]
- Madelain, V.; Baize, S.; Jacquot, F.; Reynard, S.; Fizet, A.; Barron, S.; Solas, C.; Lacarelle, B.; Carbonnelle, C.; Mentré, F. Ebola viral dynamics in nonhuman primates provides insights into virus immuno-pathogenesis and antiviral strategies. Nat. Commun. 2018, 9, 4013. [Google Scholar] [CrossRef]
- Bray, M.; Davis, K.; Geisbert, T.; Schmaljohn, C.; Huggins, J. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis. 1999, 179, S248–S258. [Google Scholar] [CrossRef]
- Connolly, B.M.; Steele, K.E.; Davis, K.J.; Geisbert, T.W.; Kell, W.M.; Jaax, N.K.; Jahrling, P.B. Pathogenesis of experimental Ebola virus infection in guinea pigs. J. Infect. Dis. 1999, 179, S203–S217. [Google Scholar] [CrossRef]
- Mendenhall, M.; Russell, A.; Smee, D.F.; Hall, J.O.; Skirpstunas, R.; Furuta, Y.; Gowen, B.B. Effective oral favipiravir (T-705) therapy initiated after the onset of clinical disease in a model of arenavirus hemorrhagic Fever. PLoS Neglected Trop. Dis. 2011, 5, e1342. [Google Scholar] [CrossRef] [PubMed]
- Madelain, V.; Oestereich, L.; Graw, F.; Nguyen, T.H.T.; De Lamballerie, X.; Mentré, F.; Günther, S.; Guedj, J. Ebola virus dynamics in mice treated with favipiravir. Antivir. Res. 2015, 123, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Safronetz, D.; Rosenke, K.; Westover, J.B.; Martellaro, C.; Okumura, A.; Furuta, Y.; Geisbert, J.; Saturday, G.; Komeno, T.; Geisbert, T.W.; et al. The broad-spectrum antiviral favipiravir protects guinea pigs from lethal Lassa virus infection post-disease onset. Sci. Rep. 2015, 5, 14775. [Google Scholar] [CrossRef] [PubMed]
- Gowen, B.B.; Juelich, T.L.; Sefing, E.J.; Brasel, T.; Smith, J.K.; Zhang, L.; Tigabu, B.; Hill, T.E.; Yun, T.; Pietzsch, C. Favipiravir (T-705) inhibits Junin virus infection and reduces mortality in a guinea pig model of Argentine hemorrhagic fever. PLoS Neglected Trop. Dis. 2013, 7, e2614. [Google Scholar] [CrossRef] [PubMed]
- Madelain, V.; Guedj, J.; Mentré, F.; Nguyen, T.H.T.; Jacquot, F.; Oestereich, L.; Kadota, T.; Yamada, K.; Taburet, A.-M.; De Lamballerie, X. Favipiravir pharmacokinetics in nonhuman primates and insights for future efficacy studies of hemorrhagic fever viruses. Antimicrob. Agents Chemother. 2017, 61, e01305-16. [Google Scholar] [CrossRef] [PubMed]
- Madelain, V.; Mentré, F.; Baize, S.; Anglaret, X.; Laouénan, C.; Oestereich, L.; Nguyen, T.H.T.; Malvy, D.; Piorkowski, G.; Graw, F. Modeling favipiravir antiviral efficacy against emerging viruses: From animal studies to clinical trials. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 258–271. [Google Scholar] [CrossRef]
- Hanioka, N.; Saito, K.; Isobe, T.; Ohkawara, S.; Jinno, H.; Tanaka-Kagawa, T. Favipiravir biotransformation in liver cytosol: Species and sex differences in humans, monkeys, rats, and mice. Biopharm. Drug Dispos. 2021, 42, 218–225. [Google Scholar] [CrossRef]
Dosing | Route | Tx Duration | Animal Model | Key Findings | Ref | |
---|---|---|---|---|---|---|
maMARV (Angola) | 300 mg/kg starting on D1, D2, D3, or D4 post infection. 75 or 150 mg/kg on D2 | PO | 8 days | BALB/c mice | Complete survival of 300 mg/kg groups treated at D1 and D2, increased survival in other treated groups. | [16] |
EBOV (Gabon 2001) | 100 mg/kg, 150 mg/kg or 180 mg/kg twice daily starting at D(-2) with a loading dose of 200 mg/kg or 250 mg/kg | IM | 14 days | cynomolgus macaques | Animals receiving 150 and 180 mg/kg had decreased mortality and increased mean time-to-death. | [17] |
EBOV (E718) | 150 mg/kg twice daily (300 mg/kg/day) | PO | 14 days | A129 interferon alpha/beta receptor knockout mice | Complete survival of treated mice. | [22] |
gaSUDV (1976/Nzara-Boneface) | 150 and 300 mg/kg/day starting at D1, D2, D3, D4 or D5 | SC | 7 days | Hartley Guinea Pigs | Complete survival in animals treated at D1 and D3. Decreased mortality and increased mean time-to-death in other treated groups. | [23] |
EBOV (Mayinga 1976—undefined passage history) | 30 and 300 mg/kg/day starting at D2, D4, or D6 | PO | 8 days | A129 interferon alpha/beta receptor knockout mice | Complete survival of all treated groups. | [24] |
SUDV (Gulu) | 150 mg/kg/day starting at D0 + 1 h | PO | 8 days | 129S6 STAT-1 knockout | Complete survival of treated mice. | [26] |
EBOV (Kikwit) | 150 mg/kg/day starting at D0 + 1 h | PO | 8 days | C57BL/6J interferon α/β and γ receptor double knockout | Decreased mortality (20% in treated groups vs. 100% in untreated) | [27] |
EBOV (Kikwit) or MARV (Angola) | 200 mg/kg, 150 mg/kg or 75 mg/kg/day starting at D(-2), D(-1) or D1 with a loading dose of 400 mg/kg, 250 mg/kg, or 75 mg/kg | PO or IV | 14 days | cynomolgus macaques | Decreased mortality (83% vs. 100%) in high dose treatment group and increased mean time-to-death following EBOV challenge. Decreased mortality (17% vs. 100%) and increased mean time-to-death following MARV challenge. | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, D.M.; Juelich, T.; Zhang, L.; Smith, J.K.; Kalveram, B.K.; Perez, D.; Smith, J.; Grimes, M.R.; Garron, T.; Torres, M.; et al. Comparison of Routes of Administration, Frequency, and Duration of Favipiravir Treatment in Mouse and Guinea Pig Models of Ebola Virus Disease. Viruses 2024, 16, 1101. https://doi.org/10.3390/v16071101
Johnson DM, Juelich T, Zhang L, Smith JK, Kalveram BK, Perez D, Smith J, Grimes MR, Garron T, Torres M, et al. Comparison of Routes of Administration, Frequency, and Duration of Favipiravir Treatment in Mouse and Guinea Pig Models of Ebola Virus Disease. Viruses. 2024; 16(7):1101. https://doi.org/10.3390/v16071101
Chicago/Turabian StyleJohnson, Dylan M., Terry Juelich, Lihong Zhang, Jennifer K. Smith, Birte K. Kalveram, David Perez, Jeanon Smith, Michael R. Grimes, Tania Garron, Maricela Torres, and et al. 2024. "Comparison of Routes of Administration, Frequency, and Duration of Favipiravir Treatment in Mouse and Guinea Pig Models of Ebola Virus Disease" Viruses 16, no. 7: 1101. https://doi.org/10.3390/v16071101
APA StyleJohnson, D. M., Juelich, T., Zhang, L., Smith, J. K., Kalveram, B. K., Perez, D., Smith, J., Grimes, M. R., Garron, T., Torres, M., Massey, S., Brasel, T., Beasley, D. W. C., Freiberg, A. N., & Comer, J. E. (2024). Comparison of Routes of Administration, Frequency, and Duration of Favipiravir Treatment in Mouse and Guinea Pig Models of Ebola Virus Disease. Viruses, 16(7), 1101. https://doi.org/10.3390/v16071101