Animal Models for Influenza Virus Pathogenesis and Transmission
Abstract
:1. Influenza in the human host
1.1. Disease
1.2. Transmission
2. Animal models of influenza
2.1. Mice (Mus musculus)
2.1.1. Susceptibility of mice to human and other influenza viruses
Viral Strain * | 50% infectious dose (LD50) ** | 50% lethal dose (LD50) ** | Mouse Strain | Reference |
---|---|---|---|---|
PR8 (H1N1) | 102 PFU | BALB/C | [40] | |
WSN (H1N1) | 102 – 103.3 PFU | BALB/C | [40,74,75] | |
X31 (H3N2) | 100.7 EID50 | >105.2 EID50, 105.84 PFU | BALB/C | [40,48] |
1918 pandemic strain (H1N1) | 100.75 PFU | 103.25 to 103.5 PFU | BALB/C | [36,57] |
A/New Caledonia/20/1999 (H1N1) | ~102.7 PFU | C57BL/6 | [37] | |
A/Texas/36/1991 (H1N1) | >106 PFU | BALB/C | [36] | |
A/Kawasaki/UTK-4/09 (H1N1) | >106.6 PFU | BALB/C | [39] | |
A/Netherlands/607/2009 (pH1N1) | <104.7 PFU | C57BL/6 | [73] | |
A/California/04/2009 (pH1N1) | 101.5 | 104.7 to >106 PFU | BALB/C | [39,57,73] |
A/Viet Nam/1203/2004 (H5N1) | 101.5 PFU, 102.2 EID50 | 101.3 PFU, 101.8 EID50 | BALB/C | [57,76] |
A/Hong Kong/483/1997 (H5N1) | 102.2 EID50 | 101.6 to 102.4 EID50 | BALB/C | [48,76] |
A/chicken/BC/CN-7/04 (H7N3) | 102.4 TCID50 | BALB/C | [55] | |
A/Netherlands/219/03 (H7N7) | 100.76 EID50 | 102.5 EID50, 100.8 TCID50 | BALB/C | [53,55] |
A/turkey/VA/4529/02 (H7N2) | 101.76 EID50 | >107 TCID50 | BALB/C | [53] |
A/Red Knot/NJ/1523470/06 (H7N3) | 101.5 PFU | >104.8 PFU | BALB/C | [56] |
A/Ruddy Turnstone/DE/650645/02 (H2N9) | 102.4 PFU | >105.4 PFU | BALB/C | [56] |
* pH1N1 indicates H1N1 subtype viruses of the 2009 pandemic | ||||
** PFU = plaque forming units; EID50 = 50% egg infectious dose; TCID50 = 50% tissue culture infectious dose |
2.1.2. Signs of disease in mice
2.1.3. Transmission of influenza viruses in mice
2.2. Ferrets (Mustela putorius)
2.2.1. Susceptibility of ferrets to human and other influenza viruses
2.2.2. Signs of disease in ferrets
2.2.3. Transmission of influenza viruses in ferrets
2.3. Guinea Pig (Cavia porcellus)
2.3.1. Susceptibility of guinea pigs to human and other influenza viruses
2.3.2. Signs of disease in guinea pigs
2.3.3. Transmission of influenza viruses among guinea pigs
2.4. Cotton Rat (Sigmodon hispidus)
2.4.1. Susceptibility to human and other influenza viruses
2.4.2. Signs of disease in cotton rats
2.5. Syrian (Golden) Hamsters (Mesocricetus auratus)
2.5.1. Susceptibility of hamsters to human and other influenza viruses
2.5.2. Signs of disease in hamsters
2.5.3. Transmission of influenza viruses in hamsters
Virus | Maximum nasal wash titer [log10 50% egg-bit infectivity dose (EBID50)/mL] | Transmission Efficiency [# transmissions/ # exposed, (%)] |
---|---|---|
Virulent in humans: | ||
A/Finland/74 (H3N2) | 6.2 | 5/5 (100%) |
A/Victoria/75 (H3N2) | 5.5 | 5/5, 6/6 (100%) |
A/Texas/77 (H3N2) | 5.9 | 5/5, 4/5 (90%) |
Attenuated in humans: | ||
A/PR/8/34 (H1N1) | 4.6 | 3/5 (60%) |
A/Okuda/57 (H2N2) | 4.3 | 0/5, 0/5 (0%) |
A/HK/l19/77 (H1N1) | 5.3 | 2/5 (40%) |
A/U.S.S.R./77 (H1N1) | 5.3 | 0/6, 0/5 (0%) |
2.6. Nonhuman Primates: Rhesus macaque (Macaca mulatta), Pig-tailed macaque (Macaca nemestrina), and Cynomolgus macaque (Macaca fascicularis)
2.6.1. Susceptibility of nonhuman primates to human and other influenza viruses
2.6.2. Signs of disease in nonhuman primates
3. Conclusions
4. Future Perspectives
Acknowledgments
References
- Treanor, J.J. Influenza Viruses, Including Avian Influenza and Swine Influenza. In Mandell, Douglas, and Bennett's Principles and Practices of Infectious Diseases, 7th; Mandell G.L. Bennett, J.E., Dolin, R., Eds.; Churchill Livingstone Elsevier: Philadelphia, PA, USA, 2010. [Google Scholar]
- Lapinsky, S.E. Epidemic viral pneumonia. Curr. Opin. Infect. Dis. 2010, 23, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Walsh, E.E.; Falsey, A.R. Pulmonary complications of interpandemic influenza A in hospitalized adults. J. Infect. Dis. 2007, 195, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Carrat, F.; Vergu, E.; Ferguson, N.M.; Lemaitre, M.; Cauchemez, S.; Leach, S.; Valleron, A.J. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am. J. Epidemiol. 2008, 167, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Bjornson, A.B.; Mellencamp, M.A.; Schiff, G.M. Complement is activated in the upper respiratory tract during influenza virus infection. Am. Rev. Respir. Dis. 1991, 143, 1062–1066. [Google Scholar] [PubMed]
- Couch, R.B.; Douglas, R.G.; Fedson, D.S.; Kasel, J.A. Correlated studies of a recombinant influenza-virus vaccine. 3. Protection against experimental influenza in man. J. Infect. Dis. 1971, 124, 473–480. [Google Scholar] [PubMed]
- Whicher, J.T.; Chambers, R.E.; Higginson, J.; Nashef, L.; Higgins, P.G. Acute phase response of serum amyloid A protein and C reactive protein to the common cold and influenza. J. Clin. Pathol. 1985, 38, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Cauchemez, S.; Donnelly, C.A.; Reed, C.; Ghani, A.C.; Fraser, C.; Kent, C.K.; Finelli, L.; Ferguson, N.M. Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States. N. Engl. J. Med. 2009, 361, 2619–2627. [Google Scholar] [CrossRef] [PubMed]
- France, A.M.; Jackson, M.; Schrag, S.; Lynch, M.; Zimmerman, C.; Biggerstaff, M.; Hadler, J. Household transmission of 2009 influenza A (H1N1) virus after a school-based outbreak in New York City, April-May 2009. J. Infect. Dis. 2010, 201, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Morgan, O.W.; Parks, S.; Shim, T.; Blevins, P.A.; Lucas, P.M.; Sanchez, R.; Walea, N.; Loustalot, F.; Duffy, M.R.; Shim, M.J.; et al. Household transmission of pandemic (H1N1) 2009, San Antonio, Texas, USA, April-May 2009 . Emerg Infect. Dis. 2010, 16, 631–637. [Google Scholar] [PubMed]
- Fabian, P.; McDevitt, J.J.; DeHaan, W.H.; Fung, R.O.; Cowling, B.J.; Chan, K.H.; Leung, G.M.; Milton, D.K. Influenza virus in human exhaled breath: an observational study . PLoS One 2008, 3, e2691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelzer-Braid, S.; Oliver, B.G.; Blazey, A.J.; Argent, E.; Newsome, T.P.; Rawlinson, W.D.; Tovey, E.R. Exhalation of respiratory viruses by breathing, coughing, and talking. J. Med. Virol. 2009, 81, 1674–1679. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.L.; Taber, L.H.; Wells, C.R.; Wells, J.M.; Glezen, W.P.; Paredes, A. Patterns of shedding of myxoviruses and paramyxoviruses in children. J. Infect. Dis. 1981, 144, 433–441. [Google Scholar] [PubMed]
- Glezen, W.P. Influenza control. N. Engl. J. Med. 2006, 355, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.B. Nosocomial viral respiratory infections: perennial weeds on pediatric wards. Am. J. Med. 1981, 70, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.B.; Douglas, R.G.; Geiman, J.M.; Meagher, M.P. Viral shedding patterns of children with influenza B infection . J. Infect. Dis. 1979, 140, 610–613. [Google Scholar] [PubMed]
- Sato, M.; Hosoya, M.; Kato, K.; Suzuki, H. Viral shedding in children with influenza virus infections treated with neuraminidase inhibitors. Pediatr. Infect. Dis. J. 2005, 24, 931–932. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, D.M.; Gubareva, L.V.; Zuccotti, G. Prolonged shedding of multidrug-resistant influenza A virus in an immunocompromised patient. N. Engl. J. Med. 2003, 348, 867–868. [Google Scholar] [CrossRef] [PubMed]
- Buxton Bridges, C.; Kuehnert, M.J.; Hall, C.B. Transmission of influenza: implications for control in health care settings. Clin. Infect. Dis. 2003, 37, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Alford, R.H.; Kasel, J.A.; Gerone, P.J.; Knight, V. Human influenza resulting from aerosol inhalation. Proc. Soc. Exp. Biol. Med. 1966, 122, 800–804. [Google Scholar] [PubMed]
- Brankston, G.; Gitterman, L.; Hirji, Z.; Lemieux, C.; Gardam, M. Transmission of influenza A in human beings. Lancet. Infect. Dis. 2007, 7, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Tellier, R. Review of aerosol transmission of influenza A virus. Emerg. Infect. Dis. 2006, 12, 1657–1662. [Google Scholar] [PubMed]
- Staeheli, P.; Grob, R.; Meier, E.; Sutcliffe, J.G.; Haller, O. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol. Cell. Biol. 1988, 8, 4518–4523. [Google Scholar] [PubMed]
- Haller, O. Inborn resistance of mice to orthomyxoviruses. Curr. Top. Microbiol. Immunol. 1981, 92, 25–52. [Google Scholar] [PubMed]
- Haller, O.; Arnheiter, H.; Gresser, I.; Lindenmann, J. Genetically determined, interferon-dependent resistance to influenza virus in mice. J. Exp. Med. 1979, 149, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Staeheli, P.; Haller, O.; Boll, W.; Lindenmann, J.; Weissmann, C. Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell 1986, 44, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D.; Staeheli, P.; Hufbauer, M.; Koerner, I.; Martinez-Sobrido, L.; Solorzano, A.; Garcia-Sastre, A.; Haller, O.; Kochs, G. Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 6806–6811. [Google Scholar] [CrossRef] [PubMed]
- Tumpey, T.M.; Szretter, K.J.; Van Hoeven, N.; Katz, J.M.; Kochs, G.; Haller, O.; Garcia-Sastre, A.; Staeheli, P. The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses. J. Virol. 2007, 81, 10818–10821. [Google Scholar] [CrossRef] [PubMed]
- Alberts, R.; Srivastava, B.; Wu, H.; Viegas, N.; Geffers, R.; Klawonn, F.; Novoselova, N.; do Valle, T.Z.; Panthier, J.J.; Schughart, K. Gene expression changes in the host response between resistant and susceptible inbred mouse strains after influenza A infection. Microbes Infect. 2010, 12, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Boon, A.C.; deBeauchamp, J.; Hollmann, A.; Luke, J.; Kotb, M.; Rowe, S.; Finkelstein, D.; Neale, G.; Lu, L.; Williams, R.W.; et al. Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice . J. Virol. 2009, 83, 10417–10426. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, B.; Blazejewska, P.; Hessmann, M.; Bruder, D.; Geffers, R.; Mauel, S.; Gruber, A.D.; Schughart, K. Host genetic background strongly influences the response to influenza a virus infections . PLoS One 2009, 4, e4857. [Google Scholar] [CrossRef] [PubMed]
- Hale, B.G.; Steel, J.; Manicassamy, B.; Medina, R.A.; Ye, J.; Hickman, D.; Lowen, A.C.; Perez, D.R.; Garcia-Sastre, A. Mutations in the NS1 C-terminal tail do not enhance replication or virulence of the 2009 pandemic H1N1 influenza A virus. J. Gen. Virol. 2010, 91, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Boon, A.C.; deBeauchamp, J.; Krauss, S.; Rubrum, A.; Webb, A.D.; Webster, R.G.; McElhaney, J.; Webby, R.J. Cross-reactive neutralizing antibodies directed against pandemic H1N1 2009 virus are protective in a highly sensitive DBA/2 mouse influenza model. J. Virol. 2010, 84, 7662–7667. [Google Scholar] [CrossRef] [PubMed]
- Hai, R.; Schmolke, M.; Varga, Z.T.; Manicassamy, B.; Wang, T.T.; Belser, J.A.; Pearce, M.B.; Garcia-Sastre, A.; Tumpey, T.M.; Palese, P. PB1-F2 expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models. J. Virol. 2010, 84, 4442–4450. [Google Scholar] [CrossRef] [PubMed]
- Solorzano, A.; Ye, J.; Perez, D.R. Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu. J. Virol. 2010, 84, 4587–4596. [Google Scholar] [CrossRef] [PubMed]
- Tumpey, T.M.; Basler, C.F.; Aguilar, P.V.; Zeng, H.; Solorzano, A.; Swayne, D.E.; Cox, N.J.; Katz, J.M.; Taubenberger, J.K.; Palese, P.; et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus . Science 2005, 310, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Glaser, L.; Conenello, G.; Paulson, J.; Palese, P. Effective replication of human influenza viruses in mice lacking a major alpha2,6 sialyltransferase. Virus Res. 2007, 126, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, L. The Influenza Viruses; Gard, S., Hallauer, C., Meyer, K.F., Eds.; 1968; Springer: New York, NY, USA. [Google Scholar]
- Itoh, Y.; Shinya, K.; Kiso, M.; Watanabe, T.; Sakoda, Y.; Hatta, M.; Muramoto, Y.; Tamura, D.; Sakai-Tagawa, Y.; Noda, T.; et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses . Nature 2009, 460, 1021–1025. [Google Scholar] [PubMed]
- Quan, F.S.; Steinhauer, D.; Huang, C.; Ross, T.M.; Compans, R.W.; Kang, S.-M. A bivalent influenza VLP vaccine confers complete inhibition of virus replication in lungs. Vaccine 2008, 26, 3352–3361. [Google Scholar] [CrossRef] [PubMed]
- Friede, M.; Muller, S.; Briand, J.P.; Plaue, S.; Fernandes, I.; Frisch, B.; Schuber, F.; Van Regenmortel, M.H. Selective induction of protection against influenza virus infection in mice by a lipid-peptide conjugate delivered in liposomes. Vaccine 1994, 12, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Green, T.D.; Bright, R.A.; Ross, T.M. Induction of heterosubtypic immunity to influenza A virus using a DNA vaccine expressing hemagglutinin-C3d fusion proteins. Vaccine 2003, 21, 902–914. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.; Plaue, S.; Samama, J.P.; Valette, M.; Briand, J.P.; Van Regenmortel, M.H. Antigenic properties and protective capacity of a cyclic peptide corresponding to site A of influenza virus haemagglutinin. Vaccine 1990, 8, 308–314. [Google Scholar] [CrossRef]
- Saelens, X.; Vanlandschoot, P.; Martinet, W.; Maras, M.; Neirynck, S.; Contreras, R.; Fiers, W.; Jou, W.M. Protection of mice against a lethal influenza virus challenge after immunization with yeast-derived secreted influenza virus hemagglutinin. Eur. J. Biochem. 1999, 260, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Simeckova-Rosenberg, J.; Yun, Z.; Wyde, P.R.; Atassi, M.Z. Protection of mice against lethal viral infection by synthetic peptides corresponding to B- and T-cell recognition sites of influenza A hemagglutinin. Vaccine 1995, 13, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, P.G.; Hawke, S.; Bangham, C.R. Protection against lethal influenza virus encephalitis by intranasally primed CD8+ memory T cells. J. Immunol. 1996, 157, 3065–3073. [Google Scholar] [PubMed]
- Wraith, D.C.; Vessey, A.E.; Askonas, B.A. Purified influenza virus nucleoprotein protects mice from lethal infection. J. Gen. Virol. 1987, 68, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Tumpey, T.M.; Morken, T.; Zaki, S.R.; Cox, N.J.; Katz, J.M. A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J. Virol. 1999, 73, 5903–5911. [Google Scholar] [PubMed]
- Hai, R.; Martinez-Sobrido, L.; Fraser, K.A.; Ayllon, J.; Garcia-Sastre, A.; Palese, P. Influenza B virus NS1-truncated mutants: live-attenuated vaccine approach. J. Virol. 2008, 82, 10580–10590. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Watanabe, S.; Ito, T.; Goto, H.; Wells, K.; McGregor, M.; Cooley, A.J.; Kawaoka, Y. Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J. Virol. 1999, 73, 3184–3189. [Google Scholar] [PubMed]
- Gubareva, L.V.; McCullers, J.A.; Bethell, R.C.; Webster, R.G. Characterization of influenza A/HongKong/156/97 (H5N1) virus in a mouse model and protective effect of zanamivir on H5N1 infection in mice. J. Infect. Dis. 1998, 178, 1592–1596. [Google Scholar] [CrossRef] [PubMed]
- Belser, J.A.; Szretter, K.J.; Katz, J.M.; Tumpey, T.M. Use of animal models to understand the pandemic potential of highly pathogenic avian influenza viruses. Adv. Virus Res. 2009, 73, 55–97. [Google Scholar] [PubMed]
- Belser, J.A.; Lu, X.; Maines, T.R.; Smith, C.; Li, Y.; Donis, R.O.; Katz, J.M.; Tumpey, T.M. Pathogenesis of avian influenza (H7) virus infection in mice and ferrets: enhanced virulence of Eurasian H7N7 viruses isolated from humans. J. Virol. 2007, 81, 11139–11147. [Google Scholar] [CrossRef] [PubMed]
- Munster, V.J.; de Wit, E.; van Riel, D.; Beyer, W.E.; Rimmelzwaan, G.F.; Osterhaus, A.D.; Kuiken, T.; Fouchier, R.A. The molecular basis of the pathogenicity of the Dutch highly pathogenic human influenza A H7N7 viruses. J. Infect. Dis. 2007, 196, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Joseph, T.; McAuliffe, J.; Lu, B.; Jin, H.; Kemble, G.; Subbarao, K. Evaluation of replication and pathogenicity of avian influenza a H7 subtype viruses in a mouse model. J. Virol. 2007, 81, 10558–10566. [Google Scholar] [CrossRef] [PubMed]
- Driskell, E.A.; Jones, C.A.; Stallknecht, D.E.; Howerth, E.W.; Tompkins, S.M. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection. Virology 2010, 399, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Belser, J.A.; Wadford, D.A.; Pappas, C.; Gustin, K.M.; Maines, T.R.; Pearce, M.B.; Zeng, H.; Swayne, D.E.; Pantin-Jackwood, M.; Katz, J.M.; et al. Pathogenesis of pandemic influenza A (H1N1) and triple-reassortant swine influenza A (H1) viruses in mice . J. Virol. 2010, 84, 4194–4203. [Google Scholar] [CrossRef] [PubMed]
- Maines, T.R.; Jayaraman, A.; Belser, J.A.; Wadford, D.A.; Pappas, C.; Zeng, H.; Gustin, K.M.; Pearce, M.B.; Viswanathan, K.; Shriver, Z.H.; et al. Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice . Science 2009, 325, 484–487. [Google Scholar] [PubMed]
- Tumpey, T.M.; Garcia-Sastre, A.; Mikulasova, A.; Taubenberger, J.K.; Swayne, D.E.; Palese, P.; Basler, C.F. Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 13849–13854. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.L.; Monto, A.S.; Webster, R.G.; Govorkova, E.A. Virulence may determine the necessary duration and dosage of oseltamivir treatment for highly pathogenic A/Vietnam/1203/04 influenza virus in mice. J. Infect. Dis. 2005, 192, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Boltz, D.A.; Ilyushina, N.A.; Arnold, C.S.; Babu, Y.S.; Webster, R.G.; Govorkova, E.A. Intramuscularly administered neuraminidase inhibitor peramivir is effective against lethal H5N1 influenza virus in mice. Antiviral Res. 2008, 80, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Govorkova, E.A.; Ilyushina, N.A.; McClaren, J.L.; Naipospos, T.S.; Douangngeun, B.; Webster, R.G. Susceptibility of highly pathogenic H5N1 influenza viruses to the neuraminidase inhibitor oseltamivir differs in vitro and in a mouse model. Antimicrob. Agents Chemother. 2009, 53, 3088–3096. [Google Scholar] [CrossRef] [PubMed]
- Ilyushina, N.A.; Hay, A.; Yilmaz, N.; Boon, A.C.; Webster, R.G.; Govorkova, E.A. Oseltamivir-ribavirin combination therapy for highly pathogenic H5N1 influenza virus infection in mice. Antimicrob. Agents Chemother. 2008, 52, 3889–3897. [Google Scholar] [CrossRef] [PubMed]
- Ilyushina, N.A.; Hoffmann, E.; Salomon, R.; Webster, R.G.; Govorkova, E.A. Amantadine-oseltamivir combination therapy for H5N1 influenza virus infection in mice. Antivir. Ther. 2007, 12, 363–370. [Google Scholar] [PubMed]
- Govorkova, E.A.; Leneva, I.A.; Goloubeva, O.G.; Bush, K.; Webster, R.G. Comparison of efficacies of RWJ-270201, zanamivir, and oseltamivir against H5N1, H9N2, and other avian influenza viruses. Antimicrob. Agents Chemother. 2001, 45, 2723–2732. [Google Scholar] [CrossRef] [PubMed]
- Malakhov, M.P.; Aschenbrenner, L.M.; Smee, D.F.; Wandersee, M.K.; Sidwell, R.W.; Gubareva, L.V.; Mishin, V.P.; Hayden, F.G.; Kim, D.H.; Ing, A.; et al. Sialidase Fusion Protein as a Novel Broad-Spectrum Inhibitor of Influenza Virus Infection . Antimicrob. Agents Chemother. 2006, 50, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, N.; Prabakaran, M.; Ho, H.T.; Velumani, S.; Qiang, J.; Goutama, M.; Kwang, J. Monoclonal antibodies against the fusion peptide of hemagglutinin protect mice from lethal influenza A virus H5N1 infection. J. Virol. 2009, 83, 2553–2562. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Zhou, Z.; Lin, R.X.; Yang, J.; Xia, X.Z.; Wang, S.Q. In vitro and in vivo protection against the highly pathogenic H5N1 influenza virus by an antisense phosphorothioate oligonucleotide. Antivir. Ther. 2008, 13, 109–114. [Google Scholar] [PubMed]
- Belser, J.A.; Lu, X.; Szretter, K.J.; Jin, X.; Aschenbrenner, L.M.; Lee, A.; Hawley, S.; Kim do, H.; Malakhov, M.P.; Yu, M.; et al. DAS181, a novel sialidase fusion protein, protects mice from lethal avian influenza H5N1 virus infection . J. Infect. Dis. 2007, 196, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Kiso, M.; Takahashi, K.; Sakai-Tagawa, Y.; Shinya, K.; Sakabe, S.; Le, Q.M.; Ozawa, M.; Furuta, Y.; Kawaoka, Y. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Smee, D.F.; Hurst, B.L.; Wong, M.H.; Bailey, K.W.; Tarbet, E.B.; Morrey, J.D.; Furuta, Y. Effects of the combination of favipiravir (T-705) and oseltamivir on influenza a virus infections in mice. Antimicrob. Agents Chemother. 2010, 54, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Sidwell, R.W.; Barnard, D.L.; Day, C.W.; Smee, D.F.; Bailey, K.W.; Wong, M.H.; Morrey, J.D.; Furuta, Y. Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice. Antimicrob. Agents Chemother. 2007, 51, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Manicassamy, B.; Medina, R.A.; Hai, R.; Tsibane, T.; Stertz, S.; Nistal-Villan, E.; Palese, P.; Basler, C.F.; Garcia-Sastre, A. Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines . PLoS Pathog. 2010, 6, e1000745. [Google Scholar] [CrossRef] [PubMed]
- Castrucci, M.R.; Kawaoka, Y. Biologic importance of neuraminidase stalk length in influenza A virus. J. Virol. 1993, 67, 759–764. [Google Scholar] [PubMed]
- Kobasa, D.; Takada, A.; Shinya, K.; Hatta, M.; Halfmann, P.; Theriault, S.; Suzuki, H.; Nishimura, H.; Mitamura, K.; Sugaya, N.; et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus . Nature 2004, 431, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Maines, T.R.; Lu, X.H.; Erb, S.M.; Edwards, L.; Guarner, J.; Greer, P.W.; Nguyen, D.C.; Szretter, K.J.; Chen, L.M.; Thawatsupha, P.; et al. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals . J. Virol. 2005, 79, 11788–11800. [Google Scholar] [CrossRef] [PubMed]
- Connor, R.J.; Kawaoka, Y.; Webster, R.G.; Paulson, J.C. Receptor Specificity in Human, Avian, and Equine H2 and H3 Influenza Virus Isolates. Virology 1994, 205, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Rogers, G.N.; D'Souza, B.L. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 1989, 173, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Ibricevic, A.; Pekosz, A.; Walter, M.J.; Newby, C.; Battaile, J.T.; Brown, E.G.; Holtzman, M.J.; Brody, S.L. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J. Virol. 2006, 80, 7469–7480. [Google Scholar] [CrossRef] [PubMed]
- Shinya, K.; Ebina, M.; Yamada, S.; Ono, M.; Kasai, N.; Kawaoka, Y. Avian flu: Influenza virus receptors in the human airway. Nature 2006, 440, 435–436. [Google Scholar] [CrossRef] [PubMed]
- van Riel, D.; Munster, V.J.; de Wit, E.; Rimmelzwaan, G.F.; Fouchier, R.A.M.; Osterhaus, A.D.M.E.; Kuiken, T. Human and Avian Influenza Viruses Target Different Cells in the Lower Respiratory Tract of Humans and Other Mammals. Am. J. Pathol. 2007, 171, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Dybing, J.K.; Schultz-Cherry, S.; Swayne, D.E.; Suarez, D.L.; Perdue, M.L. Distinct pathogenesis of hong kong-origin H5N1 viruses in mice compared to that of other highly pathogenic H5 avian influenza viruses. J. Virol. 2000, 74, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Garigliany, M.M.; Habyarimana, A.; Lambrecht, B.; Van de Paar, E.; Cornet, A.; van den Berg, T.; Desmecht, D. Influenza A strain-dependent pathogenesis in fatal H1N1 and H5N1 subtype infections of mice. Emerg Infect. Dis. 2010, 16, 595–603. [Google Scholar] [PubMed]
- Perrone, L.A.; Plowden, J.K.; Garcia-Sastre, A.; Katz, J.M.; Tumpey, T.M. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice . PLoS Pathog. 2008, 4, e1000115. [Google Scholar] [CrossRef] [PubMed]
- Wolk, K.E.; Lazarowski, E.R.; Traylor, Z.P.; Yu, E.N.; Jewell, N.A.; Durbin, R.K.; Durbin, J.E.; Davis, I.C. Influenza A virus inhibits alveolar fluid clearance in BALB/c mice. Am. J. Respir. Crit. Care Med. 2008, 178, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Boltz, D.; Sturm-Ramirez, K.; Shepherd, K.R.; Jiao, Y.; Webster, R.; Smeyne, R.J. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 14063–14068. [Google Scholar] [CrossRef] [PubMed]
- Rowe, T.; Cho, D.S.; Bright, R.A.; Zitzow, L.A.; Katz, J.M. Neurological manifestations of avian influenza viruses in mammals. Avian Dis. 2003, 47, 1122–1126. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Grado, V.H.; Churchill, L.; Harding, J.; Krueger, J.M. The olfactory nerve has a role in the body temperature and brain cytokine responses to influenza virus. Brain Behav. Immun. 2010, 24, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Majde, J.A.; Bohnet, S.G.; Ellis, G.A.; Churchill, L.; Leyva-Grado, V.; Wu, M.; Szentirmai, E.; Rehman, A.; Krueger, J.M. Detection of mouse-adapted human influenza virus in the olfactory bulbs of mice within hours after intranasal infection. J. Neurovirol. 2007, 13, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.T.; Evans, C.A. Hypothermia in mice due to influenza virus infection. Proc. Soc. Exp. Biol. Med. 1961, 108, 776–780. [Google Scholar] [PubMed]
- Hatta, M.; Hatta, Y.; Kim, J.H.; Watanabe, S.; Shinya, K.; Nguyen, T.; Lien, P.S.; Le, Q.M.; Kawaoka, Y. Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice . PLoS Pathog. 2007, 3, e133. [Google Scholar] [CrossRef]
- de Jong, M.D.; Cam, B.V.; Qui, P.T.; Hien, V.M.; Thanh, T.T.; Hue, N.B.; Beld, M.; Phuong, L.T.; Khanh, T.H.; Chau, N.V.V.; et al. Fatal Avian Influenza A (H5N1) in a Child Presenting with Diarrhea Followed by Coma . N. Engl. J. Med. 2005, 352, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Sidwell, R.W.; Huffman, J.H.; Gilbert, J.; Moscon, B.; Pedersen, G.; Burger, R.; Warren, R.P. Utilization of pulse oximetry for the study of the inhibitory effects of antiviral agents on influenza virus in mice. Antimicrob. Agents Chemother. 1992, 36, 473–476. [Google Scholar] [PubMed]
- Sidwell, R.W.; Huffman, J.H.; Barnard, D.L.; Bailey, K.W.; Wong, M.H.; Morrison, A.; Syndergaard, T.; Kim, C.U. Inhibition of influenza virus infections in mice by GS4104, an orally effective influenza virus neuraminidase inhibitor. Antiviral. Res. 1998, 37, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Droebner, K.; Ehrhardt, C.; Poetter, A.; Ludwig, S.; Planz, O. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antiviral Res. 2007, 76, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Davies, W.L.; Grunert, R.R.; Haff, R.F.; McGahen, J.W.; Neumayer, E.M.; Paulshock, M.; Watts, J.C.; Wood, T.R.; Hermann, E.C.; Hoffmann, C.E. Antiviral Activity of 1-Adamantanamine (Amantadine). Science 1964, 144, 862–863. [Google Scholar] [PubMed]
- Grunert, R.R.; McGahen, J.W.; Davies, W.L. The in vivo Antiviral Activity of 1-Adamantanamine (Amantadine). I. Prophylactic and Therapeutic Activity against Influenza Viruses. Virology 1965, 26, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Rabinovich, S. Rimantadine therapy of influenza A infection in mice. Antimicrob. Agents Chemother. 1972, 1, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Stephen, E.L.; Dominik, J.W.; Moe, J.B.; Spertzel, R.O.; Walker, J.S. Treatment of influenza infection of mice by using rimantadine hydrochlorides by the aerosol and intraperitoneal routes. Antimicrob. Agents Chemother. 1975, 8, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Mendel, D.B.; Tai, C.Y.; Escarpe, P.A.; Li, W.; Sidwell, R.W.; Huffman, J.H.; Sweet, C.; Jakeman, K.J.; Merson, J.; Lacy, S.A.; et al. Oral administration of a prodrug of the influenza virus neuraminidase inhibitor GS 4071 protects mice and ferrets against influenza infection . Antimicrob. Agents Chemother. 1998, 42, 640–646. [Google Scholar] [PubMed]
- von Itzstein, M.; Wu, W.Y.; Kok, G.B.; Pegg, M.S.; Dyason, J.C.; Jin, B.; Van Phan, T.; Smythe, M.L.; White, H.F.; Oliver, S.W.; et al. Rational design of potent sialidase-based inhibitors of influenza virus replication . Nature 1993, 363, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Babu, Y.S.; Chand, P.; Bantia, S.; Kotian, P.; Dehghani, A.; El-Kattan, Y.; Lin, T.H.; Hutchison, T.L.; Elliott, A.J.; Parker, C.D.; et al. BCX-1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design . J. Med. Chem. 2000, 43, 3482–3486. [Google Scholar] [CrossRef] [PubMed]
- Bantia, S.; Parker, C.D.; Ananth, S.L.; Horn, L.L.; Andries, K.; Chand, P.; Kotian, P.L.; Dehghani, A.; El-Kattan, Y.; Lin, T.; et al. Comparison of the anti-influenza virus activity of RWJ-270201 with those of oseltamivir and zanamivir . Antimicrob. Agents Chemother. 2001, 45, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Sidwell, R.W.; Smee, D.F.; Huffman, J.H.; Barnard, D.L.; Bailey, K.W.; Morrey, J.D.; Babu, Y.S. In vivo influenza virus-inhibitory effects of the cyclopentane neuraminidase inhibitor RJW-270201. Antimicrob. Agents Chemother. 2001, 45, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Schulman, J.L. Effects of immunity on transmission of influenza: experimental studies. Prog. Med. Virol. 1970, 12, 128–160. [Google Scholar] [PubMed]
- Schulman, J.L. Experimental transmission of influenza virus infection in mice. 3. Differing effects of immunity induced by infection and by inactivated influenza virus vaccine on transmission of infection. J. Exp. Med. 1967, 125, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Schulman, J.L. Experimental transmission of influenza virus infection in mice: IV. Relationship of transmissibility of different strains of virus and recovery of airborne virus in the environment of infector mice. J. Exp. Med. 1967, 125, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Schulman, J.L. The use of an animal model to study transmission of influenza virus infection. Am. J. Public Health Nations Health 1968, 58, 2092–2096. [Google Scholar] [PubMed]
- Schulman, J.L.; Kilbourne, E.D. Airborne transmission of influenza virus infection in mice. Nature 1962, 195, 1129–1130. [Google Scholar] [CrossRef] [PubMed]
- Schulman, J.L.; Kilbourne, E.D. Experimental Transmission of Influenza Virus Infection in Mice. II. Some Factors Affecting the Incidence of Transmitted Infection. J. Exp. Med. 1963, 118, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Schulman, J.L.; Kilbourne, E.D. Experimental transmission of influenza virus infection in mice: I. The period of transmissibility. J. Exp. Med. 1963, 118, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.C.; Mubareka, S.; Tumpey, T.M.; García-Sastre, A.; Palese, P. The guinea pig as a transmission model for human influenza viruses. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 9988–9992. [Google Scholar] [CrossRef] [PubMed]
- Francis, T.; Magill, T.P. Immunological Studies with the Virus of Influenza. J. Exp. Med. 1935, 62, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Francis, T.; Stuart-Harris, C.H. Studies on the Nasal Histology of Epidemic Influenza Virus Infection in the Ferret : Iii. Histological and Serological Observations on Ferrets Receiving Repeated Inoculations of Epidemic Infuenza Virus. J. Exp. Med. 1938, 68, 813–830. [Google Scholar] [CrossRef] [PubMed]
- Francis, T.; Stuart-Harris, C.H. Studies on the Nasal Histology of Epidemic Influenza Virus Infection in the Ferret : I. The Development and Repair of the Nasal Lesion. J. Exp. Med. 1938, 68, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Shope, R.E. The Infection of Ferrets with Swine Influenza Virus. J. Exp. Med. 1934, 60, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Shope, R.E. Swine Influenza : V. Studies on Contagion. J. Exp. Med. 1934, 59, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Shope, R.E. The Infection of Mice with Swine Influenza Virus. J. Exp. Med. 1935, 62, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.; Andrewes, C.H.; Laidlaw, P.P. A virus obtained from influenza patients. Lancet 1933, 2, 66–68. [Google Scholar] [CrossRef]
- Buchman, C.A.; Swarts, J.D.; Seroky, J.T.; Panagiotou, N.; Hayden, F.; Doyle, W.J. Otologic and systemic manifestations of experimental influenza A virus infection in the ferret. Otolaryngol. Head Neck Surg. 1995, 112, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Mubareka, S.; Lowen, A.C.; Steel, J.; Coates, A.L.; Garcia-Sastre, A.; Palese, P. Transmission of Influenza Virus via Aerosols and Fomites in the Guinea Pig Model. J. Infect. Dis. 2009, 199, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Sweet, C.; Bird, R.A.; Coates, D.M.; Overton, H.A.; Smith, H. Recent H1N1 viruses (A/USSR/90/77, A/Fiji/15899/83, A/Firenze/13/83) replicate poorly in ferret bronchial epithelium. Brief report. Arch. Virol. 1985, 85, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Baz, M.; Abed, Y.; Simon, P.; Hamelin, M.E.; Boivin, G. Effect of the Neuraminidase Mutation H274Y Conferring Resistance to Oseltamivir on the Replicative Capacity and Virulence of Old and Recent Human Influenza A(H1N1) Viruses. J. Infect. Dis. 2010, 201, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Munster, V.J.; de Wit, E.; van den Brand, J.M.; Herfst, S.; Schrauwen, E.J.; Bestebroer, T.M.; van de Vijver, D.; Boucher, C.A.; Koopmans, M.; Rimmelzwaan, G.F.; et al. Pathogenesis and Transmission of Swine-Origin 2009 A(H1N1) Influenza Virus in Ferrets . Science 2009, 325, 481–483. [Google Scholar] [PubMed]
- Herlocher, M.L.; Elias, S.; Truscon, R.; Harrison, S.; Mindell, D.; Simon, C.; Monto, A.S. Ferrets as a transmission model for influenza: sequence changes in HA1 of type A (H3N2) virus. J. Infect. Dis. 2001, 184, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.; Van Hoeven, N.; Chen, L.M.; Maines, T.R.; Cox, N.J.; Katz, J.M.; Donis, R.O. Reassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessment. J. Virol. 2009, 83, 8131–8140. [Google Scholar] [CrossRef] [PubMed]
- Round, E.M.; Stebbing, N. Antiviral effects of single-stranded polynucleotide inhibitors of the influenza virion-associated transcriptase against influenza virus infection of hamsters and ferrets. Antiviral. Res. 1981, 1, 237–248. [Google Scholar] [CrossRef]
- Sweet, C.; Hayden, F.G.; Jakeman, K.J.; Grambas, S.; Hay, A.J. Virulence of rimantadine-resistant human influenza A (H3N2) viruses in ferrets. J Infect Dis 1991, 164, 969–972. [Google Scholar] [PubMed]
- Boltz, D.A.; Rehg, J.E.; McClaren, J.; Webster, R.G.; Govorkova, E.A. Oseltamivir prophylactic regimens prevent H5N1 influenza morbidity and mortality in a ferret model. J. Infect. Dis. 2008, 197, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Cameron, C.M.; Cameron, M.J.; Bermejo-Martin, J.F.; Ran, L.; Xu, L.; Turner, P.V.; Ran, R.; Danesh, A.; Fang, Y.; Chan, P.K.; et al. Gene expression analysis of host innate immune responses during Lethal H5N1 infection in ferrets . J. Virol. 2008, 82, 11308–11317. [Google Scholar] [CrossRef] [PubMed]
- Zitzow, L.A.; Rowe, T.; Morken, T.; Shieh, W.J.; Zaki, S.; Katz, J.M. Pathogenesis of avian influenza A (H5N1) viruses in ferrets. J. Virol. 2002, 76, 4420–4429. [Google Scholar] [CrossRef] [PubMed]
- Jakeman, K.J.; Tisdale, M.; Russell, S.; Leone, A.; Sweet, C. Efficacy of 2'-deoxy-2'-fluororibosides against influenza A and B viruses in ferrets. Antimicrob. Agents Chemother. 1994, 38, 1864–1867. [Google Scholar] [PubMed]
- Kim, Y.H.; Kim, H.S.; Cho, S.H.; Seo, S.H. Influenza B virus causes milder pathogenesis and weaker inflammatory responses in ferrets than influenza A virus. Viral Immunol. 2009, 22, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Mishin, V.P.; Hayden, F.G.; Gubareva, L.V. Susceptibilities of antiviral-resistant influenza viruses to novel neuraminidase inhibitors. Antimicrob. Agents Chemother. 2005, 49, 4515–4520. [Google Scholar] [CrossRef] [PubMed]
- Belser, J.A.; Blixt, O.; Chen, L.M.; Pappas, C.; Maines, T.R.; Van Hoeven, N.; Donis, R.; Busch, J.; McBride, R.; Paulson, J.C.; et al. Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility . Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 7558–7563. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Sorrell, E.M.; Song, H.; Hossain, M.J.; Ramirez-Nieto, G.; Monne, I.; Stevens, J.; Cattoli, G.; Capua, I.; Chen, L.M.; et al. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential . PLoS One 2008, 3, e2923. [Google Scholar] [CrossRef] [PubMed]
- Francis Jr., T. Transmission of Influenza by a Filterable Virus . Science 1934, 80, 457–459. [Google Scholar] [PubMed]
- Call, S.A.; Vollenweider, M.A.; Hornung, C.A.; Simel, D.L.; McKinney, W.P. Does this patient have influenza? JAMA 2005, 293, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Eccles, R. An explanation for the seasonality of acute upper respiratory tract viral infections. Acta Otolaryngol. 2002, 122, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Hayden, F.G.; Gubareva, L.V.; Monto, A.S.; Klein, T.C.; Elliot, M.J.; Hammond, J.M.; Sharp, S.J.; Ossi, M.J. Inhaled zanamivir for the prevention of influenza in families. Zanamivir Family Study Group. N. Engl. J. Med. 2000, 343, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.; Lamirande, E.W.; Subbarao, K. The ferret model for influenza . Curr. Protoc. Microbiol. 2009, 13, 15G.2.1–15G.2.29. [Google Scholar]
- Maher, J.A.; DeStefano, J. The ferret: an animal model to study influenza virus. Lab Anim. (NY) 2004, 33, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Belshe, R.B.; Smith, M.H.; Hall, C.B.; Betts, R.; Hay, A.J. Genetic basis of resistance to rimantadine emerging during treatment of influenza virus infection. J. Virol. 1988, 62, 1508–1512. [Google Scholar] [PubMed]
- Tumpey, T.M.; Maines, T.R.; Van Hoeven, N.; Glaser, L.; Solorzano, A.; Pappas, C.; Cox, N.J.; Swayne, D.E.; Palese, P.; Katz, J.M.; et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission . Science 2007, 315, 655–659. [Google Scholar] [CrossRef] [PubMed]
- van Riel, D.; Munster, V.J.; de Wit, E.; Rimmelzwaan, G.F.; Fouchier, R.A.M.; Osterhaus, A.D.M.E.; Kuiken, T. H5N1 Virus Attachment to Lower Respiratory Tract. Science 2006, 312, 399. [Google Scholar] [CrossRef] [PubMed]
- van Riel, D.; Munster, V.J.; de Wit, E.; Rimmelzwaan, G.F.; Fouchier, R.A.; Osterhaus, A.D.; Kuiken, T. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am. J. Pathol. 2007, 171, 1215–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govorkova, E.A.; Ilyushina, N.A.; Boltz, D.A.; Douglas, A.; Yilmaz, N.; Webster, R.G. Efficacy of oseltamivir therapy in ferrets inoculated with different clades of H5N1 influenza virus. Antimicrob. Agents Chemother. 2007, 51, 1414–1424. [Google Scholar] [CrossRef] [PubMed]
- Yun, N.E.; Linde, N.S.; Zacks, M.A.; Barr, I.G.; Hurt, A.C.; Smith, J.N.; Dziuba, N.; Holbrook, M.R.; Zhang, L.; Kilpatrick, J.M.; et al. Injectable peramivir mitigates disease and promotes survival in ferrets and mice infected with the highly virulent influenza virus, A/Vietnam/1203/04 (H5N1) . Virology 2008, 374, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Roche Laboratories Inc. Tamiflu (Oseltamivir Phosphate) Capsules and for Oral Suspension, 2008 . Available online: http://www.fda.gov/downloads/Drugs/DrugSafety/InformationbyDrugClass/UCM147992.pdf (accessed on 22 July 2010).
- Li, W.; Escarpe, P.A.; Eisenberg, E.J.; Cundy, K.C.; Sweet, C.; Jakeman, K.J.; Merson, J.; Lew, W.; Williams, M.; Zhang, L.; et al. Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS 4071 . Antimicrob. Agents Chemother. 1998, 42, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Cochran, K.W.; Maassab, H.F.; Tsunoda, A.; Berlin, B.S. Studies on the antiviral activity of amantadine hydrochloride. Ann. N.Y. Acad. Sci. 1965, 130, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Squires, S.L. The evaluation of compounds against influenza viruses . Ann. N.Y. Acad. Sci. 1970, 173, 239–248. [Google Scholar] [CrossRef]
- Fenton, R.J.; Bessell, C.; Spilling, C.R.; Potter, C.W. The effects of peroral or local aerosol administration of 1-aminoadamantane hydrochloride (amantadine hydrochloride) on influenza infections of the ferret. J. Antimicrob. Chemother. 1977, 3, 463–472. [Google Scholar] [CrossRef]
- Herlocher, M.L.; Truscon, R.; Fenton, R.; Klimov, A.; Elias, S.; Ohmit, S.E.; Monto, A.S. Assessment of development of resistance to antivirals in the ferret model of influenza virus infection. J. Infect. Dis. 2003, 188, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Mendelman, P.M.; Rappaport, R.; Cho, I.; Block, S.; Gruber, W.; August, M.; Dawson, D.; Cordova, J.; Kemble, G.; Mahmood, K.; et al. Live attenuated influenza vaccine induces cross-reactive antibody responses in children against an A/Fujian/411/2002-like H3N2 antigenic variant strain . Pediatr. Infect. Dis. J. 2004, 23, 1053–1055. [Google Scholar] [CrossRef] [PubMed]
- Maines, T.R.; Chen, L.M.; Matsuoka, Y.; Chen, H.; Rowe, T.; Ortin, J.; Falcon, A.; Nguyen, T.H.; Mai le, Q.; Sedyaningsih, E.R.; et al. Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model . Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 12121–12126. [Google Scholar] [CrossRef] [PubMed]
- Sorrell, E.M.; Wan, H.; Araya, Y.; Song, H.; Perez, D.R. Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 7565–7570. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.L.; Herlocher, L.M.; Hoffmann, E.; Matrosovich, M.N.; Monto, A.S.; Webster, R.G.; Govorkova, E.A. Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrob. Agents Chemother. 2005, 49, 4075–4084. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.C.; Mubareka, S.; Steel, J.; Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007, 3, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.C.; Steel, J.; Mubareka, S.; Carnero, E.; Garcia-Sastre, A.; Palese, P. Blocking inter-host transmission of influenza virus by vaccination in the guinea pig model. J. Virol. 2009, 83, 2803–2818. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.C.; Steel, J.; Mubareka, S.; Palese, P. High temperature (30°C) blocks aerosol but not contact transmission of influenza virus. J. Virol. 2008, 82, 5650–5652. [Google Scholar] [CrossRef] [PubMed]
- Phair, J.P.; Kauffman, C.A.; Jennings, R.; Potter, C.W. Influenza virus infection of the guinea pig: immune response and resistance. Med. Microbiol. Immunol. 1979, 165, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Chong, K.T. Histopathology and growth kinetics of influenza viruses (H1N1 and H3N2) in the upper and lower airways of guinea pigs. J. Gen. Virol. 2009, 90, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Van Hoeven, N.; Belser, J.A.; Szretter, K.J.; Zeng, H.; Staeheli, P.; Swayne, D.E.; Katz, J.M.; Tumpey, T.M. Pathogenesis of the 1918 pandemic and H5N1 influenza virus infection in a guinea pig model: The antiviral potential of exogenous alpha-interferon to reduce virus shedding. J. Virol. 2009, 83, 2851–2861. [Google Scholar] [CrossRef] [PubMed]
- Steel, J.; Staeheli, P.; Mubareka, S.; Garcia-Sastre, A.; Palese, P.; Lowen, A.C. Transmission of pandemic H1N1 influenza virus and impact of prior exposure to seasonal strains or interferon treatment. J. Virol. 2010, 84, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.K.; Lipatov, A.S.; Swayne, D.E. Bronchointerstitial Pneumonia in Guinea Pigs Following Inoculation with H5N1 High Pathogenicity Avian Influenza Virus. Vet. Pathol. 2009, 46, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Steel, J.; Lowen, A.C.; Mubareka, S.; Palese, P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N . PLoS Pathog. 2009, 5, e1000252. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, Y.; Shinya, K.; Deng, G.; Jiang, Y.; Li, Z.; Guan, Y.; Tian, G.; Li, Y.; Shi, J.; et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host . PLoS Pathog. 2009, 5, e1000709. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, N.M.; Lowen, A.C.; Palese, P. Oseltamivir-resistant influenza A viruses are transmitted efficiently among guinea pigs by direct contact but not by aerosol. J. Virol. 2008, 82, 10052–10058. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.C.; Palese, P. Unpublished work . 2008. [Google Scholar] [CrossRef] [PubMed]
- Azoulay-Dupuis, E.; Lambre, C.R.; Soler, P.; Moreau, J.; Thibon, M. Lung alterations in guinea-pigs infected with influenza virus. J. Comp. Path. 1984, 94, 273–283. [Google Scholar] [CrossRef]
- Steel, J.; Lowen, A.C.; Palese, P. Unpublished work . 2009. [Google Scholar]
- Ottolini, M.G.; Blanco, J.C.; Eichelberger, M.C.; Porter, D.D.; Pletneva, L.; Richardson, J.Y.; Prince, G.A. The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis. J. Gen. Virol. 2005, 86, 2823–2830. [Google Scholar] [CrossRef] [PubMed]
- Eichelberger, M.C.; Prince, G.A.; Ottolini, M.G. Influenza-induced tachypnea is prevented in immune cotton rats, but cannot be treated with an anti-inflammatory steroid or a neuraminidase inhibitor. Virology 2004, 322, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Ottolini, M.; Blanco, J.; Porter, D.; Peterson, L.; Curtis, S.; Prince, G. Combination anti-inflammatory and antiviral therapy of influenza in a cotton rat model. Pediatr. Pulmonol. 2003, 36, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Straight, T.M.; Ottolini, M.G.; Prince, G.A.; Eichelberger, M.C. Antibody contributes to heterosubtypic protection against influenza A-induced tachypnea in cotton rats. Virol. J. 2008, 5, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Straight, T.M.; Ottolini, M.G.; Prince, G.A.; Eichelberger, M.C. Evidence of a cross-protective immune response to influenza A in the cotton rat model. Vaccine 2006, 24, 6264–6271. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.M.; Parodi, A.S. Use of hamster (Cricetus auratus) for the detection of influenza virus in throat washings. Proc. Soc. Exp. Biol. Med. 1942, 49, 105–108. [Google Scholar]
- Ali, M.J.; Teh, C.Z.; Jennings, R.; Potter, C.W. Transmissibility of influenza viruses in hamsters. Arch. Virol. 1982, 72, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Jennings, R.; Potter, C.W.; McLaren, C. Effect of preinfection and preimmunization on the serum antibody response to subsequent immunization with heterotypic influenza vaccines. J. Immunol. 1974, 113, 1834–1843. [Google Scholar] [PubMed]
- Potter, C.W.; Jennings, R. The hamster as a model system for the study of influenza vaccines. Postgrad. Med. J. 1976, 52, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.; Chanock, V.; Chanock, R.M. Temperature-sensitive mutants of influenza virus. I. Behavior in tissue culture and in experimental animals. J. Infect. Dis. 1971, 123, 145–157. [Google Scholar] [PubMed]
- Abou-Donia, H.; Jennings, R.; Potter, C.W. Growth of influenza A viruses in hamsters. Arch. Virol. 1980, 65, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Heath, A.W.; Addison, C.; Ali, M.; Teale, D.; Potter, C.W. In vivo and in vitro hamster models in the assessment of virulence of recombinant influenza viruses. Antiviral Res. 1983, 3, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Reeve, P. Growth of some attenuated influenza A viruses in hamsters. Med. Microbiol. Immunol. 1978, 166, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Reeve, P.; Pibermann, M.; Gerendas, B. Studies with some influenza B viruses in cell cultures, hamsters and hamster tracheal organ cultures. Med. Microbiol. Immunol. 1981, 169, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Baas, T.; Baskin, C.R.; Diamond, D.L.; Garcia-Sastre, A.; Bielefeldt-Ohmann, H.; Tumpey, T.M.; Thomas, M.J.; Carter, V.S.; Teal, T.H.; Van Hoeven, N.; et al. Integrated molecular signature of disease: analysis of influenza virus-infected macaques through functional genomics and proteomics . J. Virol. 2006, 80, 10813–10828. [Google Scholar] [CrossRef] [PubMed]
- Baskin, C.R.; Bielefeldt-Ohmann, H.; Garcia-Sastre, A.; Tumpey, T.M.; Van Hoeven, N.; Carter, V.S.; Thomas, M.J.; Proll, S.; Solorzano, A.; Billharz, R.; et al. Functional genomic and serological analysis of the protective immune response resulting from vaccination of macaques with an NS1-truncated influenza virus . J. Virol. 2007, 81, 11817–11827. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.D.; Matzinger, S.R.; Genesca, M.; Fritts, L.; Colon, R.; McChesney, M.B.; Miller, C.J. Interferon-induced expression of MxA in the respiratory tract of rhesus macaques is suppressed by influenza virus replication. J. Immunol. 2008, 180, 2385–2395. [Google Scholar] [PubMed]
- Fan, J.; Liang, X.; Horton, M.S.; Perry, H.C.; Citron, M.P.; Heidecker, G.J.; Fu, T.M.; Joyce, J.; Przysiecki, C.T.; Keller, P.M.; et al. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys . Vaccine 2004, 22, 2993–3003. [Google Scholar] [CrossRef] [PubMed]
- Kobasa, D.; Jones, S.M.; Shinya, K.; Kash, J.C.; Copps, J.; Ebihara, H.; Hatta, Y.; Kim, J.H.; Halfmann, P.; Hatta, M.; et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus . Nature 2007, 445, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Saslaw, S.; Wilson, H.E.; Doan, C.A.; Woolpert, O.C.; Schwab, J.L. Reactions of Monkeys to Experimentally Induced Influenza Virus a Infection : An Analysis of the Relative Roles of Humoral and Cellular Immunity under Conditions of Optimal or Deficient Nutrition. J. Exp. Med. 1946, 84, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Cilloniz, C.; Shinya, K.; Peng, X.; Korth, M.J.; Proll, S.C.; Aicher, L.D.; Carter, V.S.; Chang, J.H.; Kobasa, D.; Feldmann, F.; et al. Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes . PLoS Pathog. 2009, 5, e1000604. [Google Scholar] [CrossRef] [PubMed]
- Rimmelzwaan, G.; Baars, M.; van Amerongen, G.; van Beek, R.; Osterhaus, A.D.M.E. A single dose of an ISCOM influenza vaccine induces long-lasting protective immunity against homologous challenge infection but fails to protect Cynomolgus macaques against distant drift variants of influenza A (H3N2) viruses. Vaccine 2002, 20, 158–163. [Google Scholar] [CrossRef]
- Fan, S.; Gao, Y.; Shinya, K.; Li, C.K.; Li, Y.; Shi, J.; Jiang, Y.; Suo, Y.; Tong, T.; Zhong, G.; et al. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates . PLoS Pathog. 2009, 5, e1000409. [Google Scholar] [CrossRef] [PubMed]
- Kreijtz, J.H.; Bodewes, R.; van Amerongen, G.; Kuiken, T.; Fouchier, R.A.; Osterhaus, A.D.; Rimmelzwaan, G.F. Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice. Vaccine 2007, 25, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Laddy, D.J.; Yan, J.; Khan, A.S.; Andersen, H.; Cohn, A.; Greenhouse, J.; Lewis, M.; Manischewitz, J.; King, L.R.; Golding, H.; et al. Electroporation of synthetic DNA antigens offers protection in nonhuman primates challenged with highly pathogenic avian influenza virus . J. Virol. 2009, 83, 4624–4630. [Google Scholar] [CrossRef] [PubMed]
- Rimmelzwaan, G.F.; Kuiken, T.; van Amerongen, G.; Bestebroer, T.M.; Fouchier, R.A.; Osterhaus, A.D. Pathogenesis of influenza A (H5N1) virus infection in a primate model. J. Virol. 2001, 75, 6687–6691. [Google Scholar] [CrossRef] [PubMed]
- Rimmelzwaan, G.F.; Kuiken, T.; van Amerongen, G.; Bestebroer, T.M.; Fouchier, R.A.; Osterhaus, A.D. A primate model to study the pathogenesis of influenza A (H5N1) virus infection. Avian Dis. 2003, 47, 931–933. [Google Scholar] [CrossRef] [PubMed]
- Stittelaar, K.J.; Tisdale, M.; van Amerongen, G.; van Lavieren, R.F.; Pistoor, F.; Simon, J.; Osterhaus, A.D. Evaluation of intravenous zanamivir against experimental influenza A (H5N1) virus infection in cynomolgus macaques. Antiviral Res. 2008, 80, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Ferko, B.; Stasakova, J.; Romanova, J.; Kittel, C.; Sereinig, S.; Katinger, H.; Egorov, A. Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes. J. Virol. 2004, 78, 13037–13045. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee MDPI, Basel, Switzerland This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Share and Cite
Bouvier, N.M.; Lowen, A.C. Animal Models for Influenza Virus Pathogenesis and Transmission. Viruses 2010, 2, 1530-1563. https://doi.org/10.3390/v20801530
Bouvier NM, Lowen AC. Animal Models for Influenza Virus Pathogenesis and Transmission. Viruses. 2010; 2(8):1530-1563. https://doi.org/10.3390/v20801530
Chicago/Turabian StyleBouvier, Nicole M., and Anice C. Lowen. 2010. "Animal Models for Influenza Virus Pathogenesis and Transmission" Viruses 2, no. 8: 1530-1563. https://doi.org/10.3390/v20801530
APA StyleBouvier, N. M., & Lowen, A. C. (2010). Animal Models for Influenza Virus Pathogenesis and Transmission. Viruses, 2(8), 1530-1563. https://doi.org/10.3390/v20801530