Comparative Analysis of the Fatty Acid Profiles of Selected Representatives of Chlorella-Clade to Evaluate Their Biotechnological Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Cultivation of Algal Strains
2.2. Microscopy
2.3. DNA Isolation, Amplification, Purification, and Sequencing
2.4. Methods of Phylogenetic Analysis
2.5. Fatty Acid Extraction and Analysis
2.6. Statistical Analysis
3. Results
3.1. Morphological Observations by Light Microscopy
3.2. Phylogenetic Analysis
3.3. Fatty Acid Composition of the Studied Organisms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nascimento, I.A.; Marques, S.S.I.I.; Cabanelas, T.D.; Pereira, S.A.; Druzian, J.I.; de Souza, C.O.; Vich, D.V.; de Carvalho, G.C.; Nascimento, M.A. Screening microalgae strains for biodiesel production: Lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Res. 2013, 6, 1–13. [Google Scholar] [CrossRef]
- Karpagam, R.; Preeti, R.; Jawahar, R.K.; Saranya, S.; Ashokkumar, B.; Varalakshmi, P. Fatty acid biosynthesis from a new isolate Meyerella sp. N4: Molecular characterization, nutrient starvation, and fatty acid profiling for lipid enhancement. Energy Fuels 2015, 29, 143–149. [Google Scholar] [CrossRef]
- Molinuevo-Salces, B.; García-González, M.C.; González-Fernández, C.; Cuetos, M.J.; Morán, A.; Gómez, X. Anaerobic co-digestion of livestock wastes with vegetable processing wastes: A statistical analysis. Bioresour. Technol. 2010, 101, 9479–9485. [Google Scholar] [CrossRef]
- Blasio, M.; Balzano, S. Fatty Acids Derivatives From Eukaryotic Microalgae, Pathways and Potential Applications. Front. Microbiol. 2021, 12, 718933. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, K. Fatty acids of microalgae: Diversity and applications. Rev. Environ. Sci. Biotechnol. 2021, 20, 515–547. [Google Scholar] [CrossRef]
- Solomon, W.; Mutum, L.; Janda, T.; Molnár, Z. Potential benefit of microalgae and their interaction with bacteria to sustainable crop production. Plant Growth Regul. 2023, 101, 53–65. [Google Scholar] [CrossRef]
- Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Weyers, S.L.; Goemann, H.M.; Peyton, B.M.; Gardner, R.D. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Res. 2021, 54, 102200. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, B.; She, X.; Zhao, F.; Cao, Y.; Ren, D.; Lu, J. Lipid production and composition of fatty acids in Chlorella vulgaris cultured using different methods: Photoautotrophic, heterotrophic, and pure and mixed conditions. Ann. Microbiol. 2014, 64, 1239–1246. [Google Scholar] [CrossRef]
- Teh, K.Y.; Loh, S.H.; Aziz, A.; Takahashi, K.; Effendy, A.W.M.; Cha, T.S. Lipid accumulation patterns and role of different fatty acid types towards mitigating salinity fluctuations in Chlorella vulgaris. Sci. Rep. 2021, 11, 438. [Google Scholar] [CrossRef]
- Jusoh, M.; Loh, S.H.; Chuah, T.S.; Aziz, A.; Cha, T.S. Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Res. 2015, 9, 14–20. [Google Scholar] [CrossRef]
- Singh, A.; Nigam, P.S.; Murphy, J.D. Mechanism and challenges in commercialisation of algal biofuels. Bioresour. Technol. 2011, 102, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Nesterovich, K. Cereals: Yesterday, today, tomorrow. Flora Folium 2023, 1, 23. [Google Scholar]
- Bodla, R.B. A study on wheat grass and its Nutritional value. Food Sci. Qual. Manag. 2012, 2, 1–8. [Google Scholar]
- Temraleeva, A.D.; Mincheva, E.V.; Bukin, Y.S.; Andreeva, A.M. Modern Methods of Isolation, Cultivation and Identification Green Algae (Chlorophyta); Kostroma Printing House: Kostroma, Russia, 2014; 215p. [Google Scholar]
- Krivina, E.S.; Sinetova, M.; Savchenko, T.; Degtyaryov, E.; Tebina, E.; Temraleeva, A. Micractinium lacustre and M. thermotolerans spp. nov. (Trebouxiophyceae, Chlorophyta): Taxonomy, temperature-dependent growth, photosynthetic characteristics and fatty acid composition. Algal Res. 2023, 71, 103042. [Google Scholar] [CrossRef]
- Krivina, E.S.; Savchenko, T.V.; Tebina, E.M.; Shatilovich, A.V.; Temraleeva, A.D. Morphology, phylogeny and fatty acid profiles of Meyerella similis from freshwater ponds and Meyerella krienitzii sp. nov. from soil (Trebouxiophyceae, Chlorophyta). J. Appl. Phycol. 2023, 35, 2295–2307. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: http://www.algaebase.org (accessed on 16 May 2024).
- Seibel, P.N.; Müller, T.; Dandekar, T.; Wolf, M. Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res. Notes 2008, 1, 91. [Google Scholar] [CrossRef]
- Krivina, E.; Portnov, A.; Temraleeva, A. A description of Aliichlorella ignota gen. et sp. nov. and a comparison of the efficiency of species delimitation methods in the Chlorella-clade (Trebouxiophyceae, Chlorophyta). Phycol. Res. 2024, 72, 180–190. [Google Scholar] [CrossRef]
- Bligh, E.; Dyer, W.J. A rapid method of total lipid extraction and purification. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Garrido-Fernandezxa, A.; Cortes-Delgado, A.; Lopez-Lopez, A. Effect of Spanish-Style Table Olive Processing on Fatty Acid Profile: A Compositional Data Analysis (CoDA) Approach. Foods 2022, 11, 4024. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, X.; Zhou, S.; Cheng, Z.; Shi, K.; Zhang, C.; Shao, H. Phthalic Acid Esters: Natural Sources and Biological Activities. Toxins 2021, 13, 495. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.W.; Jo, S.-W.; Cho, H.-W.; Nam, S.W.; Shin, W.; Park, K.M.; Lee, K.I.; Yoon, H.-S. Phylogeny, morphology, and physiology of Micractinium strains isolated from shallow ephemeral freshwater in Antarctica. Phycol. Res. 2015, 63, 212–218. [Google Scholar] [CrossRef]
- Murata, N.; Los, D.A. Membrane Fluidity and Temperature Perception. Plant Physiol. 1997, 115, 875–879. [Google Scholar]
- Lang, I.; Hodac, L.; Friedl, T.; Feussner, I. Fatty acid profiles and their distribution patterns in microalgae: A comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011, 11, 124. [Google Scholar] [CrossRef]
- Sinetova, M.A.; Sidorov, R.A.; Starikov, A.Y.; Voronkov, A.S.; Medvedeva, A.S.; Krivova, Z.V.; Pakholkova, M.S.; Bachin, D.V.; Bedbenov, V.S.; Gabrielyan, D.A.; et al. Assessment of the biotechnological potential of cyanobacterial and microalgal strains from IPPAS culture collection. Appl. Biochem. Microbiol. 2020, 56, 794–808. [Google Scholar] [CrossRef]
- Jahromi, K.G.; Koochi, Z.H.; Gholamreza, K.; Alireza, S. Manipulation of fatty acid profile and nutritional quality of Chlorella vulgaris by supplementing with citrus peel fatty acid. Sci. Rep. 2022, 12, 8151. [Google Scholar] [CrossRef]
- Vishnu Priya, M.; Ramesh, K.; Sivakumar, P.; Balasubramanian, R.; Anirbid, S. Kinetic and thermodynamic studies on the extraction of bio oil from Chlorella vulgaris and the subsequent biodiesel production. Chem. Eng. Commun. 2018, 206, 409–418. [Google Scholar] [CrossRef]
- de Souza, J.; Preseault, C.L.; Lock, A.L. Altering the ratio of dietary palmitic, stearic, and oleic acids in diets with or without whole cottonseed affects nutrient digestibility, energy partitioning, and production responses of dairy cows. J. Dairy Sci. 2018, 101, 172–185. [Google Scholar] [CrossRef]
- Nelson, G.J. Health Effects of Dietary Fatty Acids; The American Oil Chemists Society: Urbana, IL, USA, 1991; pp. 84–86. [Google Scholar]
- Liu, N.; Guo, B.; Cao, Y.; Wang, H.; Yang, S.; Huo, H.; Kong, W.; Zhang, A.; Niu, S. Effects of organic carbon sources on the biomass and lipid production by the novel microalga Micractinium reisseri FM1 under batch and fed-batch cultivation. S. Afr. J. Bot. 2021, 139, 329–337. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Ishihara, K.; Murata, M.; Kaneniwa, M.; Saito, H.; Komatsu, W.; Shinohara, K. Purification of stearidonic acid (18:4(n-3)) and hexadecatetraenoic acid (16:4(n-3)) from algal fatty acid with lipase and medium pressure liquid chromatography. Biosci. Biotechnol. Biochem. 2000, 64, 2454–2457. [Google Scholar] [CrossRef]
- Nesterov, V.N.; Rozentsvet, O.A.; Bogdanova, E.S. Influence of abiotic factors on the content of fatty acids of Ulva Intestinalis. Contemp. Probl. Ecol. 2018, 6, 441–447. [Google Scholar] [CrossRef]
- Lin, Y.; Ge, J.; Zhang, Y.; Ling, H.; Yan, X.; Ping, W. Monoraphidium sp. HDMA-20 is a new potential source of α-linolenic acid and eicosatetraenoic acid. Lipids Health Dis. 2019, 18, 56. [Google Scholar] [CrossRef]
- Bulli, L.I. Peculiarities of the composition of lipids in mature mullet eggs (mullet, singil and mullet) of the Azov-Black Sea basin. Ribogospod. Nauka Ukr. 2011, 4, 36–40. [Google Scholar]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacoter. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Marchand, D.; Rontani, J.-F. Characterisation of photo-oxidation and autoxidation products of phytoplanktonic monounsaturated fatty acids in marine particulate matter and recent sediments. Org. Geochem. 2001, 32, 287–304. [Google Scholar] [CrossRef]
- Gu, X.; Huang, L.; Lian, J. Biomanufacturing of γ-linolenic acid-enriched galactosyldiacylglycerols: Challenges in microalgae and potential in oleaginous yeasts. Synth. Syst. Biotechnol. 2023, 8, 469–478. [Google Scholar] [CrossRef]
- Kapoor, R.; Nair, H. Gamma Linolenic Acid: Sources and Functions. In Bailey’s Industrial Oil and Fat Products; Wiley: Hoboken, NJ, USA, 2005; pp. 1–45. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Petkov, G.; Ivanova, A.; Iliev, I.; Vaseva, I. A critical look at the microalgae biodiesel. Eur. J. Lipid Sci. Technol. 2012, 114, 103–111. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Hydrobiological Aspects of Saturated, Methyl-Branched, and Cyclic Fatty Acids Derived from Aquatic Ecosystems: Origin, Distribution, and Biological Activity. Hydrobiology 2022, 1, 89–110. [Google Scholar] [CrossRef]
- Vigani, M.; Barbosa, M.; Enzing, C.; Parisi, C.; Ploeg, M.; Sijtsma, L.; Rodríguez Cerezo, E. Microalgae-Based Products for the Food and Feed Sector—An Outlook for Europe; Publications Office: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Savchenko, T.; Degtyaryov, E.; Radzyukevich, Y.; Buryak, V. Therapeutic Potential of Plant Oxylipins. Int. J. Mol. Sci. 2022, 23, 14627. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W.; Han, X. Chapter 1—Lipids: Their structures and occurrence. In Lipid Analysis, 4th ed.; Christie, W.W., Han, X., Eds.; Woodhead Publishing: Cambridge, UK, 2007; pp. 3–19. [Google Scholar] [CrossRef]
- Köfeler, H.C. Branched Fatty Acids. In Encyclopedia of Lipidomics; Wenk, M.R., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Kaneda, T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol. Rev. 1991, 55, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. The LipidWeb. 1999. Available online: https://www.lipidmaps.org/resources/lipidweb/lipidweb_html/index.html (accessed on 25 April 2024).
- Erkoç, E.; Kiliç, N.K.; Dönmez, G. Investigation of thermotolerant Chlorella vulgaris dye bioremoval capacity under different conditions. Int. J. Environ. Stud. 2021, 78, 954–964. [Google Scholar]
- Gozdzik, P.; Magkos, F.; Sledzinski, T.; Mika, A. Monomethyl branched-chain fatty acids: Health effects and biological mechanisms. Prog. Lipid Res. 2023, 90, 101226. [Google Scholar] [CrossRef] [PubMed]
- Caligiani, A.; Lolli, V. Cyclic Fatty Acids in Food: An Under-Investigated Class of Fatty Acids. In Biochemistry and Health Benefits of Fatty Acids; Viduranga, W., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 3. [Google Scholar] [CrossRef]
- Møller, B.; Seigler, D. Biosynthesis of cyanogenic glycosides, cyanolipids and related compounds. In Plant Amino Acids Biochemistry and Biotechnology; CRC Press: Boca Raton, FL, USA, 1999; pp. 563–609. [Google Scholar]
- Wessjohann, L.A.; Brandt, W.; Thiemann, T. Biosynthesis and metabolism of cyclopropane rings in natural compounds. Chem. Rev. 2003, 103, 1625–1648. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2022, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Moore, B.S.; Floss, H.G. 1.03—Biosynthesis of Cyclic Fatty Acids Containing Cyclopropyl-, Cyclopentyl-, Cyclohexyl-, and Cycloheptyl-Rings; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Poger, D.; Mark, A.E. A Ring to Rule Them All: The Effect of Cyclopropane Fatty Acids on the Fluidity of Lipid Bilayers. J. Phys. Chem. B 2015, 119, 5487–5495. [Google Scholar] [CrossRef]
- Savchenko, T.V.; Zastrijnaja, O.M.; Klimov, V.V. Oxylipins and plant abiotic stress resistance. Biochemistry 2014, 79, 362–375. [Google Scholar] [CrossRef]
- Bouarab, K.; Adas, F.; Gaquerel, E.; Kloareg, B.; Salaun, J.P.; Potin, P. The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol. 2004, 135, 1838–1848. [Google Scholar] [CrossRef]
- Avila-Roman, J.; Talero, E.; de Los Reyes, C.; Zubía, E.; Motilva, V.; García-Mauriño, S. Cytotoxic activity of microalgal-derived oxylipins against human cancer cell lines and their impact on ATP levels. Nat. Prod. Commun. 2016, 11, 1934578X1601101225. [Google Scholar]
- Tsikas, D.; Zoerner, A.A.; Jordan, J. Oxidized and nitrated oleic acid in biological systems: Analysis by GC–MS/MS and LC–MS/MS, and biological significance. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2011, 1811, 694–705. [Google Scholar] [CrossRef]
- Summerer, S.; Hanano, A.; Utsumi, S.; Arand, M.; Schuber, F.; Blée, E. Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases. Biochem. J. 2002, 366, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Knoche, H.W. A study on the biosynthesis of cis-9,10-epoxyoctadecanoic acid. Lipids 1968, 3, 163–169. [Google Scholar] [CrossRef]
- Musharraf, S.G.; Ahmed, M.A.; Zehra, N.; Kabir, N.; Choudhary, M.I.; Rahman, A.U. Biodiesel production from microalgal isolates of southern Pakistan and quantification of FAMEs by GC-MS/MS analysis. Chem. Cent. J. 2012, 6, 149. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, L.; Wang, H.; Sun, R.; You, L.; Zheng, Y.; Yuan, Y.; Li, D. Identification and characterization of a plastidial ω-3 fatty acid desaturase EgFAD8 from oil palm (Elaeis guineensis Jacq.) and its promoter response to light and low temperature. PLoS ONE 2018, 13, e0196693. [Google Scholar] [CrossRef]
C. vulgaris VKM Al-335 | Mc. lacustre VKM Al-343 | Mc. Thermotolerans VKM Al-332 | Mr. similis VKM Al-346 | Mr. krienitzii VKM Al-428 | T. aestivum | |
---|---|---|---|---|---|---|
16-carbon FA, % | 59.15 | 62.27 ** | 54.44 | 43.76 | 35.50 | 24.59 |
18-carbon FA, % | 34.06 | 34.98 | 41.83 | 49.66 | 59.36 ** | 75.41 |
MUFA, % | 4.85 | 5.91 | 3.18 | 9.08 ** | 6.06 | 6.07 |
PUFA, % | 44.09 | 73.77 | 68.40 | 70.11 | 75.37 ** | 75.41 |
UFA, % | 48.94 | 79.68 | 71.58 | 79.19 | 81.43 ** | 81.48 |
UI | 1.31 | 2.39 ** | 1.95 | 1.84 | 1.85 | 2.25 |
ω-3 FA, % | 31.69 | 63.85 ** | 51.16 | 34.87 | 28.32 | 67.75 |
ω-6 FA, % | 12.40 | 9.91 | 17.24 | 35.24 | 47.04 ** | 7.66 |
ω-3/ω-6 | 2.56 | 6.44 ** | 2.97 | 0.99 | 0.60 | 8.84 |
C. vulgaris VKM Al-335 | Mc. lacustre VKM Al-343 | Mc. thermo-tolerans VKM Al-332 | Mr. similis VKM Al-346 | Mr. krienitzii VKM Al-428 | |
---|---|---|---|---|---|
Minor straight-chain fatty acids | |||||
Tetradecanoic acid | 1.18 ± 0.20 | 0.99 ± 0.07 | 0.97 ± 0.04 | 0.45 ± 0.24 | 0.28 ± 0.02 |
Pentadecanoic acid | 0.84 ± 0.02 | 1.69 ± 0.96 | |||
Branched-chain fatty acids | |||||
Tetradecanoic acid, 12-methyl- | 0.52 ± 0.04 | 1.07 ± 1.05 | 0.24 ± 0.21 | ||
Hexadecanoic acid, 14-methyl- | 0.68 ± 0.05 | 0.83 ± 0.55 | |||
Hexadecanoic acid, 15-methyl- | 1.32 ± 0.03 | 1.20 ± 0.09 | |||
Heptadecanoic acid, 16-methyl- | 1.45 ± 0.25 | 1.53 ± 0.31 | |||
Octadecanoic acid, 17-methyl- | 1.18 ± 0.46 | ||||
Cyclic fatty acids | |||||
[1,1′-Bicyclopropyl]-2-octanoic acid, 2′-hexyl- | 0.47 ± 0.19 | 2.04 ± 1.52 | 0.68 ± 0.47 | 0.84 ± 0.96 | |
Cyclopropaneoctanoic acid, 2-[[2-[(2-ethylcyclopropyl)methyl] cyclopropyl]methyl] | 3.00 ± 0.13 | ||||
Cyclopropanetetradecanoic acid, 2-octyl- | 0.40 ± 0.07 |
14:0 | 15:0 | 16:0 | 16:1Δ7 | 16:2Δ7,10 | 16:3Δ7,10,13 | 16:4Δ4,7,10,13 | 18:1Δ9 | 18:2Δ9,12 | 18:3Δ9,12,15 | 18:3Δ6,9,12 | |
---|---|---|---|---|---|---|---|---|---|---|---|
14:0 | 1 | −0.392 | 0.945 | −0.462 | −0.922 | −0.145 | 0.084 | −0.348 | −0.845 | 0.407 | 0.973 |
15:0 | −0.392 | 1 | −0.338 | −0.129 | 0.604 | 0.544 | −0.374 | 0.708 | 0.223 | −0.220 | −0.387 |
16:0 | 0.945 *** | −0.338 | 1 | −0.659 | −0.784 | −0.285 | −0.230 | −0.212 | −0.647 | 0.181 | 0.953 |
16:1Δ7 | −0.462 | −0.129 | −0.659 * | 1 | 0.252 | −0.107 | 0.747 | 0.081 | 0.221 | −0.094 | −0.617 |
16:2Δ7,10 | −0.922 *** | 0.604 | −0.784 ** | 0.252 | 1 | 0.053 | −0.378 | 0.648 | 0.894 | −0.640 | −0.904 |
16:3Δ7,10,13 | −0.145 | 0.544 | −0.285 | −0.107 | 0.053 | 1 | 0.176 | −0.191 | −0.323 | 0.665 | −0.061 |
16:4Δ4,7,10,13 | 0.084 | −0.374 | −0.230 | 0.747 | −0.378 | 0.176 | 1 | −0.443 | −0.440 | 0.542 | −0.036 |
18:1Δ9 | −0.348 | 0.708 | −0.212 | 0.081 | 0.648 | −0.191 | −0.443 | 1 | 0.493 | −0.789 | −0.444 |
18:2Δ9,12 | −0.845 ** | 0.223 | −0.647 | 0.221 | 0.894 ** | −0.323 | −0.440 | 0.493 | 1 | −0.773 | −0.815 |
18:3Δ9,12,15 | 0.407 | −0.220 | 0.181 | −0.094 | −0.640 | 0.665 * | 0.542 | −0.789 ** | −0.773 ** | 1 | 0.470 |
18:3Δ6,9,12 | 0.973*** | −0.387 | 0.953 *** | −0.617 | −0.904 ** | −0.061 | −0.036 | −0.444 | −0.815 * | 0.470 | 1 |
C. vulgaris VKM Al-335 | Mc. lacustre VKM Al-343 | Mc.thermo-tolerans VKM Al-332 | Mr. similis VKM Al-346 | Mr. krienitzii VKM Al-428 | |
---|---|---|---|---|---|
cis-9,10-epoxyoctadecanoic acid | + | − | − | − | − |
dodecanoic acid, 3-hydroxy- | − | − | − | + | + |
7-methyl-Z-tetradecen-1-ol acetate | + | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivina, E.; Degtyaryov, E.; Tebina, E.; Temraleeva, A.; Savchenko, T. Comparative Analysis of the Fatty Acid Profiles of Selected Representatives of Chlorella-Clade to Evaluate Their Biotechnological Potential. Int. J. Plant Biol. 2024, 15, 837-854. https://doi.org/10.3390/ijpb15030060
Krivina E, Degtyaryov E, Tebina E, Temraleeva A, Savchenko T. Comparative Analysis of the Fatty Acid Profiles of Selected Representatives of Chlorella-Clade to Evaluate Their Biotechnological Potential. International Journal of Plant Biology. 2024; 15(3):837-854. https://doi.org/10.3390/ijpb15030060
Chicago/Turabian StyleKrivina, Elena, Evgeny Degtyaryov, Elizaveta Tebina, Anna Temraleeva, and Tatyana Savchenko. 2024. "Comparative Analysis of the Fatty Acid Profiles of Selected Representatives of Chlorella-Clade to Evaluate Their Biotechnological Potential" International Journal of Plant Biology 15, no. 3: 837-854. https://doi.org/10.3390/ijpb15030060
APA StyleKrivina, E., Degtyaryov, E., Tebina, E., Temraleeva, A., & Savchenko, T. (2024). Comparative Analysis of the Fatty Acid Profiles of Selected Representatives of Chlorella-Clade to Evaluate Their Biotechnological Potential. International Journal of Plant Biology, 15(3), 837-854. https://doi.org/10.3390/ijpb15030060