Silane Modification of Mesoporous Materials for the Optimization of Antiviral Drug Adsorption and Release Capabilities in Vaginal Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Functionalized Mesoporous Hybrid Materials. Characterization Methods
2.2. Drug Loading and Release Studies
3. Results
3.1. Infrared Spectroscopy
3.2. Thermal Analysis
3.3. Nitrogen Adsorption/Desorption
3.4. Drug Loading and Release
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Zhang, Y.T.; Zhou, J.; Gu, D. Recent progress on functional mesoporous materials as catalysts in organic synthesis. Emergent Mater. 2020, 3, 247–266. [Google Scholar] [CrossRef]
- Wagner, T.; Haffer, S.; Weinberger, C.; Klaus, D.; Tiemann, M. Mesoporous materials as gas sensors. Chem. Soc. Rev. 2013, 42, 4036–4053. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Li, D. Adsorptive removal of phosphate from water using mesoporous materials: A review. J. Environ. Manag. 2017, 193, 470–482. [Google Scholar] [CrossRef]
- Lim, E.; Chun, J.; Jo, C.; Hwang, J. Recent advances in the synthesis of mesoporous materials and their application to lithium-ion batteries and hybrid supercapacitors. Korean J. Chem. Eng. 2021, 38, 227–247. [Google Scholar] [CrossRef]
- Doadrio, A.L.; Salinas, A.J.; Sanchez-Montero, J.M.; Vallet-Regi, M. Drug release from ordered mesoporous silicas. Curr. Pharm. Des. 2015, 21, 6213–6819. [Google Scholar] [CrossRef] [Green Version]
- Szegedi, A.; Popova, M.; Goshev, I.; Mihály, J. Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. J. Solid State Chem. 2011, 184, 1201–1207. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Erol, M.; Stark, W.J.; Mohn, D.; Hong, Z.; Mano, J.F. Polymer/bioactive glass nanocomposites for biomedical applications: A review. Compos. Sci. Technol. 2010, 70, 1764–1776. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Jiang, H.; Wan, L.; Zhao, Q.; Jiang, T.; Wang, B.; Wang, S. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 2015, 13, 354–363. [Google Scholar] [CrossRef]
- Sher, P.; Ingavle, G.; Ponrathnam, S.; Pawar, A.P. Low density porous carrier: Drug adsorption and release study by response surface methodology using different solvents. Int. J. Pharm. 2007, 331, 72–83. [Google Scholar] [CrossRef]
- Patil, P.; Paradkar, A. Porous polystyrene beads as carriers for self-emulsifying system containing loratadine. AAPS PharmSciTech 2006, 7, E28. [Google Scholar] [CrossRef]
- Taylor, K.M.; Kim, J.S.; Rieter, W.J.; An, H.; Lin, W.; Lin, W. Mesoporous silica nanospheres as highly efficient MRI contrast agents. J. Am. Chem. Soc. 2008, 130, 2154–2155. [Google Scholar] [CrossRef]
- Santos, H.; Salonen, J.; Bimbo, L.; Lehto, V.-P.; Peltonen, L.; Hirvonen, J. Mesoporous materials as controlled drug delivery formulations. J. Drug Deliv. Sci. Technol. 2011, 21, 139–155. [Google Scholar] [CrossRef]
- Tamayo, A.; Alejandra Mazo, M.; Ruiz-Caro, R.; Martin-Illana, A.; Bedoya, L.M.; Dolores Veiga-Ochoa, M.; Rubio, J. Mesoporous Silicon Oxycarbide Materials for controlled drug delivery systems. Chem. Eng. J. 2015, 280, 165–174. [Google Scholar] [CrossRef]
- Martin-Illana, A.; Cazorla-Luna, R.; Notario-Pérez, F.; Ruiz-Caro, R.; Bedoya, L.M.; Veiga-Ochoa, M.D.; Rubio, J.; Tamayo, A. Amino Functionalized Micro-Mesoporous Hybrid Particles for the Sustained Release of the Antiretroviral Drug Tenofovir. Materials 2020, 13, 3494. [Google Scholar] [CrossRef]
- Laurenti, M.; Cauda, V. Gentamicin-releasing mesoporous ZnO structures. Materials 2018, 11, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahuja, G.; Pathak, K. Porous Carriers for Controlled/Modulated Drug Delivery. Indian J. Pharm. Sci. 2009, 71, 599–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamayo, A.; Tellez, L.; Rodriguez-Reyes, M.; Mazo, M.A.; Rubio, F.; Rubio, J. Surface properties of bioactive TEOS-PDMS-TiO2-CaO ormosils. J. Mater. Sci. 2014, 49, 4656–4669. [Google Scholar] [CrossRef]
- Chen, Q.; Miyata, N.; Kokubo, T.; Nakamura, T. Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol-gel process. J. Biomed. Mater. Res. 2000, 51, 605–611. [Google Scholar] [CrossRef]
- Kamitakahara, M.; Kawashita, M.; Miyata, N.; Kokubo, T.; Nakamura, T. Bioactivity and Mechanical Properties of Polydimethylsiloxane (PDMS)-CaO-SiO2 Hybrids with Different PDMS Contents. J. Sol.-Gel Sci. Technol. 2001, 21, 75–81. [Google Scholar] [CrossRef]
- Racca, L.; Canta, M.; Dumontel, B.; Ancona, A.; Limongi, T.; Garino, N.; Laurenti, M.; Canavese, G.; Cauda, V. Zinc oxide nanostructures in biomedicine. In Smart Nanoparticles for Biomedicine; Elsevier: Amsterdam, The Netherlands, 2018; pp. 171–187. [Google Scholar]
- Boccardi, E.; Liverani, L.; Beltrán, A.; Günther, R.; Schmidt, J.; Peukert, W.; Boccaccini, A. Mesoporous silica submicron particles (MCM-41) incorporating nanoscale Ag: Synthesis, characterization and application as drug delivery coatings. J. Porous Mater. 2019, 26, 443–453. [Google Scholar] [CrossRef]
- Cazorla-Luna, R.; Martin-Illana, A.; Notario-Perez, F.; Miguel Bedoya, L.; Tamayo, A.; Ruiz-Caro, R.; Rubio, J.; Veiga, M.-D. Vaginal Polyelectrolyte Layer-by-Layer Films Based on Chitosan Derivatives and Eudragit S100 for pH Responsive Release of Tenofovir. Mar. Drugs 2020, 18, 44. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yan, J.; Wen, N.; Xiong, H.; Cai, S.; He, Q.; Hu, Y.; Peng, D.; Liu, Z.; Liu, Y. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 2020, 230, 119619. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, S.; Deo, K.A.; Gaharwar, A.K. 2D covalent organic frameworks for biomedical applications. Adv. Funct. Mater. 2020, 30, 2002046. [Google Scholar] [CrossRef]
- Huang, R.; Shen, Y.-W.; Guan, Y.-Y.; Jiang, Y.-X.; Wu, Y.; Rahman, K.; Zhang, L.-J.; Liu, H.-J.; Luan, X. Mesoporous silica nanoparticles: Facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater. 2020, 116. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, A.; Ruiz-Caro, R.; Mazo, A.; Veiga-Ochoa, M.; Rubio, J. Chemical oxidation of silicon oxycarbide ceramics for advanced drug delivery systems. J. Mater. Sci. 2016, 51, 1382–1391. [Google Scholar] [CrossRef]
- Afshari, R.; Mazinani, S.; Abdouss, M. Nanohybrid nanoparticles based on chitosan/functionalized carbon nanotubes as anti-HIV nanocarrier. Nano 2015, 10, 1550010. [Google Scholar] [CrossRef]
- Leporati, A.; Novikov, M.S.; Valuev-Elliston, V.T.; Korolev, S.P.; Khandazhinskaya, A.L.; Kochetkov, S.N.; Gupta, S.; Goding, J.; Bolotin, E.; Gottikh, M.B. Hydrophobic-core PEGylated graft copolymer-stabilized nanoparticles composed of insoluble non-nucleoside reverse transcriptase inhibitors exhibit strong anti-HIV activity. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2405–2413. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Traore, Y.L.; Lee, J.S.; Kim, J.-H.; Ho, E.A.; Liu, S. Self-assembled nanoparticles made from a new PEGylated poly (aspartic acid) graft copolymer for intravaginal delivery of poorly water-soluble drugs. J. Biomater. Sci. Polym. Ed. 2017, 28, 2082–2099. [Google Scholar] [CrossRef]
- Desai, J.; Thakkar, H. Darunavir-loaded lipid nanoparticles for targeting to HIV reservoirs. AAPS PharmSciTech 2018, 19, 648–660. [Google Scholar] [CrossRef]
- Maisel, K.; Reddy, M.; Xu, Q.; Chattopadhyay, S.; Cone, R.; Ensign, L.M.; Hanes, J. Nanoparticles coated with high molecular weight PEG penetrate mucus and provide uniform vaginal and colorectal distribution in vivo. Nanomedicine 2016, 11, 1337–1343. [Google Scholar] [CrossRef]
- Khung, Y.L.; Narducci, D. Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting. Adv. Colloid Interface Sci. 2015, 226, 166–186. [Google Scholar] [CrossRef]
- Yang, W.; Song, F.X.; Wang, S.; Zhang, L.; Zeng, X.; Li, Y. Multifunctional mesoporous silica nanoparticles with different morphological characteristics for in vitro cancer treatment. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125717. [Google Scholar] [CrossRef]
- Kim, K.-M.; Kim, H.M.; Lee, W.-J.; Lee, C.-W.; Kim, T.-I.; Lee, J.-K.; Jeong, J.; Paek, S.-M.; Oh, J.-M. Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica. Int. J. Nanomed. 2014, 9, 29. [Google Scholar]
- Blanco, I. Polysiloxanes in Theranostics and Drug Delivery: A Review. Polymers 2018, 10, 755. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.-Y.; Liu, X.-Q.; Guan, Y.-P.; Liu, H.-Z. Synthesis of magnetic silica nanospheres with metal ligands and application in affinity separation of proteins. Colloids Surf. A Physicochem. Eng. Asp. 2006, 275, 87–91. [Google Scholar] [CrossRef]
- Torres-Salas, P.; del Monte-Martinez, A.; Cutiño-Avila, B.; Rodriguez-Colinas, B.; Alcalde, M.; Ballesteros, A.O.; Plou, F.J. Immobilized biocatalysts: Novel approaches and tools for binding enzymes to supports. Adv. Mater. 2011, 23, 5275–5282. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Zheng, Y. Modification of silica nanoparticles and their application in UDMA dental polymeric composites. Polym. Compos. 2007, 28, 198–207. [Google Scholar] [CrossRef]
- Rao, Y.; Chen, S. Molecular composites comprising TiO2 and their optical properties. Macromolecules 2008, 41, 4838–4844. [Google Scholar] [CrossRef]
- De Palma, R.; Peeters, S.; Van Bael, M.J.; Van den Rul, H.; Bonroy, K.; Laureyn, W.; Mullens, J.; Borghs, G.; Maes, G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 2007, 19, 1821–1831. [Google Scholar] [CrossRef]
- Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008, 3, 397–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avilés, F.; Cauich-Rodríguez, J.V.; Toro-Estay, P.; Yazdani-Pedram, M.; Aguilar-Bolados, H. Improving carbon nanotube/polymer interactions in nanocomposites. In Carbon Nanotube-Reinforced Polymers; Elsevier: Amsterdam, The Netherlands, 2018; pp. 83–115. [Google Scholar]
- Seo, J.H.; Chen, L.-J.; Verkhoturov, S.V.; Schweikert, E.A.; Revzin, A. The use of glass substrates with bi-functional silanes for designing micropatterned cell-secreted cytokine immunoassays. Biomaterials 2011, 32, 5478–5488. [Google Scholar] [CrossRef] [Green Version]
- Selvan, S.T.; Tan, T.T.Y.; Yi, D.K.; Jana, N.R. Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 2010, 26, 11631–11641. [Google Scholar] [CrossRef] [PubMed]
- Biggs, C.I.; Edmondson, S.; Gibson, M.I. Thiol–ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold–thiol monolayers, amines or lipid binding. Biomater. Sci. 2015, 3, 175–181. [Google Scholar] [CrossRef]
- Seo, J.H.; Shin, D.-S.; Mukundan, P.; Revzin, A. Attachment of hydrogel microstructures and proteins to glass via thiol-terminated silanes. Colloids Surf. B Biointerfaces 2012, 98, 1–6. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.-c.; Lian, H.-z.; Chen, H.-y. Aptamer-based organic-silica hybrid affinity monolith prepared via “thiol-ene” click reaction for extraction of thrombin. Talanta 2015, 138, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Owen, D.H.; Katz, D.F. A vaginal fluid simulant. Contraception 1999, 59, 91–95. [Google Scholar] [CrossRef]
- Alonso, B.; Massiot, D.; Babonneau, F.; Brusatin, G.; Giustina, G.D.; Kidchob, T.; Innocenzi, P. Structural Control in Germania Hybrid Organic−Inorganic Materials. Chem. Mater. 2005, 17, 3172–3180. [Google Scholar] [CrossRef]
- Fontinha, I.R.; Salta, M.M.; Zheludkevich, M.L.; Ferreira, M.G. EIS study of amine cured epoxy-silica-zirconia sol-gel coatings for corrosion protection of the aluminium alloy EN AW 6063. Port. Electrochim. Acta 2013, 31, 307–319. [Google Scholar] [CrossRef]
- Bertelsen, C.M.; Boerio, F.J. Linking mechanical properties of silanes to their chemical structure: An analytical study of γ-GPS solutions and films. Prog. Org. Coat. 2001, 41, 239–246. [Google Scholar] [CrossRef]
- Criado, M.; Sobrados, I.; Sanz, J. Polymerization of hybrid organic–inorganic materials from several silicon compounds followed by TGA/DTA, FTIR and NMR techniques. Prog. Org. Coat. 2014, 77, 880–891. [Google Scholar] [CrossRef]
- Innocenzi, P.; Brusatin, G.; Licoccia, S.; Di Vona, M.L.; Babonneau, F.; Alonso, B. Controlling the thermal polymerization process of hybrid organic-inorganic films synthesized from 3-Methacryloxypropyltrimethoxysilane and 3-Aminopropyltriethoxysilane. Chem. Mater. 2003, 15, 4790–4797. [Google Scholar] [CrossRef]
- Rodriguez, M.A.; Liso, M.J.; Rubio, F.; Rubio, J.; Oteo, J.L. Study of the reaction of γ-methacryloxypropyltrimethoxysilane (γ− MPS) with slate surfaces. J. Mater. Sci. 1999, 34, 3867–3873. [Google Scholar] [CrossRef]
- Nyquist, R.A. Chapter 4—Thiols, Sulfides and Disulfides, Alkanethiols, and Alkanedithiols (S-H stretching). In Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra; Nyquist, R.A., Ed.; Academic Press: San Diego, CA, USA, 2001; pp. 65–83. [Google Scholar] [CrossRef]
- Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe. Zeitschr. Chem. Ind. Kolloide 1907, 2, 15. [Google Scholar] [CrossRef]
- Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances. K. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S. Adsorption of Heavy Metals from Waste Streams by Peat. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 1995. [Google Scholar]
- Chien, S.H.; Clayton, W.R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils1. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
- Xiao, Y.; Azaiez, J.; Hill, J.M. Erroneous application of pseudo-second-order adsorption kinetics model: Ignored assumptions and spurious correlations. Ind. Eng. Chem. Res. 2018, 57, 2705–2709. [Google Scholar] [CrossRef]
- Teng, H.; Hsieh, C.-T. Activation Energy for Oxygen Chemisorption on Carbon at Low Temperatures. Ind. Eng. Chem. Res. 1999, 38, 292–297. [Google Scholar] [CrossRef]
- Tamayo, A.; Mazo, M.A.; Veiga, M.D.; Ruiz-Caro, R.; Notario-Pérez, F.; Rubio, J. Drug kinetics release from Eudragit—Tenofovir@SiOC tablets. Mater. Sci. Eng. C 2017, 75, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
- Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2006, 309, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Ol’ga, M.T.; Chernov, N.F.; Voronkov, M.G. Alkoxy (alkyl) silylalkyl-derivatives of nitrogen-containing heterocycles. Russ. Chem. Rev. 1999, 68, 287–298. [Google Scholar]
- Chung, I.; Kim, T.; Kang, J.; Tan, M.M.; Dung, N.T.K.; Huynh, M.D.; Dai Lam, T.; Chinh, N.T.; Giang, B.L.; Hoang, T. Preparation, stabilization and characterization of 3-(methacryloyloxy) propyl trimethoxy silane modified colloidal nanosilica particles. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124066. [Google Scholar]
- Avilés, F.; Sierra-Chi, C.; Nistal, A.; May-Pat, A.; Rubio, F.; Rubio, J. Influence of silane concentration on the silanization of multiwall carbon nanotubes. Carbon 2013, 57, 520–529. [Google Scholar] [CrossRef]
- Malik, N.S.; Ahmad, M.; Minhas, M.U.; Murtaza, G.; Khalid, Q. Polysaccharide hydrogels for controlled release of acyclovir: Development, characterization and in vitro evaluation studies. Polym. Bull. 2017, 74, 4311–4328. [Google Scholar] [CrossRef]
- Bauer, F.; Meyer, R.; Bertmer, M.; Naumov, S.; Al-Naji, M.; Wissel, J.; Steinhart, M.; Enke, D. Silanization of siliceous materials, part 3: Modification of surface energy and acid-base properties of silica nanoparticles determined by inverse gas chromatography (IGC). Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126472. [Google Scholar] [CrossRef]
- Sananes Israel, S.; Rébiscoul, D.; Odorico, M.; Flaud, V.R.; Ayral, A. Surface Properties of Alkoxysilane Layers Grafted in Supercritical Carbon Dioxide. Langmuir 2019, 35, 2792–2800. [Google Scholar] [CrossRef] [PubMed]
Concentration Silane (wt %) | G | M | S | |||
---|---|---|---|---|---|---|
SSA (m2/g) | Pore Volume (cm3/g) | SSA (m2/g) | Pore Volume (cm3/g) | SSA (m2/g) | Pore Volume (cm3/g) | |
0 | 610 | 1.13 | 610 | 1.13 | 610 | 1.13 |
1 | 618 | 1.20 | 387 | 0.87 | 595 | 1.22 |
1.5 | 657 | 1.23 | 499 | 1.15 | 360 | 0.82 |
3 | 572 | 1.14 | 397 | 1.01 | 339 | 0.74 |
5 | 502 | 1.10 | 239 | 0.67 | 254 | 0.69 |
10 | 434 | 0.98 | 204 | 0.63 | 67 | 0.26 |
Material | Model | |||
---|---|---|---|---|
Nonfunctionalized | Elovich | a | b | r2 |
4.54 | 0.59 | 0.957 | ||
1 G | 7.61 | 0.09 | 0.937 | |
Lagergren | klag | c∞ | r2 | |
1.5 G | 6.261 × 10−2 | 64.6 | 0.887 | |
3 G | 7.910 × 10−3 | 85.9 | 0.953 | |
Pseudo-second-order | k2s | c∞ | r2 | |
5 G | 1.011 × 10−4 | 96.1 | 0.952 | |
Elovich | a | b | r2 | |
10 G | 14.71 | 0.45 | 0.963 | |
Pseudo-second-order | k2s | c∞ | r2 | |
1 M | 1.373 × 10−4 | 58.9 | 0.914 | |
1.5 M | 1.504 × 10−4 | 41.7 | 0.932 | |
3 M | 9.591 × 10−4 | 51.5 | 0.963 | |
5 M | 3.130 × 10−3 | 37.0 | 0.600 | |
10 M | 3.650 × 10−5 | 100.6 | 0.977 | |
Elovich | a | b | r2 | |
1 S | 19.23 | 0.25 | 0.847 | |
1.5 S | 337.12 | 0.29 | 0.795 | |
Pseudo-second-order | k2s | c∞ | r2 | |
3 S | 2.234 × 10−4 | 62.3 | 0.896 | |
5 S | 3.160 × 10−4 | 44.0 | 0.896 | |
10 S | 2.051 × 10−4 | 96.4 | 0.930 |
Material | Model | ||||
---|---|---|---|---|---|
Nonfunctionalized | First Order | C∞ (mg) | k1st (min−1) | r2 | |
0.98 | 5201 × 10−2 | 0.990 | |||
Weibull | C∞ | b | a | r2 | |
1 G | 1.86 | 0.72 | 6.14 | 0.992 | |
1.5 G | 0.19 | 0.59 | 8.73 | 0.997 | |
3 G | 0.69 | 0.67 | 7.20 | 0.995 | |
5 G | 2.78 | 0.66 | 6.30 | 0.995 | |
10 G | 0.17 | 0.73 | 10.54 | 0.995 | |
1 M | 0.32 | 0.77 | 7.61 | 0.995 | |
1.5 M | 0.46 | 0.77 | 12.71 | 0.996 | |
3 M | 1.21 | 0.61 | 5.57 | 0.998 | |
5 M | 0.50 | 0.66 | 7.16 | 0.995 | |
10 M | 0.28 | 0.68 | 12.19 | 0.997 | |
1 S | 0.84 | 0.63 | 6.24 | 0.995 | |
1.5 S | 2.39 | 0.68 | 9.01 | 0.971 | |
3 S | 0.57 | 0.74 | 11.41 | 0.991 | |
5 S | 0.53 | 0.65 | 8.99 | 0.995 | |
10 S | 1.04 | 0.61 | 6.94 | 0.995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whittle, E.; Martín-Illana, A.; Cazorla-Luna, R.; Notario-Perez, F.; Veiga-Ochoa, M.D.; Rubio, J.; Tamayo, A. Silane Modification of Mesoporous Materials for the Optimization of Antiviral Drug Adsorption and Release Capabilities in Vaginal Media. Pharmaceutics 2021, 13, 1416. https://doi.org/10.3390/pharmaceutics13091416
Whittle E, Martín-Illana A, Cazorla-Luna R, Notario-Perez F, Veiga-Ochoa MD, Rubio J, Tamayo A. Silane Modification of Mesoporous Materials for the Optimization of Antiviral Drug Adsorption and Release Capabilities in Vaginal Media. Pharmaceutics. 2021; 13(9):1416. https://doi.org/10.3390/pharmaceutics13091416
Chicago/Turabian StyleWhittle, Elena, Araceli Martín-Illana, Raul Cazorla-Luna, Fernando Notario-Perez, María Dolores Veiga-Ochoa, Juan Rubio, and Aitana Tamayo. 2021. "Silane Modification of Mesoporous Materials for the Optimization of Antiviral Drug Adsorption and Release Capabilities in Vaginal Media" Pharmaceutics 13, no. 9: 1416. https://doi.org/10.3390/pharmaceutics13091416
APA StyleWhittle, E., Martín-Illana, A., Cazorla-Luna, R., Notario-Perez, F., Veiga-Ochoa, M. D., Rubio, J., & Tamayo, A. (2021). Silane Modification of Mesoporous Materials for the Optimization of Antiviral Drug Adsorption and Release Capabilities in Vaginal Media. Pharmaceutics, 13(9), 1416. https://doi.org/10.3390/pharmaceutics13091416