Thermal Conditions for Viticulture in Poland
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Grape Yield in the Period 2009/2010–2018/2019
3.2. Temporal Distribution of Air Temperature 1971–2019
3.3. Spatial Distribution of Air Temperature
3.4. Attempt to Determine the Potential Areas for Viticulture
4. Conclusions
- In the multiannual period under analysis, there is a dynamic increase in air temperature over the area of Poland, especially after the year 1987, as well as in the sums of active temperatures (SAT) and the duration of the period of the plant’s active growth (at >10 °C).
- Acceleration occurrence of the dates of beginning of the period with air temperature >10 °C in spring is almost twice then their delayin the autumn.
- The ongoing global warming results in a significant shift to the north of the country (from 100 to 150 km) of the current boundary of intense viticulture and is conducive to the introduction of new varieties with increased thermal requirements.
- The greatest increases in air temperature and SAT values were found in the south-west and west of Poland, with a marked decrease shown towards the north-east and east.
- Despite the observed global warming, the occasional (2–3 times per 10 years) occurrence of cold years with a shortened duration of the period with at >10 °C must be taken into account, particularly in the south-west and west of Poland.
- In the southern area of the Pomeranian Lakeland and the Masurian Lakeland, a very high gradient of SAT was identified.
- In approx. 60% of the country’s area, there are favourable and moderately favourable thermal conditions for intense viticulture (areas I and II). Favourable thermal conditions for grapevine cultivation in areas I and II are recorded, on average, in 3–4 years per 10.
- The physiographic conditions of a given area, i.e., elevations and slope exposure, vicinity of water reservoirs and forests as well as the type of soil, may considerably affect the thermal relations in the five potential areas for viticulture determined in the present paper.
- The current thermal conditions and the ongoing global warming make the area of Poland an attractive location for viticulture.
Author Contributions
Funding
Conflicts of Interest
References
- Burkot, P.; Kulisz, B. Rynek wina w Polsce. Biul. Inf. Agencji Rynk. Rolnego 2008, 12, 19–26. [Google Scholar]
- Radziwiłko, B. Determinanty rozwoju oraz ich wpływ na obecny stan produkcji wina gronowego w Polsce. Roczniki Ekonomiczne Kujawsko-Pomorskiej Szkoły Wyższej w Bydgoszczy 2012, 5, 427–440. [Google Scholar]
- Wilk, K. Polski rynek win w świetle zmian w krajowych i wspólnotowych uregulowaniach prawnych. Studia I Pr. Wydziału Nauk Ekon. I Zarządzania 2011, 22, 135–148. [Google Scholar]
- Kunicka-Styczyńska, A.; Czyżowska, A.; Rajkowska, K.; Wilkowska, A.; Dziugan, P. The trends and prospects of winemaking in Poland. In Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; Intech: London, UK, 2019; pp. 401–414. [Google Scholar] [CrossRef] [Green Version]
- Charzyński, P.; Nowak, A.; Podgórski, Z. Turystyka winiarska na Ziemi Lubuskiej—Historyczne uwarunkowania konieczności czy nowatorskie rozwiązania. J. Health Sci. 2013, 3, 198–216. [Google Scholar]
- Kryza, M.; Szymanowski, M.; Błaś, M.; Migała, K.; Werner, M.; Sobik, M. Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Chech Republic transboundary region for wine grapes cultivation. Theor. Appl. Climatol. 2015, 122, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Krajowy Ośrodek Wsparcia Rolnictwa (KOWR). Rynek Wina w Liczbach. Available online: http://www.kowr.gov.pl (accessed on 26 March 2020).
- Amerine, M.A.; Winkler, A.J. Composition and quality of musts and wines of California grapes. Hilgardia 1944, 15, 493–675. [Google Scholar] [CrossRef] [Green Version]
- Winkler, A.J. General Viticulture; University of California Press: Davis, CA, USA, 1974; p. 710. [Google Scholar]
- Jones, G.V.; Duff, A.A.; Hall, A.; Myers, J.W. Spatial analysis of climate in winegrape growing regions in the western United States. Am. J. Enol. Vitic. 2010, 61, 313–326. [Google Scholar]
- Hall, A.; Jones, G.V. Spatial analysis of climate in winegrape-growing regions in Australia. Aust. J. Grape Wine Res. 2010, 16, 389–404. [Google Scholar] [CrossRef]
- Anderson, J.D.; Jones, G.V.; Tait, A.; Hall, A.; Trought, M.C.T. Analysis of viticulture region climate structure and suitability in New Zealand. J. Int. Des Sci. De La Vigne Et Du Vin 2012, 46, 149–165. [Google Scholar] [CrossRef] [Green Version]
- Bonfante, A.; Monaco, E.; Langella, G.; Mercogliano, P.; Bucchignani, P.; Manna, P.; Terribile, F. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. Sci. Total Environ. 2017, 624, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.V.; Reid, R.; Vilks, A. Climate, grapes, and wine: Structure and suitability in a variable and changing climate. In The Geography of Wine: Regions, Terroir and Techniques; Springer Press: Amsterdam, The Netherlands, 2012; pp. 109–133. [Google Scholar] [CrossRef]
- Robinson, J.; Johnson, H. The World Atlas of Wine; Mitchell Beazley: London, UK, 2013; p. 416. [Google Scholar]
- Jones, G.V.; Schultz, H.R. Climate change and emerging cool climate wine regions. Wine Vitic. J. 2016, 31, 51–53. [Google Scholar]
- Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. C. R. Acad. Agr. Fr. 1978, 64, 1117–1126. [Google Scholar]
- Kowalski, W.; Nawalany, G. New approach to determine the sum of the active temperatures (SAT) exemplified by weather conditions of western Malopolska. In Infrastructure and Environment; Krakowiak-Bal, A., Vaverkova, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 203–216. [Google Scholar] [CrossRef]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Filipiak, T.; Maciejczak, M. Zrównoważona uprawa winorośli i produkcja winogron, jako szansa na dostosowanie do zmian klimatu badane w projekcie Vitismart. Wieś JutraNaukaDoradz. Prakt. 2017, 4, 1–3. [Google Scholar]
- Maciejczak, M.; Mikiciuk, J. Climate change impact on viticulture in Poland. Int. J. Clim. Chang. Strateg. Manag. 2019, 11, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Maciejczak, M. Korzyści zewnętrzne prowadzenia zrównoważonych winnic w Polsce w warunkach zmian klimatu. Roczn. Nauk. Ekon. Rol. I Rozw. Obsz. Wiej. 2019, 106, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Coombe, B.G. Influence of temperature on composition and quality of grapes, Proceedings of the Symposium on Grapevine Canopy and Vigor Management. Acta Hortic. 1987, 206, 23–35. [Google Scholar] [CrossRef]
- Jones, G.V.; Alves, F. Impact of climate change on wine production: A global overview and regional assessment in the Douro Valley of Portugal. Int. J. Glob. Warm. 2012, 4, 383–406. [Google Scholar] [CrossRef]
- Koźmiński, C. Klimatyczne Uwarunkowania Uprawy Winorośli w Województwie Zachodniopomorskim; Zachodniopomorski Ośrodek Doradztwa Rolniczego w Barzkowicach: Barzkowice, Poland, 2019; p. 34. [Google Scholar]
- Lisek, J. Climatic factors affecting development and yielding of grapevine in Central Poland. J. Fruit Ornam. Plant Res. 2008, 16, 285–293. [Google Scholar]
- White, M.A.; Diffenbaugh, N.S.; Jones, G.V.; Pal, J.S.; Giorgi, F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 2006, 103, 11217–11222. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.A.; Malheiro, A.C.; Pinto, J.G.; Jones, G.V. Macroclimate and viticultural zoning in Europe: Observed trends and atmospheric forcing. Clim. Res. 2013, 51, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Keller, M. Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2016, 16, 56–69. [Google Scholar] [CrossRef]
- Clingeleffer, P.R. Plant management research: Status and what it can offer to address challenges and limitations. Aust. J. Grape Wine Res. 2010, 16, 25–32. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar]
- Malheiro, A.C.; Campos, R.; Fraga, H.; Eiras-Dias, J.; Silvestre, J.; Santos, J.A. Winegrape phenology and temperature relationships in the Lisbon wine region, Portugal. Int. Sci. Vigne Vin 2013, 47, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, J. Does climate change allow grapevine growing in the southernmost Finland. Int. J. Agric. Innov. Res. 2015, 4, 201–204. [Google Scholar]
- De Orduna, R.M. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Jackson, D.I.; Lombard, P.B. Environmental and management practices affecting grape composition and wine quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar]
- Lisek, J. Frost damage of grapevines in Poland following the winter 2005/2006. Folia Hortic. 2007, 19, 69–78. [Google Scholar]
- Robinson, J. The Oxford Companion to Wine; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Johson, H.; Robinson, J. The World Atlas of Wine; Octopus: London, UK, 2001. [Google Scholar]
- Pink, M. Polska jako kraj winiarski? Od tradycji do rodzących się możliwości. Probl. Drob. Gospod. Rol. 2015, 2, 37–56. [Google Scholar]
- Myśliwiec, R. Nowoczesna Winnica; PWRiL: Warszawa, Poland, 1992; p. 220. [Google Scholar]
- Bosak, W. Uprawa Winorośli i Winiarstwo w Małym Gospodarstwie na Podkarpaciu; Polski Instytut Winorośli i Wina: Kraków, Poland, 2004; p. 80. [Google Scholar]
- Ostrowski, S.; Kaszuba, M.; Gajewski, K. Uprawa Winorośli i Amatorskie Przetwórstwo Winogron; Lubuskie Stowarzyszenie Winiarskie: Zielona Góra, Poland, 2004; p. 78. [Google Scholar]
- Kopeć, B. Uwarunkowania termiczne wegetacji winorośli na obszarze południowo-wschodniej części Polski. Infrastrukt. I Ekol. Teren. Wiej. 2009, 4, 251–262. [Google Scholar]
- Lee, H.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [Green Version]
- Nemani, R.R.; White, M.A.; Cayan, D.R.; Jones, G.V.; Running, S.W.; Coughlan, J.C. Asymmetric climatic warming improves California vintages. Clim. Res. 2001, 19, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.; Jones, G.; Martnez-Casasnovas, J. Structure and trends in climate parameters affecting winegrape production in Northeast Spain. Clim. Res. 2008, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Caprio, J.M.; Quamme, H.A. Weather conditions associated with grape production in the Okanagan Valley of British Columbia and potential impact of climate change. Can. J. Plant Sci. 2002, 82, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Selley, R.C. The Winelands of Britain: Past, Present and Prospective; Petravin: Dorking, UK, 2008; pp. 102–115. [Google Scholar]
- Moriondo, M.; Bindi, M.; Fagarazzi, C.; Ferrise, R.; Trombi, G. Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Reg. Environ. Chang. 2011, 11, 553–567. [Google Scholar] [CrossRef]
- Drappier, J.; Thibon, C.; Rabot, A.; Geny-Denis, L. Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming—Review. Crit. Rev. Food Sci. Nutr. 2017, 59, 1–17. [Google Scholar] [CrossRef]
- Schultz, H. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Aust. J. Grape Wine Res. 2013, 6, 2–12. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Climate change and winegrape quality in Australia. Clim. Res. 2008, 36, 99–111. [Google Scholar] [CrossRef]
- Kożuchowski, K.; Żmudzka, E. Ocieplenie w Polsce: Skala i rozkład sezonowy zmian temperatury powietrza w drugiej połowie XX wieku. Przegląd Geofiz. 2001, 46, 81–90. [Google Scholar]
- Michalska, B. Tendencje zmian temperatury powietrza w Polsce. Pr. I Studia Geogr. 2011, 47, 67–75. [Google Scholar]
- Czernecki, B.; Miętus, M. The thermal seasons variability in Poland, 1951–2010. Theor. Appl. Climatol. 2015, 127, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Czarnecka, M.; Nidzgorska-Lencewicz, J. Zmienność termicznej zimy w Polsce w latach 1960–2015. Acta Agroph. 2017, 24, 205–220. [Google Scholar]
- Żmudzka, E. Tło klimatyczne produkcji rolniczej w Polsce w drugiej połowie XX wieku. Acta Agroph. 2004, 3, 399–408. [Google Scholar]
- Krużel, J.; Ziernicka-Wojtaszek, A.; Borek, Ł.; Ostrowski, K. Zmiany czasu trwania meteorologicznego okresu wegetacyjnego w Polsce w latach 1971–2000 oraz 1981–2010. Inżynieria Ekol. 2015, 44, 47–52. [Google Scholar]
- Sulikowska, A.; Wypych, A.; Ustrnul, Z.; Czekierda, D. Zmienność Zasobów termicznych w Polsce w aspekcie obserwowanych zmian klimatu. Acta Sci. Pol. Form. Circumiectus 2016, 15, 127–139. [Google Scholar] [CrossRef]
- Myśliwiec, R. Uprawa Winorosli; Plantpress: Kraków, Poland, 2009; p. 160. [Google Scholar]
- Gumiński, R. Próba wydzielenia dzielnic rolniczo-klimatycznych w Polsce. Przegl. Met. I Hydr. 1948, 1, 7–20. [Google Scholar]
- Bartoszek, K.; Węgrzyn, A.; Kaszewski, B.; Siłuch, M. Porównanie wybranych metod wyznaczania dat początku i końca okresu wegetacyjnego na przykładzie Lubelszczyzny. Przegląd Geofizyczny 2012, 1, 123–134. [Google Scholar]
- Tomczyk, A.M.; Szyga-Pluta, K. Okres wegetacyjny w Polsce w latach 1971–2010. Przegląd Geogr. 2016, 88, 75–86. [Google Scholar] [CrossRef]
- Koźmiński, C.; Michalska, B. (Eds.) Atlas Klimatycznego Ryzyka Upraw Roślin w Polsce; Uniwersytet Szczeciński: Szczecin, Poland, 2001. [Google Scholar]
- Mazurkiewicz-Pizło, A.; Pizło, W. Determinants of the development of vineyards and vine tourism in Poland. Acta Sci. Pol. Oecon. 2018, 17, 115–121. [Google Scholar] [CrossRef]
- Wieteska, S. Ryzyko występowania przymrozków w Polsce i strefie klimatycznej. Acta Univ. Lodz. Folia Oecon. 2011, 259, 143–157. [Google Scholar]
- Sękowski, O. Możliwości oceny warunków mezoklimatycznych winnic w Polsce na podstawie sieci stacji IMGW-PIB. Pr. Geogr. 2019, 157, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Koźmiński, C.; Świątek, M. Oddziaływanie Bałtyku na kształtowanie się temperatury i wilgotności powietrza oraz prędkości wiatru w strefie polskiego wybrzeża. Acta Agroph. 2012, 19, 597–610. [Google Scholar]
- Szymanowski, M.; Smaza, M. Zmiana Zasobów Klimatycznych a Możliwość Uprawy Winorośli na Dolnym Śląsku. In Proceedings of the XXXII Ogólnopolski Zjazd Agrometeorologów i Klimatologów, Kołobrzeg, Poland, 13–15 September 2007; Instytut Geografii i Rozwoju Regionalnego Uniwersytet Wrocławski: Wrocław, Poland, 2007; pp. 69–70. [Google Scholar]
Marketing Year | The Number of Producers (in the Records) | Total Area of Vine Cultivation (ha) | Area of Vine Harvest for Wine Production (ha) | Total Vine Harvest (quintals) | Volume of Wine Production (hL) | Total Harvest of Vine per ha | |||
---|---|---|---|---|---|---|---|---|---|
Red | White | Red | White | Quintals | hL | ||||
2009/2010 | 21 | 36.01 | 30.35 | 301.9 | 296.3 | 174.5 | 237.9 | 19.7 | 13.59 |
2010/2011 | 20 | 37.02 | 28.90 | 369.3 | 342.0 | 245.0 | 192.1 | 24.6 | 15.12 |
2011/2012 | 26 | 51.28 | 20.98 | 222.6 | 461.4 | 173.4 | 255.1 | 32.6 | 20.42 |
2012/2013 | 35 | 96.87 | 67.99 | 692.0 | 748.1 | 463.0 | 440.0 | 21.2 | 13.28 |
2013/2014 | 49 | 99.49 | 84.07 | 1561.0 | 1593.1 | 1021.3 | 958.0 | 37.5 | 23.54 |
2014/2015 | 76 | 134.35 | 130.97 | 2233.2 | 2285.1 | 1315.1 | 1422.0 | 34.5 | 20.90 |
2015/2016 | 103 | 194.24 | 161.50 | 3640.8 | 4477.4 | 2380.1 | 2755.2 | 50.3 | 31.80 |
2016/2017 | 150 | 221.23 | 204.60 | 4769.2 | 6125.5 | 3119.6 | 3874.2 | 53.2 | 34.18 |
2017/2018 | 201 | 331.38 | 240.74 | 3346.7 | 4681.6 | 2211.3 | 2995.8 | 33.4 | 21.63 |
2018/2019 | 230 | 394.84 | 300.57 | 7302.2 | 11443.6 | 4968.9 | 7781.5 | 62.4 | 42.42 |
2019/2020 | 294 | 468.57 | - | - | - | - | - | - |
Wrocław | Warszawa | Białystok | |||||||
---|---|---|---|---|---|---|---|---|---|
<−10 °C | <−20 °C | <−30 °C | <−10 °C | <−20 °C | <−30 °C | <−10 °C | <−20 °C | <−30 °C | |
X | - | - | - | - | - | - | 4.1 | - | - |
XI | 18.4 | - | - | 20.4 | - | - | 36.7 | - | - |
XII | 53.1 | 6.1 | - | 59.2 | 8.2 | - | 77.6 | 24.5 | - |
I | 71.4 | 16.3 | - | 83.7 | 22.4 | 2.0 | 87.8 | 40.8 | 2.0 |
II | 57.1 | 10.2 | - | 67.3 | 10.2 | - | 85.7 | 30.6 | - |
III | 22.4 | 2.0 | - | 30.6 | 4.1 | - | 57.1 | 10.2 | - |
Areas | Mean Air Temperature (°C) | SAT Values (°C) | Active Growth Period with at >10 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
I | VII | IV–IX | I–XII | 1971–2019 | 2010–2019 | Start Date | End Date | Duration (Days) | |
IA Highly conducive | −0.4 ÷ −1.0 | 18.8 ÷ 19.0 | 15.1 ÷ 15.4 | 9.0 ÷ 9.2 | >2750 | >3000 | 21–22 IV | 10–12 X | 173–174 |
I Conducive | 0.0 ÷ −1.5 | 18.5 ÷ 18.8 | 14.8 ÷ 15.0 | 8.8 ÷ 9.0 | 2650–2750 | 2900–3000 | 22–24 IV | 8–11 X | 170–171 |
II Moderately conducive | −0.2 ÷ −2.5 | 18.2 ÷ 18.8 | 14.5 ÷ 15.0 | 8.2 ÷ 9.0 | 2650–2700 | 2800–2900 | 22–24 IV | 6–10 X | 168–170 |
IIIA Poorly conducive | −0.3 ÷ −2.5 | 18.0 ÷ 18.7 | 14.0 ÷ 15.0 | 8.1 ÷ 8.5 | 2500–2650 | 2700–2900 | 23–29 IV | 4–7 X | 162–165 |
III Poorly conducive (with limitations) | −2.5 ÷ −3.2 | 18.1 ÷ 18.5 | 14.4 ÷ 14.7 | 7.8 ÷ 8.0 | 2500–2600 | 2700–2800 | 24–26 IV | 2–5 X | 162–163 |
IV Unconducive | −0.5 ÷ −3.4 | 17.5 ÷ 18.3 | 13.8 ÷ 14.4 | 7.4 ÷ 8.4 | 2400–2500 | 2600–2700 | 26–30 IV | 30 IX −4 X | 154–158 |
VA Highly unconducive | −0.3 ÷ −2.5 | 16.9 ÷ 17.5 | 13.2 ÷ 13.6 | 7.4 ÷ 8.2 | 2300–2400 | 2500 2600 | 4–8 V | 2–8 X | 152–154 |
V Highly unconducive (particularly in winter) | −2.0 ÷ −4.0 | 17.4 ÷ 18.0 | 13.4 ÷ 14.0 | 6.7 ÷ 7.7 | 2250–2400 | 2500–2600 | 30 IV −3 V | 26 IX −2 X | 147–150 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koźmiński, C.; Mąkosza, A.; Michalska, B.; Nidzgorska-Lencewicz, J. Thermal Conditions for Viticulture in Poland. Sustainability 2020, 12, 5665. https://doi.org/10.3390/su12145665
Koźmiński C, Mąkosza A, Michalska B, Nidzgorska-Lencewicz J. Thermal Conditions for Viticulture in Poland. Sustainability. 2020; 12(14):5665. https://doi.org/10.3390/su12145665
Chicago/Turabian StyleKoźmiński, Czesław, Agnieszka Mąkosza, Bożena Michalska, and Jadwiga Nidzgorska-Lencewicz. 2020. "Thermal Conditions for Viticulture in Poland" Sustainability 12, no. 14: 5665. https://doi.org/10.3390/su12145665
APA StyleKoźmiński, C., Mąkosza, A., Michalska, B., & Nidzgorska-Lencewicz, J. (2020). Thermal Conditions for Viticulture in Poland. Sustainability, 12(14), 5665. https://doi.org/10.3390/su12145665