Drug Repurposing in the COVID-19 Era: Insights from Case Studies Showing Pharmaceutical Peculiarities
Abstract
:1. Introduction
2. Approaches for Drug Repurposing: Focus on Artificial Intelligence
3. Regulatory Aspects and Ethical Issues in Drug Repurposing for COVID-19: A Double-Edge Sword
4. Pharmaceutical Considerations for Pulmonary Drug Delivery: Aid to Improve Efficacy and Safety for Repurposing Agents in COVID-19
5. Drug Repurposing in COVID-19: Case Studies
5.1. Novel Pharmaceutical Approaches for Old Drugs
5.1.1. Hydroxychloroquine
5.1.2. Remdesivir
5.1.3. Lopinavir/Ritonavir
5.1.4. Heparin
5.1.5. Plitidepsin
5.2. Agents Originally Developed and Approved for the Treatment of COPD and Idiopathic Pulmonary Fibrosis: The Role of Phosphodiesterase Inhibitors and Pirfenidone
5.2.1. Phosphodiesterase-4 (PDE4) Inhibitors
5.2.2. Pirfenidone
5.3. Dietary Supplements, Micronutrients, and Herbal Medicines
5.3.1. Zinc Supplementation
5.3.2. Essential Oils
5.3.3. Glycyrrhizin
5.4. Ozone
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO Director-General’s Remarks at the Media Briefing on 2019-nCoV on 11 February 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020 (accessed on 22 November 2020).
- WHO. Virtual Press Conference on COVID-19—11 March 2020. Available online: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic (accessed on 22 November 2020).
- European Centre for Disease Prevention and Control. COVID-19 Situation Update Worldwide. Available online: https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases (accessed on 11 January 2021).
- European Medicines Agency. First COVID-19 Treatment Recommended for EU Authorisation—25 June 2020. Available online: https://www.ema.europa.eu/en/documents/press-release/first-covid-19-treatment-recommended-eu-authorisation_en.pdf (accessed on 22 November 2020).
- Food and Drug Administration. FDA’s Approval of Veklury (Remdesivir) for the Treatment of COVID-19—The Science of Safety and Effectiveness—22 October 2020. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fdas-approval-veklury-remdesivir-treatment-covid-19-science-safety-and-effectiveness (accessed on 22 November 2020).
- Jorgensen, S.C.J.; Kebriaei, R.; Dresser, L.D. Remdesivir: Review of Pharmacology, Pre-clinical Data, and Emerging Clinical Experience for COVID-19. Pharmacotherapy 2020, 40, 659–671. [Google Scholar] [CrossRef]
- CTS AIFA Rivaluterà il Remdesivir Nella Terapia Anti Covid-19. Available online: https://www.aifa.gov.it/web/guest/-/cts-aifa-rivalutera-il-remdesivir-nella-terapia-anti-covid-19 (accessed on 22 November 2020).
- Pan, H.; Peto, R.; Karim, Q.A.; Alejandria, M.; Henao-Restrepo, A.M.; García, C.H.; Kieny, M.-P.; Malekzadeh, R.; Murthy, S.; Preziosi, M.-P.; et al. Repurposed antiviral drugs for COVID-19—Interim WHO SOLIDARITY Trial Results. BMJ 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.10.15.20209817v1 (accessed on 22 November 2020). [CrossRef]
- Lamontagne, F.; Agoritsas, T.; Macdonald, H.; Leo, Y.S.; Diaz, J.; Agarwal, A.; Appiah, J.A.; Arabi, Y.; Blumberg, L.; Calfee, C.S.; et al. A living WHO guideline on drugs for covid-19. BMJ 2020, 370, m3379. [Google Scholar]
- Mahase, E. Covid-19: Pfizer and BioNTech submit vaccine for US authorisation. BMJ 2020, 371, m4552. [Google Scholar] [CrossRef]
- Martin, J.H.; Bowden, N.A. Drug repurposing in the era of COVID-19: A call for leadership and government investment. Med. J. Aust. 2020, 212, 450–452.e1. [Google Scholar] [CrossRef]
- Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Koytiger, G.; Kusko, R.; Zeskind, B.; Risso, S.; Kagan, E.; et al. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol. 2018, 175, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Pawar, A.Y. Combating devastating COVID-19 by drug repurposing. Int. J. Antimicrob. Agents. 2020, 56, 105984. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Xiao, D.; Wang, Y.; Liu, L.; Zhou, X.; Zhong, W. Research progress on repositioning drugs and specific therapeutic drugs for SARS-CoV-2. Future Med. Chem. 2020, 12, 1565–1578. [Google Scholar] [CrossRef]
- Guy, R.K.; DiPaola, R.S.; Romanelli, F.; Dutch, R.E. Rapid repurposing of drugs for COVID-19. Science 2020, 368, 829–830. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Aziz, T.M.; Stockand, J.D. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2)—An update on the status. Infect. Genet. Evol. 2020, 83, 104327. [Google Scholar] [CrossRef]
- Hossen, M.S.; Barek, M.A.; Jahan, N.; Safiqul Islam, M. A Review on Current Repurposing Drugs for the Treatment of COVID-19: Reality and Challenges. SN Compr. Clin. Med. 2020, 2, 1–13. [Google Scholar] [CrossRef]
- Yang, Y.; Islam, M.S.; Wang, J.; Li, Y.; Chen, X. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. Int. J. Biol. Sci. 2020, 16, 1708–1717. [Google Scholar] [CrossRef] [PubMed]
- Italian Medicines Agency. Report on the Use of Drugs during COVID-19 Outbreak. 29 July 2020. Available online: https://www.aifa.gov.it/documents/20142/1202341/AIFA_Rapporto_uso_farmaci_durante_epidemia_COVID-19.pdf/39f3399f-3bb0-e02c-5149-286135cc4e44 (accessed on 22 November 2020).
- Alany, R.G. COVID-19 pandemic: What can pharmaceutical formulation and drug delivery experts offer? Pharm. Dev. Technol. 2020, 25, 649. [Google Scholar] [CrossRef] [PubMed]
- Parvathaneni, V.; Gupta, V. Utilizing drug repurposing against COVID-19—Efficacy, limitations, and challenges. Life Sci. 2020, 259, 118275. [Google Scholar] [CrossRef]
- Ciliberto, G.; Cardone, L. Boosting the arsenal against COVID-19 through computational drug repurposing. Drug Discov. Today 2020, 25, 946–948. [Google Scholar] [CrossRef]
- Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep. 2020, 1–30. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Omolo, C.A.; Soni, N.; Fasiku, V.O.; Mackraj, I.; Govender, T. Update on therapeutic approaches and emerging therapies for SARS-CoV-2 virus. Eur. J. Pharmacol. 2020, 883, 173348. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Harun Ai Rashid, M.; Mridul, M.; Mohanty, C.; Swayamsiddha, S. Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes Metab. Syndr. 2020, 14, 1027–1031. [Google Scholar] [CrossRef]
- Mangione, W.; Falls, Z.; Melendy, T.; Chopra, G.; Samudrala, R. Shotgun drug repurposing biotechnology to tackle epidemics and pandemics. Chem. Rxiv. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.Y.; Peng, T.T.; Yeh, T.K.; Huang, W.Z.; Chang, S.E.; Wu, S.H.; Hung, H.C.; Hsu, T.A.; Lee, S.J.; Song, J.S.; et al. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed. J. 2020, 43, 355–362. [Google Scholar] [CrossRef]
- Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020, 395, e30–e31. [Google Scholar] [CrossRef] [Green Version]
- Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifirò, G. Challenges for Drug Repurposing in the COVID-19 Pandemic Era. Front. Pharmacol. 2020, 11, 588654. [Google Scholar] [CrossRef]
- Bayoumy, A.B.; de Boer, N.K.H.; Ansari, A.R.; Crouwel, F.; Mulder, C.J.J. Unrealized potential of drug repositioning in europe during COVID-19 and beyond: A physcian’s perspective. J. Pharm. Policy Pract. 2020, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Murteira, S.; Millier, A.; Ghezaiel, Z.; Lamure, M. Drug reformulations and repositioning in the pharmaceutical industry and their impact on market access: Regulatory implications. J. Mark. Access Health Policy 2014, 2, 22813. [Google Scholar] [CrossRef]
- European Medicines Agency. COVID-19: How EMA Fast-Tracks Development Support and Approval of Medicines and Vaccines. 4 May 2020. Available online: https://www.ema.europa.eu/en/documents/press-release/covid-19-how-ema-fast-tracks-development-support-approval-medicines-vaccines_en.pdf (accessed on 26 November 2020).
- European Medicines Agency. EMA Initiatives for Acceleration of Development Support and Evaluation Procedures for COVID-19 Treatments and Vaccines. 4 May 2020. Available online: https://www.ema.europa.eu/en/documents/other/ema-initiatives-acceleration-development-support-evaluation-procedures-covid-19-treatments-vaccines_en.pdf (accessed on 26 November 2020).
- Saint-Raymond, A.; Sato, J.; Kishioka, Y.; Teixeira, T.; Hasslboeck, C.; Kweder, S.L. Remdesivir emergency approvals: A comparison of the U.S., Japanese, and EU systems. Expert Rev. Clin. Pharmacol. 2020, 13, 1095–1101. [Google Scholar] [CrossRef]
- Medicines and Healthcare Products Regulatory Agency. MHRA Issues a Scientific Opinion for the First Medicine to Treat COVID-19 in the UK (26 May 2020). Available online: https://www.gov.uk/government/news/mhra-supports-the-use-of-remdesivir-as-the-first-medicine-to-treat-covid-19-in-the-uk (accessed on 27 November 2020).
- Mucke, H.A.M. COVID-19 and the Drug Repurposing Tsunami. Assay Drug Dev. Technol. 2020, 18, 211–214. [Google Scholar] [CrossRef]
- Ino, H.; Nakazawa, E.; Akabayashi, A. Drug Repurposing for COVID-19: Ethical Considerations and Roadmaps. Camb. Q. Healthc. Ethics 2020, 30, 51–58. [Google Scholar] [CrossRef]
- Singh, J.A.; Upshur, R.E.G. The granting of emergency use designation to COVID-19 candidate vaccines: Implications for COVID-19 vaccine trials. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Scuccimarri, R.; Sutton, E.; Fitzcharles, M.A. Hydroxychloroquine: A Potential Ethical Dilemma for Rheumatologists during the COVID-19 Pandemic. J. Rheumatol. 2020, 47, 783–786. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Pan, K.; Wu, B.; Li, X.; Chen, Z.; Xu, Q.; Li, X.; Lv, Q. Safety of hydroxychloroquine in COVID-19 and other diseases: A systematic review and meta-analysis of 53 randomized trials. Eur. J. Clin. Pharmacol. 2021, 77, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Ravinetto, R. COVID-19 therapeutics: How to sow confusion and break public trust during international public health emergencies. J. Pharm. Policy Pract. 2020, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Orienti, I.; Gentilomi, G.A.; Farruggia, G. Pulmonary Delivery of Fenretinide: A Possible Adjuvant Treatment in COVID-19. Int. J. Mol. Sci. 2020, 21, 3812. [Google Scholar] [CrossRef] [PubMed]
- Kwok, P.C.; Chan, H.K. Pulmonary drug delivery. Ther. Deliv. 2013, 4, 877–878. [Google Scholar] [CrossRef] [Green Version]
- Labiris, N.R.; Dolovich, M.B. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 2003, 56, 588–599. [Google Scholar] [CrossRef]
- Lipworth, B.J. Pharmacokinetics of inhaled drugs. Br. J. Clin. Pharmacol. 1996, 42, 697–705. [Google Scholar] [CrossRef]
- Pindiprolu, S.K.; Kumar, C.S.; Golla, V.S.; Likitha, P.; Chandra, S.; Ramachandra, R.K. Pulmonary delivery of nanostructured lipid carriers for effective repurposing of salinomycin as an antiviral agent. Med. Hypotheses 2020, 143, 109858. [Google Scholar] [CrossRef]
- Labiris, N.R.; Dolovich, M.B. Pulmonary drug delivery. Part II: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 2003, 56, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolman, J.A.; Williams, R.O., 3rd. Advances in the pulmonary delivery of poorly water-soluble drugs: Influence of solubilization on pharmacokinetic properties. Drug Dev. Ind. Pharm. 2010, 36, 1–30. [Google Scholar] [CrossRef]
- Kukut Hatipoglu, M.; Hickey, A.J.; Garcia-Contreras, L. Pharmacokinetics and pharmacodynamics of high doses of inhaled dry powder drugs. Int. J. Pharm. 2018, 549, 306–316. [Google Scholar] [CrossRef]
- Groneberg, D.A.; Witt, C.; Wagner, U.; Chung, K.F.; Fischer, A. Fundamentals of pulmonary drug delivery. Respir. Med. 2003, 97, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.Y.; Chan, J.G.; Chan, H.K. Pulmonary drug delivery by powder aerosols. J. Control Release 2014, 193, 228–240. [Google Scholar] [CrossRef] [PubMed]
- van Haren, F.M.P.; Page, C.; Laffey, J.G.; Artigas, A.; Camprubi-Rimblas, M.; Nunes, Q.; Smith, R.; Shute, J.; Carroll, M.; Tree, J.; et al. Nebulised heparin as a treatment for COVID-19: Scientific rationale and a call for randomised evidence. Crit. Care 2020, 24, 454. [Google Scholar] [CrossRef] [PubMed]
- Paolisso, P.; Bergamaschi, L.; D’Angelo, E.C.; Donati, F.; Giannella, M.; Tedeschi, S.; Pascale, R.; Bartoletti, M.; Tesini, G.; Biffi, M.; et al. Preliminary Experience With Low Molecular Weight Heparin Strategy in COVID-19 Patients. Front. Pharmacol. 2020, 11, 1124. [Google Scholar] [CrossRef]
- Kipshidze, N.; Iversen, P.; Porter, T.R.; Kipshidze, N.; Siddiqui, F.; Dangas, G.; Fareed, J. Targeted, Site-Specific, Delivery Vehicles of Therapeutics for COVID-19 Patients. Brief Review. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620954911. [Google Scholar] [CrossRef]
- Higgins, T.S.; Wu, A.W.; Illing, E.A.; Sokoloski, K.J.; Weaver, B.A.; Anthony, B.P.; Hughes, N.; Ting, J.Y. Intranasal Antiviral Drug Delivery and Coronavirus Disease 2019 (COVID-19): A State of the Art Review. Otolaryngol. Head Neck Surg. 2020, 163, 682–694. [Google Scholar] [CrossRef]
- Peña-Silva, R.; Duffull, S.B.; Steer, A.C.; Jaramillo-Rincon, S.X.; Gwee, A.; Zhu, X. Pharmacokinetic considerations on the repurposing of ivermectin for treatment of COVID-19. Br. J. Clin. Pharmacol. 2020. online ahead of print. [Google Scholar] [CrossRef]
- Jermain, B.; Hanafin, P.O.; Cao, Y.; Lifschitz, A.; Lanusse, C.; Rao, G.G. Development of a Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung Exposure in Humans Following Oral Administration of Ivermectin for COVID-19 Drug Repurposing. J. Pharm. Sci. 2020, 109, 3574–3578. [Google Scholar] [CrossRef]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef]
- McHugh, K.J. Employing drug delivery strategies to create safe and effective pharmaceuticals for COVID-19. Bioeng. Transl. Med. 2020, 5, e10163. [Google Scholar] [CrossRef] [PubMed]
- Rameshrad, M.; Ghafoori, M.; Mohammadpour, A.H.; Nayeri, M.J.D.; Hosseinzadeh, H. A comprehensive review on drug repositioning against coronavirus disease 2019 (COVID19). Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 1137–1152. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.E.; Rhie, S.J. Practice considerations on the use of investigational anti-COVID-19 medications: Dosage, administration and monitoring. J. Clin. Pharm. Ther. 2020. online ahead of print. [Google Scholar] [CrossRef]
- Siddiqi, H.K.; Mehra, M.R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020, 39, 405–407. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Cao, Z.; Han, M.; Wang, Z.; Chen, J.; Sun, W.; Wu, Y.; Xiao, W.; Liu, S.; Chen, E.; et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: Open label, randomised controlled trial. BMJ 2020, 369, m1849. [Google Scholar] [CrossRef]
- Mahévas, M.; Tran, V.T.; Roumier, M.; Chabrol, A.; Paule, R.; Guillaud, C.; Fois, E.; Lepeule, R.; Szwebel, T.A.; Lescure, F.X.; et al. Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: Observational comparative study using routine care data. BMJ 2020, 369, m1844. [Google Scholar] [CrossRef] [PubMed]
- Boulware, D.R.; Pullen, M.F.; Bangdiwala, A.S.; Pastick, K.A.; Lofgren, S.M.; Okafor, E.C.; Skipper, C.P.; Nascene, A.A.; Nicol, M.R.; Abassi, M.; et al. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19. N. Engl. J. Med. 2020, 383, 517–525. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group; Horby, P.; Mafham, M.; Linsell, L.; Bell, J.L.; Staplin, N.; Emberson, J.R.; Wiselka, M.; Ustianowski, A.; Elmahi, E.; et al. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2020, 383, 2030–2040. [Google Scholar]
- D’Acquarica, I.; Agranat, I. Chiral switches of chloroquine and hydroxychloroquine: Potential drugs to treat COVID-19. Drug Discov. Today 2020, 25, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Lentini, G.; Cavalluzzi, M.M.; Habtemariam, S. COVID-19, Chloroquine Repurposing, and Cardiac Safety Concern: Chirality Might Help. Molecules 2020, 25, 1834. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Zhang, X.; Liu, J.; Yang, Y.; Zheng, N.; Liu, Q.; Bergman, K.; Reynolds, K.; Huang, S.M.; Zhu, H.; et al. Connecting hydroxychloroquine in vitro antiviral activity to in vivo concentration for prediction of antiviral effect: A critical step in treating COVID-19 patients. Clin. Infect. Dis. 2020, 71, 3232–3236. [Google Scholar] [CrossRef]
- Albariqi, A.H.; Chang, R.Y.K.; Tai, W.; Ke, W.R.; Chow, M.Y.T.; Tang, P.; Kwok, P.C.L.; Chan, H.K. Inhalable Hydroxychloroquine Powders for Potential Treatment of COVID-19. J. Aerosol. Med. Pulm. Drug Deliv. 2020. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, O.; Marie Healy, A.; Dayton, F.; Robinson, S.; O’Reilly, N.J.; Mahoney, B.; Arthur, A.; Walker, G.; Farragher, J.P. Inhaled hydroxychloroquine to improve efficacy and reduce harm in the treatment of COVID-19. Med. Hypotheses 2020, 143, 110110. [Google Scholar] [CrossRef]
- Fassihi, S.C.; Nabar, N.R.; Fassihi, R. Novel approach for low-dose pulmonary delivery of hydroxychloroquine in COVID-19. Br. J. Pharmacol. 2020, 177, 4997–4998. [Google Scholar] [CrossRef]
- Tai, T.T.; Wu, T.J.; Wu, H.D.; Tsai, Y.C.; Wang, H.T.; Wang, A.M.; Shih, S.F.; Chen, Y.C. A Strategy to Treat COVID-19 Disease with Targeted Delivery of Inhalable Liposomal Hydroxychloroquine: A Pre-clinical Pharmacokinetic Study. Clin. Transl. Sci. 2020. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Musazzi, U.M.; Zanon, D.; Gennari, C.M.G.; Fortini, M.; Maximova, N.; Cilurzo, F.; Minghetti, P. Data on chloroquine/hydroxychloroquine content in compounded oral suspension after filtration and centrifugation. Data Brief. 2020, 32, 106116. [Google Scholar] [CrossRef]
- Derwand, R.; Scholz, M. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today’s battle against COVID-19? Med. Hypotheses 2020, 142, 109815. [Google Scholar] [CrossRef]
- Bailly, C.; Vergoten, G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol. Ther. 2020, 214, 107618. [Google Scholar] [CrossRef]
- Sun, D. Remdesivir for Treatment of COVID-19: Combination of Pulmonary and IV Administration May Offer Additional Benefit. AAPS J. 2020, 22, 77. [Google Scholar] [CrossRef]
- Contini, C.; Enrica Gallenga, C.; Neri, G.; Maritati, M.; Conti, P. A new pharmacological approach based on remdesivir aerosolized administration on SARS-CoV-2 pulmonary inflammation: A possible and rational therapeutic application. Med. Hypotheses 2020, 144, 109876. [Google Scholar] [CrossRef]
- Desideri, I.; Martinelli, C.; Ciuti, S.; Uccello Barretta, G.; Balzano, F. Lopinavir/ritonavir, a new galenic oral formulation from commercial solid form, fine-tuned by nuclear magnetic resonance spectroscopy. Eur. J. Hosp. Pharm. 2020. online ahead of print. [Google Scholar] [CrossRef]
- Zanon, D.; Musazzi, U.M.; Manca, A.; De Nicolò, A.; D’Avolio, A.; Cilurzo, F.; Maximova, N.; Tomasello, C.; Clementi, E.; Minghetti, P. Data on compounding lopinavir and ritonavir suspension for non-cooperative COVID-19 patients. Data Brief. 2020, 33, 106445. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Zhi, K.; Mukherji, A.; Gerth, K. Repurposing Antiviral Protease Inhibitors Using Extracellular Vesicles for Potential Therapy of COVID-19. Viruses 2020, 12, 486. [Google Scholar] [CrossRef]
- Vader, P.; Breakefield, X.O.; Wood, M.J. Extracellular vesicles: Emerging targets for cancer therapy. Trends Mol. Med. 2014, 20, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Whyte, C.S.; Morrow, G.B.; Mitchell, J.L.; Chowdary, P.; Mutch, N.J. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J. Thromb. Haemost. 2020, 18, 1548–1555. [Google Scholar] [CrossRef]
- Ayerbe, L.; Risco, C.; Ayis, S. The association between treatment with heparin and survival in patients with Covid-19. J. Thromb. Thrombolysis 2020, 50, 298–301. [Google Scholar] [CrossRef]
- Wang, J.; Hajizadeh, N.; Moore, E.E.; McIntyre, R.C.; Moore, P.K.; Veress, L.A.; Yaffe, M.B.; Moore, H.B.; Barrett, C.D. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J. Thromb Haemost. 2020, 18, 1752–1755. [Google Scholar] [CrossRef] [PubMed]
- Colaneri, M.; Quarti, A.; Pozzi, M.; Gasparini, S.; Carloni, I.; de Benedictis, F.M. Management of plastic bronchitis with nebulized tissue plasminogen activator: Another brick in the wall. Ital. J. Pediatr. 2014, 40, 18. [Google Scholar] [CrossRef] [Green Version]
- Leisch, M.; Egle, A.; Greil, R. Plitidepsin: A potential new treatment for relapsed/refractory multiple myeloma. Future Oncol. 2019, 15, 109–120. [Google Scholar] [CrossRef]
- Martinez, M.A. Plitidepsin: A repurposed drug for the treatment of COVID-19. Antimicrob. Agents Chemother. 2021. [Google Scholar] [CrossRef]
- Solaimanzadeh, I. Acetazolamide, Nifedipine and Phosphodiesterase Inhibitors: Rationale for Their Utilization as Adjunctive Countermeasures in the Treatment of Coronavirus Disease 2019 (COVID-19). Cureus 2020, 12, e7343. [Google Scholar] [CrossRef] [Green Version]
- Dalamaga, M.; Karampela, I.; Mantzoros, C.S. Commentary: Phosphodiesterase 4 inhibitors as potential adjunct treatment targeting the cytokine storm in COVID-19. Metabolism 2020, 109, 154282. [Google Scholar] [CrossRef]
- Bridgewood, C.; Damiani, G.; Sharif, K.; Watad, A.; Bragazzi, N.L.; Quartuccio, L.; Savic, S.; McGonagle, D. Rationale for Evaluating PDE4 Inhibition for Mitigating against Severe Inflammation in COVID-19 Pneumonia and Beyond. ISR Med. Assoc. J. 2020, 22, 335–339. [Google Scholar] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Mugheddu, C.; Pizzatti, L.; Sanna, S.; Atzori, L.; Rongioletti, F. COVID-19 pulmonary infection in erythrodermic psoriatic patient with oligodendroglioma: Safety and compatibility of apremilast with critical intensive care management. J. Eur. Acad Dermatol. Venereol. 2020, 34, e376–e378. [Google Scholar] [CrossRef]
- Maldonado, V.; Loza-Mejía, M.A.; Chávez-Alderete, J. Repositioning of pentoxifylline as an immunomodulator and regulator of the renin-angiotensin system in the treatment of COVID-19. Med. Hypotheses 2020, 144, 109988. [Google Scholar] [CrossRef]
- Thai, A.; Xiao, J.; Ammit, A.J.; Rohanizadeh, R. Development of inhalable formulations of anti-inflammatory drugs to potentially treat smoke inhalation injury in burn victims. Int. J. Pharm. 2010, 389, 41–52. [Google Scholar] [CrossRef]
- Vitiello, A.; Pelliccia, C.; Ferrara, F. COVID-19 Patients with Pulmonary Fibrotic Tissue: Clinical Pharmacological Rational of Antifibrotic Therapy. SN Compr. Clin. Med. 2020, 2, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Seifirad, S. Pirfenidone: A novel hypothetical treatment for COVID-19. Med. Hypotheses 2020, 144, 110005. [Google Scholar] [CrossRef]
- Artigas, L.; Coma, M.; Matos-Filipe, P.; Aguirre-Plans, J.; Farrés, J.; Valls, R.; Fernandez-Fuentes, N.; de la Haba-Rodriguez, J.; Olvera, A.; Barbera, J.; et al. In-silico drug repurposing study predicts the combination of pirfenidone and melatonin as a promising candidate therapy to reduce SARS-CoV-2 infection progression and respiratory distress caused by cytokine storm. PLoS ONE 2020, 15, e0240149. [Google Scholar] [CrossRef] [PubMed]
- Khoo, J.K.; Montgomery, A.B.; Otto, K.L.; Surber, M.; Faggian, J.; Lickliter, J.D.; Glaspole, I. A Randomized, Double-Blinded, Placebo-Controlled, Dose-Escalation Phase 1 Study of Aerosolized Pirfenidone Delivered via the PARI Investigational eFlow Nebulizer in Volunteers and Patients with Idiopathic Pulmonary Fibrosis. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 15–20. [Google Scholar] [CrossRef]
- Kaminskas, L.M.; Landersdorfer, C.B.; Bischof, R.J.; Leong, N.; Ibrahim, J.; Davies, A.N.; Pham, S.; Beck, S.; Montgomery, A.B.; Surber, M.W. Aerosol Pirfenidone Pharmacokinetics after Inhaled Delivery in Sheep: A Viable Approach to Treating Idiopathic Pulmonary Fibrosis. Pharm. Res. 2019, 37, 3. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.K.; Baker, W.L.; Sobieraj, D.M. Myth Busters: Dietary Supplements and COVID-19. Ann. Pharmacother. 2020, 54, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Li, Y.; Leung, E.L.; Liu, X.; Liu, K.; Wang, Q.; Lan, Y.; Li, X.; Yu, H.; Cui, L.; et al. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol. Res. 2020, 158, 104929. [Google Scholar] [CrossRef]
- Infusino, F.; Marazzato, M.; Mancone, M.; Fedele, F.; Mastroianni, C.M.; Severino, P.; Ceccarelli, G.; Santinelli, L.; Cavarretta, E.; Marullo, A.G.M.; et al. Diet Supplementation, Probiotics, and Nutraceuticals in SARS-CoV-2 Infection: A Scoping Review. Nutrients 2020, 12, 1718. [Google Scholar] [CrossRef]
- Mak, J.W.Y.; Chan, F.K.L.; Ng, S.C. Probiotics and COVID-19: One size does not fit all. Lancet Gastroenterol. Hepatol. 2020, 5, 644–645. [Google Scholar] [CrossRef]
- Di Renzo, L.; Merra, G.; Esposito, E.; De Lorenzo, A. Are probiotics effective adjuvant therapeutic choice in patients with COVID-19? Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4062–4063. [Google Scholar]
- Bauer, S.R.; Kapoor, A.; Rath, M.; Thomas, S.A. What is the role of supplementation with ascorbic acid, zinc, vitamin D, or N-acetylcysteine for prevention or treatment of COVID-19? Clevel. Clin. J. Med. 2020. online ahead of print. [Google Scholar] [CrossRef]
- Rogero, M.M.; Leão, M.C.; Santana, T.M.; Pimentel, M.V.M.B.; Carlini, G.C.G.; da Silveira, T.F.F.; Gonçalves, R.C.; Castro, I.A. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radic. Biol. Med. 2020, 156, 190–199. [Google Scholar] [CrossRef]
- Messina, G.; Polito, R.; Monda, V.; Cipolloni, L.; Di Nunno, N.; Di Mizio, G.; Murabito, P.; Carotenuto, M.; Messina, A.; Pisanelli, D.; et al. Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work. Int. J. Mol. Sci. 2020, 21, 3104. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Setzer, W.N. Aromatic Herbs, Medicinal Plant-Derived Essential Oils, and Phytochemical Extracts as Potential Therapies for Coronaviruses: Future Perspectives. Plants 2020, 9, 800. [Google Scholar] [CrossRef]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Wang, P.; Su, K.; Cho, W.C.; Xing, Y. Chinese herbal medicine for coronavirus disease 2019: A systematic review and meta-analysis. Pharmacol. Res. 2020, 160, 105056. [Google Scholar] [CrossRef] [PubMed]
- Ang, L.; Song, E.; Lee, H.W.; Lee, M.S. Herbal Medicine for the Treatment of Coronavirus Disease 2019 (COVID-19): A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 1583. [Google Scholar] [CrossRef] [PubMed]
- Wyganowska-Swiatkowska, M.; Nohawica, M.; Grocholewicz, K.; Nowak, G. Influence of Herbal Medicines on HMGB1 Release, SARS-CoV-2 Viral Attachment, Acute Respiratory Failure, and Sepsis. A Literature Review. Int. J. Mol. Sci. 2020, 21, 4639. [Google Scholar] [CrossRef]
- Yang, Y. Use of herbal drugs to treat COVID-19 should be with caution. Lancet. 2020, 395, 1689–1690. [Google Scholar] [CrossRef]
- Kumar, A.; Kubota, Y.; Chernov, M.; Kasuya, H. Potential role of zinc supplementation in prophylaxis and treatment of COVID-19. Med. Hypotheses 2020, 144, 109848. [Google Scholar] [CrossRef]
- D’Cruze, H.; Arroll, B.; Kenealy, T. Is intranasal zinc effective and safe for the common cold? A systematic review and meta-analysis. J. Prim. Health Care 2009, 1, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.B. Ineffectiveness of intranasal zinc gluconate for prevention of experimental rhinovirus colds. Clin. Infect. Dis. 2001, 33, 1865–1870. [Google Scholar] [CrossRef] [Green Version]
- Alexander, T.H.; Davidson, T.M. Intranasal zinc and anosmia: The zinc-induced anosmia syndrome. Laryngoscope. 2006, 116, 217–220. [Google Scholar] [CrossRef]
- Asif, M.; Saleem, M.; Saadullah, M.; Yaseen, H.S.; Al Zarzour, R. COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology 2020, 28, 1153–1161. [Google Scholar] [CrossRef]
- Silva, J.K.R.D.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential Oils as Antiviral Agents. Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation. Int. J. Mol. Sci. 2020, 21, 3426. [Google Scholar] [CrossRef]
- Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid. Based Complement. Altern. Med. 2014, 2014, 651593. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Devi, G.; Nagpal, M.; Singh, M.; Dhingra, G.A.; Aggarwal, G. Antiviral essential oils incorporated in nanocarriers: Strategy for prevention from COVID-19 and future infectious pandemics. Pharm. Nanotechnol. 2020. online ahead of print. [Google Scholar] [CrossRef]
- Severino, P.; Andreani, T.; Chaud, M.V.; Benites, C.I.; Pinho, S.C.; Souto, E.B. Essential oils as active ingredients of lipid nanocarriers for chemotherapeutic use. Curr. Pharm. Biotechnol. 2015, 16, 365–370. [Google Scholar] [CrossRef]
- Martínez-Sánchez, G.; Schwartz, A.; Donna, V.D. Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/COVID-19. Antioxidants 2020, 9, 389. [Google Scholar] [CrossRef]
- Valdenassi, L.; Franzini, M.; Ricevuti, G.; Rinaldi, L.; Galoforo, A.C.; Tirelli, U. Potential mechanisms by which the oxygen-ozone (O2-O3) therapy could contribute to the treatment against the coronavirus COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4059–4061. [Google Scholar]
- Semple, J.L.; Moore, G.W.K. High levels of ambient ozone (O3) may impact COVID-19 in high altitude mountain environments. Respir. Physiol. Neurobiol. 2020, 280, 103487. [Google Scholar] [CrossRef]
- Istituto Superiore di Sanità. 23 Luglio 2020. Rapporto ISS COVID-19 • n. 56/2020. Focus on: Utilizzo Professionale Dell’ozono Anche in Riferimento a COVID-19. Available online: https://www.iss.it/rapporti-covid-19/-/asset_publisher/btw1J82wtYzH/content/rapporti-iss-covid-19-n.-56-2020-focus-on-utilizzo-professionale-dell-ozono-anche-in-riferimento-al-covid-19.-versione-del-23-luglio-2020.-gruppo-di-lavoro-iss-inail (accessed on 4 December 2020).
- Zheng, Z.; Dong, M.; Hu, K. A preliminary evaluation on the efficacy of ozone therapy in the treatment of COVID-19. J. Med. Virol. 2020. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- ISCO3. Uso Potenziale di Ozono Nella SARS-CoV-2/COVID-19. Madrid, 2020. Comitato Scientifico Internazionale di Ozonoterapia. Available online: www.isco3.org (accessed on 4 December 2020).
- Zafar, S.; Arshad, M.S.; Fatima, S.; Ali, A.; Zaman, A.; Sayed, E.; Chang, M.W.; Ahmad, Z. COVID-19: Current Developments and Further Opportunities in Drug Delivery and Therapeutics. Pharmaceutics 2020, 12, 945. [Google Scholar] [CrossRef]
Repurposing Approach | Main Features | Examples of Repurposed Drugs |
---|---|---|
Experimental approach | ||
Binding assay | Identification of novel targets of known drugs through implementations of different techniques (e.g., mass spectrometry, affinity chromatography) | Imatinib for KIT-driven gastrointestinal stromal tumor |
Phenotypic screening | Screening of compounds using in vitro or in vivo disease models | Clemastine and quetiapine for multiple sclerosis |
Computational approach | ||
Signature matching | Comparation of the “signature” of a drug (such as its transcriptomic, structural, or adverse effect profile) with that of another drug or disease phenotype | Topiramate for inflammatory bowel diseases |
In silico studies | Application of sophisticated analytical methods to existing data identifying novel potential associations between drug and disease—it can be classified in a molecular-based approach and real-world data-based approach | Chloroquine (91) * Hydroxychloroquine (262) * Pirfenidone (1) * |
Pathway or network-based methods | Identification of repurposing targets by using network analysis based on genetic, protein, or disease data | Colchicine (24) * Melatonin (8) * |
Drug centric | Association between known drugs and novel targets to predict new indications—it includes molecular docking (screening of single agents against a library of protein structures) | Mebendazole for inhibition of angiogenesis |
Target based | Association between a known target and its established drug and a new indication—it requires a deep understanding of the molecular relationship between the target and the disease | |
Retrospective clinical analysis | Systematic analysis of electronic health records, clinical trial data, and post-marketing surveillance data could provide information concerning drug repurposing | Aspirin for colorectal cancer |
Artificial intelligence and machine learning models | Creation of a neural network based on the use of open chemical/drug database as input and the implementation of different algorithms to obtain the required drug as output | Baricitinib (15) * |
Specific Field | Description and Main Features |
---|---|
1. Rapid scientific advice | - No prespecified submission deadline - Flexibility regarding type and extent of the briefing dossier - Free of charge - Total review time reduced from regular 40–70 days to 20 days |
2. Rapid agreement of a pediatric investigation plan and rapid compliance check | - No prespecified submission deadline - Possibility of a focused scientific documentation - Total evaluation time reduced to a minimum of 20 days compared to regular 120 days - Timeline for a compliance check can be reduced to 4 days |
3. Rolling review | - an ad hoc procedure allowing EMA to continuously assess the data for an upcoming highly promising application as data become available, i.e., preceding the formal submission of a complete application for a new marketing authorization (or for an extension of indication in case of authorized medicines) - Several rolling review cycles can be carried out during the evaluation of one product as data continue to emerge, with each cycle requiring around two weeks |
4. Marketing authorization | - Possibility of implementation of a rolling review - Possibility of application for accelerated assessment, with reduction of the review time from 210 days to less than 150 days |
5. Extension of indication and extension of marketing authorization | - Rapid scientific advice, rapid agreement of a pediatric investigation plan, rolling review, and accelerated assessment can be implemented also for repurposed drugs |
6. Compassionate use | - While coordination and implementation of a compassionate use program remain the competence of a Member State, EMA can provide through the Committee for Human Medicinal Products recommendations for a “group of patients” on a medicinal product eligible for the centralized procedure, in order to favor a common approach across Member States |
7. Other considerations | - The Priority Medicines (PRIME) scheme could be considered by developers to receive enhanced support for the development of treatments or vaccines for COVID-19, thus facilitating accelerated assessment at the time of application for a marketing authorization - No specific considerations are provided regarding rapid reviews of orphan designations, given that applications for orphan designation in COVID-19 setting are not expected due to the high number of infections |
Repurposed Agents | Novel Formulations for Targeted Tissue Delivery | Galenic Formulations | Novel Formulations Aiming to Improve Safety | Novel Formulations with Adjuvant Micronutrients |
---|---|---|---|---|
Hydroxychloroquine | Inhaled formulations via nebulization (developed at clinical stage—phase 1/2) Liposomal formulation for intratracheal instillation (preclinical model) | Oral solution/suspension for nonresponsive patients or children (currently used in clinical settings) | Chirality switch with proposed use of (S)-(+)-enantiomer (working hypothesis) | Association with zinc supplement to improve inhibitory activity on SARS-CoV-2 replication (ongoing clinical trials) Formulation with glycyrrhizic acid to enhance delivery with synergic antiviral and anti-inflammatory effect |
Remdesivir | Inhaled formulations via nebulization or dry powder (developed at clinical stage—phase 1/2) | - | - | - |
Lopinavir/Ritonavir | Use of protease inhibitors encapsulated in endogenous/exogenous extracellular vesicles for targeted delivery (working hypothesis) | Use of protease inhibitors encapsulated in endogenous/exogenous extracellular vesicles for targeted delivery (working hypothesis) | Use of protease inhibitors encapsulated in endogenous/exogenous extracellular vesicles for targeted delivery (working hypothesis) | - |
Heparin and fibrinolytics | Inhaled formulations of unfractionated heparin via nebulization (ongoing clinical trials in COVID-19 patients) Inhaled formulation of alteplase via nebulization has been developed (phase 2 trial in non-COVID patients) | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, M.; De Ponti, F. Drug Repurposing in the COVID-19 Era: Insights from Case Studies Showing Pharmaceutical Peculiarities. Pharmaceutics 2021, 13, 302. https://doi.org/10.3390/pharmaceutics13030302
Gatti M, De Ponti F. Drug Repurposing in the COVID-19 Era: Insights from Case Studies Showing Pharmaceutical Peculiarities. Pharmaceutics. 2021; 13(3):302. https://doi.org/10.3390/pharmaceutics13030302
Chicago/Turabian StyleGatti, Milo, and Fabrizio De Ponti. 2021. "Drug Repurposing in the COVID-19 Era: Insights from Case Studies Showing Pharmaceutical Peculiarities" Pharmaceutics 13, no. 3: 302. https://doi.org/10.3390/pharmaceutics13030302
APA StyleGatti, M., & De Ponti, F. (2021). Drug Repurposing in the COVID-19 Era: Insights from Case Studies Showing Pharmaceutical Peculiarities. Pharmaceutics, 13(3), 302. https://doi.org/10.3390/pharmaceutics13030302