The Current Status of Clinical Research Involving Microneedles: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection
- Studies not related to MNs.
- Studies related to MNs, but not to therapeutics (e.g., studies on the manufacturing and production of MNs and studies involving disease diagnosis using MNs).
- Nonclinical studies (e.g., studies of preclinical trials including animal studies, reviews, protocols, letters to editors, or expert opinions).
2.3. Data Extraction and Analysis
2.4. Risk of Bias Assessment
3. Results
3.1. Effectiveness: Outcomes of the Included Studies
3.1.1. Skin Diseases and Skin Care (n = 19)
Scar (n = 4)
Facial Wrinkle (n = 4)
Skin Care (n = 4)
Alopecia (n = 2)
Actinic Keratosis (n = 2)
Other Skin Type Studies (n = 3)
3.1.2. Vaccine Delivery (n = 11)
3.1.3. Insulin Delivery (n = 5)
3.1.4. Others (n = 3)
3.2. Safety: Adverse Events and Microneedle-Induced Pain
3.2.1. Adverse Events
3.2.2. Microneedle-Induced Pain
3.3. Qualitative Assessments
Risk of Bias in Randomized Controlled Trials (n = 31)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nguyen, T.T.; Park, J.H. Human studies with microneedles for evaluation of their efficacy and safety. Expert Opin. Drug Deliv. 2018, 15, 235–245. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Singh, T.R.R.; Morrow, D.I.; Woolfson, A.D. Microneedle-Mediated Transdermal and Intradermal Drug Delivery; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hanas, R. Reducing injection pain in children and adolescents with diabetes: A review of indwelling catheters. Pediatr. Diabetes 2004, 5, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Nir, Y.; Paz, A.; Sabo, E.; Potasman, I. Fear of injections in young adults: Prevalence and associations. Am. J. Trop. Med. Hyg. 2003, 68, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.S.; Denson, D.D.; Burris, B.A.; Prausnitz, M.R. Effect of microneedle design on pain in human subjects. Clin. J. Pain 2008, 24, 585. [Google Scholar] [CrossRef] [Green Version]
- Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R Rep. 2016, 104, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Tuan-Mahmood, T.M.; McCrudden, M.T.; Torrisi, B.M.; McAlister, E.; Garland, M.J.; Singh, T.R.; Donnelly, R.F. Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci. 2013, 50, 623–637. [Google Scholar] [CrossRef] [Green Version]
- Prausnitz, M.R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 2004, 56, 581–587. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Morrow, D.I.; McCarron, P.A.; David Woolfson, A.; Morrissey, A.; Juzenas, P.; Juzeniene, A.; Iani, V.; McCarthy, H.O.; Moan, J. Microneedle arrays permit enhanced intradermal delivery of a preformed photosensitizer. Photochem. Photobiol. 2009, 85, 195–204. [Google Scholar] [CrossRef]
- McGrath, M.G.; Vrdoljak, A.; O’Mahony, C.; Oliveira, J.C.; Moore, A.C.; Crean, A.M. Determination of parameters for successful spray coating of silicon microneedle arrays. Int. J. Pharm. 2011, 415, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Choi, S.-O.; Kamath, R.; Yoon, Y.-K.; Allen, M.G.; Prausnitz, M.R. Polymer particle-based micromolding to fabricate novel microstructures. Biomed. Microdevices 2007, 9, 223–234. [Google Scholar] [CrossRef]
- Roxhed, N.; Griss, P. Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery. Biomed. Microdevices 2008, 10, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Migdadi, E.M.; Courtenay, A.J.; Tekko, I.A.; McCrudden, M.T.; Kearney, M.-C.; McAlister, E.; McCarthy, H.O.; Donnelly, R.F. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release 2018, 285, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.L.; Gong, L.; Guo, M.; Liu, T.; Shi, A.; Zong, H.; Xu, X.; Chen, H.; Gao, X.; Li, Y. Randomized trial of electrodynamic microneedle combined with 5% minoxidil topical solution for the treatment of Chinese male Androgenetic alopecia. J. Cosmet. 2017. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, H.Y.; Jung, M.; Choi, E.H. Automicroneedle therapy system combined with topical tretinoin shows better regenerative effects compared with each individual treatment. Clin. Exp. Dermatol. 2013, 38, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Cho, G.R.; Lee, K.S. Review Articles: Skin Effect and Mechanism Using Microneedle Therapy System (MTS). Korean Soc. Skin Barrier Res. 2013, 15, 57–64. [Google Scholar]
- Dogra, S.; Yadav, S.; Sarangal, R. Microneedling for acne scars in A sian skin type: An effective low cost treatment modality. J. Cosmet. Dermatol. 2014, 13, 180–187. [Google Scholar] [CrossRef]
- Doddaballapur, S. Microneedling with dermaroller. J. Cutan. Aesthetic Surg. 2009, 2, 110–111. [Google Scholar] [CrossRef]
- McCrudden, M.T.; McAlister, E.; Courtenay, A.J.; González-Vázquez, P.; Raj Singh, T.R.; Donnelly, R.F. Microneedle applications in improving skin appearance. Exp. Dermatol. 2015, 24, 561–566. [Google Scholar] [CrossRef]
- Kim, M.; Shin, J.Y.; Lee, J.; Kim, J.Y.; Oh, S.H. Efficacy of fractional microneedle radiofrequency device in the treatment of primary axillary hyperhidrosis: A pilot study. Dermatology 2013, 227, 243–249. [Google Scholar] [CrossRef]
- Elsaie, M.L.; Choudhary, S.; Leiva, A.; Nouri, K. Nonablative radiofrequency for skin rejuvenation. Derm. Surg. 2010, 36, 577–589. [Google Scholar] [CrossRef]
- Lolis, M.S.; Goldberg, D.J. Radiofrequency in cosmetic dermatology: A review. Derm. Surg. 2012, 38, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Fatemi Naeini, F.; Abtahi-Naeini, B.; Pourazizi, M.; Nilforoushzadeh, M.A.; Mirmohammadkhani, M. Fractionated microneedle radiofrequency for treatment of primary axillary hyperhidrosis: A sham control study. Australas. J. Dermatol. 2015, 56, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Lee, E.G.; Yoon, M.S.; Lee, H.J. The efficacy and safety of combined microneedle fractional radiofrequency and sublative fractional radiofrequency for acne scars in Asian skin. J. Cosmet. Dermatol. 2016, 15, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.R.; Lin, A.S.; Edelhauser, H.F.; Prausnitz, M.R. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm. Res. 2011, 28, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, P.; Oosterhuis-Kafeja, F.; Van der Wielen, M.; Almagor, Y.; Sharon, O.; Levin, Y.J.V. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 2009, 27, 454–459. [Google Scholar] [CrossRef] [PubMed]
- McVey, E.; Hirsch, L.; Sutter, D.E.; Kapitza, C.; Dellweg, S.; Clair, J.; Rebrin, K.; Judge, K.; Pettis, R.J. Pharmacokinetics and postprandial glycemic excursions following insulin lispro delivered by intradermal microneedle or subcutaneous infusion. J. Diabetes Sci. Technol. 2012, 6, 743–754. [Google Scholar] [CrossRef] [Green Version]
- Gupta, J.; Felner, E.I.; Prausnitz, M.R. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol. Ther. 2009, 11, 329–337. [Google Scholar] [CrossRef]
- Barry, B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001, 14, 101–114. [Google Scholar] [CrossRef]
- Arya, J.; Henry, S.; Kalluri, H.; McAllister, D.V.; Pewin, W.P.; Prausnitz, M.R. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials 2017, 128, 1–7. [Google Scholar] [CrossRef]
- Daddona, P.E.; Matriano, J.A.; Mandema, J.; Maa, Y.F. Parathyroid hormone (1-34)-coated microneedle patch system: Clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm. Res. 2011, 28, 159–165. [Google Scholar] [CrossRef]
- Hirobe, S.; Azukizawa, H.; Hanafusa, T.; Matsuo, K.; Quan, Y.-S.; Kamiyama, F.; Katayama, I.; Okada, N.; Nakagawa, S. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 2015, 57, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Li, W.; Zhou, X.; Yang, F.; Qian, Z. Microneedles-based transdermal drug delivery systems: A review. J. Biomed. Nanotechnol. 2017, 13, 1581–1597. [Google Scholar] [CrossRef] [PubMed]
- van der Maaden, K.; Jiskoot, W.; Bouwstra, J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J. Control. Release 2012, 161, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Vrdoljak, A. Review of recent literature on microneedle vaccine delivery technologies. Vaccine Dev. Ther. 2013, 2013, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Das, D.B.; Rielly, C.D. Potential of microneedle-assisted micro-particle delivery by gene guns: A review. Drug Deliv. 2014, 21, 571–587. [Google Scholar] [CrossRef] [Green Version]
- Prausnitz, M.R. Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 177–200. [Google Scholar] [CrossRef]
- Akhtar, N. An innovative approach to transdermal delivery: A review. Int. J. Pharm. Pharm. Sci. 2014, 6, 18–25. [Google Scholar] [CrossRef]
- Tasca, F.; Tortolini, C.; Bollella, P.; Antiochia, R. Microneedles-based electrochemical devices for transdermal biosensing: A review. Curr. Opin. Electrochem. 2019. [Google Scholar] [CrossRef]
- Han, T.; Das, D.B. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. Eur. J. Pharm. Biopharm. 2015, 89, 312–328. [Google Scholar] [CrossRef] [Green Version]
- Bariya, S.H.; Gohel, M.C.; Mehta, T.A.; Sharma, O.P. Microneedles: An emerging transdermal drug delivery system. J. Pharm. Pharm. 2012, 64, 11–29. [Google Scholar] [CrossRef]
- Cheung, K.; Das, D.B. Microneedles for drug delivery: Trends and progress. Drug Deliv. 2016, 23, 2338–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujahid, N.; Shareef, F.; Maymone, M.B.; Vashi, N.A. Microneedling as a Treatment for Acne Scarring: A Systematic Review. Derm. Surg. 2020, 46, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Savarese, D.M. Common Terminology Criteria for Adverse Events; US Department of Health and Human Services: Washington, DC, USA, 2017.
- Higgins, J.P.; Sterne, J.A.; Savovic, J.; Page, M.J.; Hróbjartsson, A.; Boutron, I.; Reeves, B.; Eldridge, S. A revised tool for assessing risk of bias in randomized trials. Cochrane Database Syst. Rev. 2016, 10 (Suppl. 1), 29–31. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.K.; Jang, K.J.; Li, S.H.; An, S.K.; Choe, T.B. The Effect of Microneedle Therapy System and Alpha Hydroxy Acid Peeling on the Pores and the Hyperpigmentation of Men’s Skin. Kor. J. Aesthet Cosmetol. 2009, 7, 69–79. [Google Scholar]
- Yoo, K.H.; Lee, J.W.; Li, K.; Kim, B.J.; Kim, M.N. Photodynamic therapy with methyl 5-aminolevulinate acid might be ineffective in recalcitrant alopecia totalis regardless of using a microneedle roller to increase skin penetration. Derm. Surg. 2010, 36, 618–622. [Google Scholar] [CrossRef]
- Choi, Y.E. The Effect of Microneedle Therapy System and High Frequency to Improve the Facial Skin Conditions for Mid-Aged Women. Master’s Thesis, Sungshin Women’s University, Seoul, Korea, 2011; pp. 1–93. [Google Scholar]
- Khater, M.H.; Khattab, F.M.; Abdelhaleem, M.R. Treatment of striae distensae with needling therapy versus CO2 fractional laser. J. Cosmet. Laser Ther. 2016, 18, 75–79. [Google Scholar] [CrossRef]
- Spencer, J.M.; Freeman, S.A. Microneedling prior to Levulan PDT for the treatment of actinic keratoses: A split-face, blinded trial. J. Drugs Dermatol. 2016, 15, 1072–1074. [Google Scholar] [CrossRef]
- Petukhova, T.A.; Hassoun, L.A.; Foolad, N.; Barath, M.; Sivamani, R.K. Effect of expedited microneedle-assisted photodynamic therapy for field treatment of actinic keratoses: A randomized clinical trial. JAMA Dermatol. 2017, 153, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Busch, K.-H.; Aliu, A.; Walezko, N.; Aust, M. Medical Needling: Effect on Moisture and Transepidermal Water Loss of Mature Hypertrophic Burn Scars. Cureus 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.U.; Lee, S.H.; Jung, J.Y.; Lee, J.H. A split-face comparison of a fractional microneedle radiofrequency device and fractional carbon dioxide laser therapy in acne patients. J. Cosmet. 2012, 14, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Jeon, I.K.; Chang, S.E.; Park, G.-H.; Roh, M.R. Comparison of microneedle fractional radiofrequency therapy with intradermal botulinum toxin a injection for periorbital rejuvenation. Dermatology 2013, 227, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.W.; Kim, S.A.; Jung, H.R.; Ryoo, Y.W.; Lee, K.S.; Cho, J.W. Clinical Improvement of Striae Distensae in K orean Patients Using a Combination of Fractionated Microneedle Radiofrequency and Fractional Carbon Dioxide Laser. Derm. Surg. 2013, 39, 1452–1458. [Google Scholar] [CrossRef]
- Chae, W.S.; Seong, J.Y.; Jung, H.N.; Kong, S.H.; Kim, M.H.; Suh, H.S.; Choi, Y.S. Comparative study on efficacy and safety of 1550 nm Er: Glass fractional laser and fractional radiofrequency microneedle device for facial atrophic acne scar. J. Cosmet. Dermatol. 2015, 14, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wu, P.; Zhang, Z.; Chen, J.; Chen, X.; Ewelina, B. Curative effects of microneedle fractional radiofrequency system on skin laxity in Asian patients: A prospective, double-blind, randomized, controlled face-split study. J. Cosmet. Laser Ther. 2017, 19, 83–88. [Google Scholar] [CrossRef]
- Cosman, F.; Lane, N.E.; Bolognese, M.A.; Zanchetta, J.R.; Garcia-Hernandez, P.A.; Sees, K.; Matriano, J.A.; Gaumer, K.; Daddona, P.E. Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women. J. Clin. Endocrinol. Metab. 2010, 95, 151–158. [Google Scholar] [CrossRef]
- Kim, S.; Yang, H.; Kim, M.; Baek, J.H.; Kim, S.J.; An, S.M.; Koh, J.S.; Seo, R.; Jung, H. 4-n-butylresorcinol dissolving microneedle patch for skin depigmentation: A randomized, double-blind, placebo-controlled trial. J. Cosmet. Dermatol. 2016, 15, 16–23. [Google Scholar] [CrossRef]
- Lee, C.; Yang, H.; Kim, S.; Kim, M.; Kang, H.; Kim, N.; An, S.; Koh, J.; Jung, H. Evaluation of the anti-wrinkle effect of an ascorbic acid-loaded dissolving microneedle patch via a double-blind, placebo-controlled clinical study. Int. J. Cosmet. Sci. 2016, 38, 375–381. [Google Scholar] [CrossRef]
- Rouphael, N.G.; Paine, M.; Mosley, R.; Henry, S.; McAllister, D.V.; Kalluri, H.; Pewin, W.; Frew, P.M.; Yu, T.; Thornburg, N.J. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 2017, 390, 649–658. [Google Scholar] [CrossRef]
- Park, K.Y.; Kwon, H.J.; Lee, C.; Kim, D.; Yoon, J.J.; Kim, M.N.; Kim, B.J. Efficacy and safety of a new microneedle patch for skin brightening: A Randomized, split-face, single-blind study. J. Cosmet. Dermatol. 2017, 16, 382–387. [Google Scholar] [CrossRef]
- Hong, J.Y.; Ko, E.J.; Choi, S.Y.; Li, K.; Kim, A.R.; Park, J.O.; Kim, B.J. Efficacy and safety of a novel, soluble microneedle patch for the improvement of facial wrinkle. J. Cosmet. Dermatol. 2018, 17, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.R.; Jeong, H.-R.; Seon-Woo, H.-S.; Kim, J.S.; Lee, S.K.; Kim, H.J.; Baek, J.O.; Park, J.-H.; Roh, J.Y. Efficacy of a bleomycin microneedle patch for the treatment of warts. Drug Deliv. Transl. Res. 2018, 8, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Fernando, G.J.; Hickling, J.; Flores, C.M.J.; Griffin, P.; Anderson, C.D.; Skinner, S.R.; Davies, C.; Witham, K.; Pryor, M.; Bodle, J. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™). Vaccine 2018, 36, 3779–3788. [Google Scholar] [CrossRef] [PubMed]
- Spierings, E.L.; Brandes, J.L.; Kudrow, D.B.; Weintraub, J.; Schmidt, P.C.; Kellerman, D.J.; Tepper, S.J. Randomized, double-blind, placebo-controlled, parallel-group, multi-center study of the safety and efficacy of ADAM zolmitriptan for the acute treatment of migraine. Cephalalgia 2018, 38, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, P.E.; Bourhy, H.; Fantino, M.; Alchas, P.; Mikszta, J.A. Safety and efficacy of novel dermal and epidermal microneedle delivery systems for rabies vaccination in healthy adults. Vaccine 2010, 28, 5850–5856. [Google Scholar] [CrossRef]
- Pettis, R.J.; Hirsch, L.; Kapitza, C.; Nosek, L.; Hövelmann, U.; Kurth, H.-J.; Sutter, D.E.; Harvey, N.G.; Heinemann, L. Microneedle-based intradermal versus subcutaneous administration of regular human insulin or insulin lispro: Pharmacokinetics and postprandial glycemic excursions in patients with type 1 diabetes. Diabetes Technol. Ther. 2011, 13, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Frenck, R.W., Jr.; Belshe, R.; Brady, R.C.; Winokur, P.L.; Campbell, J.D.; Treanor, J.; Hay, C.M.; Dekker, C.L.; Walter, E.B., Jr.; Cate, T.R. Comparison of the immunogenicity and safety of a split-virion, inactivated, trivalent influenza vaccine (Fluzone®) administered by intradermal and intramuscular route in healthy adults. Vaccine 2011, 29, 5666–5674. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.J.; Brown, M.R.; Raviele, N.A.; Prausnitz, M.R.; Felner, E.I. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes. Pediatr. Diabetes 2013, 14, 459–465. [Google Scholar] [CrossRef]
- Levin, Y.; Kochba, E.; Kenney, R. Clinical evaluation of a novel microneedle device for intradermal delivery of an influenza vaccine: Are all delivery methods the same? Vaccine 2014, 32, 4249–4252. [Google Scholar] [CrossRef]
- Anand, A.; Zaman, K.; Estívariz, C.F.; Yunus, M.; Gary, H.E.; Weldon, W.C.; Bari, T.I.; Oberste, M.S.; Wassilak, S.G.; Luby, S.P. Early priming with inactivated poliovirus vaccine (IPV) and intradermal fractional dose IPV administered by a microneedle device: A randomized controlled trial. Vaccine 2015, 33, 6816–6822. [Google Scholar] [CrossRef]
- Troy, S.B.; Kouiavskaia, D.; Siik, J.; Kochba, E.; Beydoun, H.; Mirochnitchenko, O.; Levin, Y.; Khardori, N.; Chumakov, K.; Maldonado, Y. Comparison of the immunogenicity of various booster doses of inactivated polio vaccine delivered intradermally versus intramuscularly to HIV-infected adults. J. Infect. Dis. 2015, 211, 1969–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rini, C.J.; McVey, E.; Sutter, D.; Keith, S.; Kurth, H.-J.; Nosek, L.; Kapitza, C.; Rebrin, K.; Hirsch, L.; Pettis, R.J. Intradermal insulin infusion achieves faster insulin action than subcutaneous infusion for 3-day wear. Drug Deliv. Transl. Res. 2015, 5, 332–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, Y.; Kochba, E.; Shukarev, G.; Rusch, S.; Herrera-Taracena, G.; van Damme, P.J.V. A phase 1, open-label, randomized study to compare the immunogenicity and safety of different administration routes and doses of virosomal influenza vaccine in elderly. Vaccine 2016, 34, 5262–5272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochba, E.; Levin, Y.; Raz, I.; Cahn, A. Improved insulin pharmacokinetics using a novel microneedle device for intradermal delivery in patients with type 2 diabetes. Diabetes Technol. Ther. 2016, 18, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Vescovo, P.; Rettby, N.; Ramaniraka, N.; Liberman, J.; Hart, K.; Cachemaille, A.; Piveteau, L.-D.; Zanoni, R.; Bart, P.-A.; Pantaleo, G. Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™. Vaccine 2017, 35, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Jeong, S.S.; Roh, D.H.; Kim, D.Y.; Choi, H.-K.; Lee, E.H. A practical guide to the development of microneedle systems–In clinical trials or on the market. Int. J. Pharm. 2020, 573, 118778. [Google Scholar] [CrossRef]
- Ramaut, L.; Hoeksema, H.; Pirayesh, A.; Stillaert, F.; Monstrey, S. Microneedling: Where do we stand now? A systematic review of the literature. J. Plast. Reconstr. Aesthetic Surg. 2018, 71, 1–14. [Google Scholar] [CrossRef]
- FDA Regulatory Considerations for Microneedling Devices. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/regulatory-considerations-microneedling-devices (accessed on 9 October 2020).
- Bednarczyk, R.A.; Chu, S.L.; Sickler, H.; Shaw, J.; Nadeau, J.A.; McNutt, L.-A. Low uptake of influenza vaccine among university students: Evaluating predictors beyond cost and safety concerns. Vaccine 2015, 33, 1659–1663. [Google Scholar] [CrossRef] [Green Version]
- Taddio, A.; Ipp, M.; Thivakaran, S.; Jamal, A.; Parikh, C.; Smart, S.; Sovran, J.; Stephens, D.; Katz, J. Survey of the prevalence of immunization non-compliance due to needle fears in children and adults. Vaccine 2012, 30, 4807–4812. [Google Scholar] [CrossRef] [Green Version]
- Rzeszut, J.R. Children with diabetes: The impact of fear of needles. J. Pediatr. Nurs. 2011, 26, 589–592. [Google Scholar] [CrossRef]
- Weissberg-Benchell, J.; Glasgow, A.M.; Tynan, W.D.; Wirtz, P.; Turek, J.; Ward, J. Adolescent diabetes management and mismanagement. Diabetes Care 1995, 18, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Brogden, N.K.; Banks, S.L.; Crofford, L.J.; Stinchcomb, A.L. Diclofenac enables unprecedented week-long microneedle-enhanced delivery of a skin impermeable medication in humans. Pharm. Res. 2013, 30, 1947–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-C.; Yoo, D.-G.; Compans, R.W.; Kang, S.-M.; Prausnitz, M.R. Cross-protection by co-immunization with influenza hemagglutinin DNA and inactivated virus vaccine using coated microneedles. J. Control. Release 2013, 172, 579–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wing, D.; Prausnitz, M.R.; Buono, M.J. Skin pretreatment with microneedles prior to pilocarpine iontophoresis increases sweat production. Clin. Physiol. Funct. Imaging 2013, 33, 436–440. [Google Scholar] [CrossRef]
- Singh, A.; Yadav, S. Microneedling: Advances and widening horizons. Indian Dermatol. Online J. 2016, 7, 244. [Google Scholar] [CrossRef]
- Dick, L.A.; Paul, S. Innovative Drug Delivery Technology to Meet Evolving Need of Biologics & Small Moledules. Ondrugdelivery Mag. 2019, 56, 4–6. [Google Scholar]
- Rapoport, A.M.; Ameri, M.; Lewis, H.; Kellerman, D.J. Development of a novel zolmitriptan intracutaneous microneedle system (Qtrypta™) for the acute treatment of migraine. Pain Manag. 2020. [Google Scholar] [CrossRef]
- Singh, P.; Carrier, A.; Chen, Y.; Lin, S.; Wang, J.; Cui, S.; Zhang, X. Polymeric microneedles for controlled transdermal drug delivery. J. Control. Release 2019, 315, 97–113. [Google Scholar] [CrossRef]
- Jayaneththi, V.; Aw, K.; Sharma, M.; Wen, J.; Svirskis, D.; McDaid, A. Controlled transdermal drug delivery using a wireless magnetic microneedle patch: Preclinical device development. Sens. Actuators B Chem. 2019, 297, 126708. [Google Scholar] [CrossRef]
- Economidou, S.N.; Lamprou, D.A.; Douroumis, D. 3D printing applications for transdermal drug delivery. Int. J. Pharm. 2018, 544, 415–424. [Google Scholar] [CrossRef]
- Qiu, Z.; Ma, Z.; Gao, S. Effects of process parameters on the molding quality of the micro-needle array. In Proceedings of the Global Conference on Polymer and Composite Materials, Hangzhou, China, 20–23 May 2016; pp. 20–23. [Google Scholar] [CrossRef] [Green Version]
- Birchall, J.C.; Clemo, R.; Anstey, A.; John, D.N. Microneedles in clinical practice—An exploratory study into the opinions of healthcare professionals and the public. Pharm. Res. 2011, 28, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Forster, A.H.; Witham, K.; Depelsenaire, A.C.; Veitch, M.; Wells, J.W.; Wheatley, A.; Pryor, M.; Lickliter, J.D.; Francis, B.; Rockman, S. Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial. PLoS Med. 2020, 17, e1003024. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.W.; Tan, W.D.; Srivastava, R.; Yow, A.P.; Wong, D.W.; Tey, H.L. Dissolving Triamcinolone-Embedded Microneedles for the Treatment of Keloids: A Single-Blinded Intra-Individual Controlled Clinical Trial. Dermatol. Ther. 2019, 9, 601–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MNs Type | Intervention | Control | ||||||
---|---|---|---|---|---|---|---|---|
MNs | MNs + Drug | MNs + Other Treatment | Other Treatment + Drug | Drug Application Only | Other Treatment Only | No-Treatment | Placebo | |
MTS (n = 8) | ||||||||
Kim, 2009 [47] | √ | - | - | - | √ | - | √ | - |
Yoo, 2010 [48] | - | √ | - | - | √ | - | - | - |
Choi, 2011 [49] | - | √ | - | √ | - | - | - | - |
Khater, 2016 [50] | √ | - | - | - | - | CO2 laser | - | - |
Spencer, 2016 [51] | √ | √ | ||||||
Petukhova, 2017 [52] | - | √ | - | - | - | - | - | √ |
Bao, 2017 [14] | √ | √ | - | - | √ | - | - | - |
Busch, 2018 [53] | - | √ | - | - | - | - | √ | - |
MRF (n = 6) | ||||||||
Shin, 2012 [54] | √ | - | - | - | - | CO2 laser | - | - |
Jeon, 2013 [55] | √ | - | - | √ | - | - | - | - |
Ryu, 2013 [56] | √ | - | CO2 laser | - | - | CO2 laser | - | - |
Chae, 2014 [57] | √ | - | - | √ | - | - | - | - |
Fatemi Naeini, 2015 [23] | √ | - | - | - | - | - | - | √ |
Lu, 2017 [58] | √ | - | - | - | - | Superficial dermal insertion | - | - |
MAP (n = 11) | ||||||||
Cosman, 2010 [59] | √ | √ | √ | |||||
Daddona, 2011 [31] | - | √ | - | √ | - | - | - | √ |
Hirobe, 2015 [32] | - | √ | - | √ | - | - | - | - |
Kim, 2016 [60] | - | √ | - | - | - | - | - | √ |
Lee, 2016 [61] | - | √ | - | √ | - | - | - | - |
Rouphael, 2017 [62] | - | √ | - | √ | - | - | - | √ |
Park, 2017 [63] | - | √ | - | - | √ | - | - | - |
Hong, 2018 [64] | √ | √ | - | - | √ | - | - | - |
Ryu, 2018 [65] | - | √ | - | - | - | Cryotherapy | - | - |
Fernando, 2018 [66] | - | √ | - | √ | - | Intramuscularly injection | - | √ |
Spierings, 2018 [67] | √ | √ | ||||||
Hollow MNs (n = 13) | ||||||||
Damme, 2009 [26] | - | √ | - | √ | - | - | - | - |
Laurent, 2010 [68] | - | √ | - | √ | - | - | - | - |
Pettis, 2011 [69] | - | √ | - | √ | - | - | - | - |
Frenck, 2011 [70] | √ | √ | ||||||
McVey, 2012 [27] | - | √ | - | √ | - | - | - | √ |
Norman, 2013 [71] | - | √ | - | √ | - | - | - | - |
Levin, 2014 [72] | - | √ | - | √ | - | - | - | - |
Anand, 2015 [73] | - | √ | - | √ | - | - | - | - |
Troy, 2015 [74] | - | √ | - | √ | - | - | - | - |
Rini, 2015 [75] | - | √ | - | √ | - | - | - | - |
Levin, 2016 [76] | - | √ | - | √ | - | - | - | - |
Kochba, 2016 [77] | - | √ | - | √ | - | - | - | - |
Vescovo, 2017 [78] | - | √ | - | √ | - | - | - | - |
MNs Type | Intervention Group Pain: VAS | Control Group Pain: VAS [Type of Control] | p Value | |||
---|---|---|---|---|---|---|
MTS (n = 3) | ||||||
Yoo, 2010 [48] | Pain (ND) | ND [MAL cream] | ND * | |||
Petukhova, 2017 [52] | 1.3~1.4 | 0.3 [Sham roller] | p < 0.05 * | |||
Bao, 2017 [14] | 4.52 ± 3.7 | ND [Topical cream] | ND * | |||
MRF (n = 3) | ||||||
Shin, 2012 [54] | 5.7 ± 1.7 | 6.5 ± 2.2 [CO2 laser] | NS | |||
Ryu, 2013 [56] | Pain (ND) | ND [CO2 laser] | ND | |||
Jeon, 2013 [55] | Pain (ND) | Pain (ND) [BoNT/A injection] | ND * | |||
MAP (n = 3) | ||||||
Rouphael, 2017 [62] | Pain (4%) | Pain (18%) [IM] | p < 0.05 | |||
Ryu, 2018 [65] | 0.5 ± 0.5 | 7.3 ± 1.3 [Cryotherapy] | p < 0.05 | |||
Spierings, 2018 [67] | Pain (ND) | Pain (ND) [Placebo patch] | ND | |||
Hollow MNs (n = 9) | ||||||
Insertion | Infusion | Insertion | Infusion | Insertion | Infusion | |
Damme, 2009 [26] | 0.55 | 0.7 | 1.3 [IM] | 0.6 [IM] | p < 0.05 | p < 0.05* |
Laurent, 2010 [68] | 0~2 | 0~3.5 [IM], painless [ED] | ND | |||
Pettis, 2011 [69] | 6.6 ± 3.9 | 4.1 ± 3.3 [SC] | ND | |||
Frenck, 2011 [70] | 1.7~2.1 | 1.52 (IM), 2.2 [ID] | ND | |||
McVey, 2012 [27] | 0.3 | 2.4 | 0.6 [SC] | 1.1 [SC] | p < 0.05 | p < 0.05 * |
Norman, 2013 [71] | 0.05~0.08 | 2~3 | 1.5~2 [SC] | 0.05~1.5 [SC] | p < 0.05 | NS * |
Rini, 2015 [75] | Pain (ND) | Pain (ND) | Pain (ND) [SC] | Pain (ND) [SC] | ND * | |
Kochba, 2016 [77] | 0.9 ± 0.9 | 1.6 ± 1.5 | 0.7 ± 0.5 [SC] | 0.4 ± 0.4 [SC] | NS* | p < 0.05 * |
Vescovo, 2017 [78] | 0~2 | 1~6 | 0~3 [ID], 0~4 [IM] | 0~3 [ID], 0~4 [IM] | p < 0.05 | p < 0.05 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-Y.; Park, J.-H.; Lee, Y.-S.; Kim, Y.-S.; Park, J.-Y.; Kim, S.-Y. The Current Status of Clinical Research Involving Microneedles: A Systematic Review. Pharmaceutics 2020, 12, 1113. https://doi.org/10.3390/pharmaceutics12111113
Jeong S-Y, Park J-H, Lee Y-S, Kim Y-S, Park J-Y, Kim S-Y. The Current Status of Clinical Research Involving Microneedles: A Systematic Review. Pharmaceutics. 2020; 12(11):1113. https://doi.org/10.3390/pharmaceutics12111113
Chicago/Turabian StyleJeong, Seung-Yeon, Jung-Hwan Park, Ye-Seul Lee, Youn-Sub Kim, Ji-Yeun Park, and Song-Yi Kim. 2020. "The Current Status of Clinical Research Involving Microneedles: A Systematic Review" Pharmaceutics 12, no. 11: 1113. https://doi.org/10.3390/pharmaceutics12111113
APA StyleJeong, S. -Y., Park, J. -H., Lee, Y. -S., Kim, Y. -S., Park, J. -Y., & Kim, S. -Y. (2020). The Current Status of Clinical Research Involving Microneedles: A Systematic Review. Pharmaceutics, 12(11), 1113. https://doi.org/10.3390/pharmaceutics12111113