Adsorption of Fluorides in Drinking Water by Palm Residues
Abstract
:1. Introduction
2. Bibliometric Analysis
3. Adsorption on Palm Residues
3.1. Why Use Palm Residues?
3.2. Performances on Fluorides
3.3. Future Outlooks
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Quintáns-Fondo, A.; Ferreira-Coelho, G.; Paradelo-Núñez, R.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Promoting sustainability in the mussel industry: Mussel shell recycling to fight fluoride pollution. J. Clean. Prod. 2016, 131, 485–490. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; Lu, J.; Yang, K.; Wang, K.; Liu, M.; Luo, H.; Pang, L.; Wang, B. Fluorine in the environment in an endemic fluorosis area in Southwest. China Environ. Res. 2020, 184, 109300. [Google Scholar] [CrossRef]
- van der Veen, I.; Hanning, A.C.; Stare, A.; Leonards, P.E.G.; de Boer, J.; Weiss, J.M. The effect of weathering on per- and polyfluoroalkyl substances (PFASs) from durable water repellent (DWR) clothing. Chemosphere 2020, 249, 126100. [Google Scholar] [CrossRef]
- Sorlini, S.; Collivignarelli, M.C.; Carnevale Miino, M. Technologies for the control of emerging contaminants in drinking water treatment plants. Environ. Eng. Manag. J. 2019, 18, 2203–2216. [Google Scholar]
- Barpaga, D.; Nguyen, V.T.; Medasani, B.K.; Chatterjee, S.; McGrail, B.P.; Motkuri, R.K.; Dang, L.X. Insight into Fluorocarbon Adsorption in Metal-Organic Frameworks via Experiments and Molecular Simulations. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Choubisa, S.L.; Choubisa, D. Status of industrial fluoride pollution and its diverse adverse health effects in man and domestic animals in India. Environ. Sci. Pollut. Res. 2016, 23, 7244–7254. [Google Scholar] [CrossRef]
- Bagastyo, A.Y.; Anggrainy, A.D.; Nindita, C.S. Warmadewanthi, Electrodialytic removal of fluoride and calcium ions to recover phosphate from fertilizer industry wastewater. Sustain. Environ. Res. 2017, 27, 230–237. [Google Scholar] [CrossRef]
- Dartan, G.; Taspinar, F.; Toroz, I. Analysis of fluoride pollution from fertilizer industry and phosphogypsum piles in agricultural area. J. Ind. Pollut. Control 2017, 33, 662–669. [Google Scholar]
- Yu, Y.; Cui, S.; Fan, R.; Fu, Y.; Liao, Y.; Yang, J. Distribution and superposed health risk assessment of fluorine co-effect in phosphorous chemical industrial and agricultural sources. Environ. Pollut. 2020, 262, 114249. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Frattarola, A.; Carnevale Miino, M.; Padovani, S.; Katsoyiannis, J.; Torretta, V. Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview. Sustainability 2019, 11, 6015. [Google Scholar] [CrossRef] [Green Version]
- Grzegorzek, M.; Majewska-Nowak, K.; Ahmed, A.E. Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Sci. Total Environ. 2020, 722. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Carnevale Miino, M.; Arab, H.; Bestetti, M.; Franz, S. Decolorization and biodegradability of a real pharmaceutical wastewater treated by H2O2-assisted photoelectrocatalysis on TiO2 meshes. J. Hazard. Mater. 2020, 387, 121668. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Carnevale Miino, M.; Gomez, F.H.; Torretta, V.; Rada, E.C.; Sorlini, S. Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case. IJERPH Health 2020, 17, 2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collivignarelli, M.C.; Carnevale Miino, M.; Baldi, M.; Manzi, S.; Abbà, A.; Bertanza, G. Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system. Process Saf. Environ. Prot. 2019, 132, 105–115. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bestetti, M.; Crotti, B.M.; Carnevale Miino, M. Electrolytic Recovery of Nickel and Copper from Acid Pickling Solutions Used to Treat Metal Surfaces. Water Air Soil Pollut. 2019, 230, 101. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K. Fluoride abundance and their release mechanisms in groundwater along with associated human health risks in a geologically heterogeneous semi-arid region of east India. Microchem. J. 2020, 152, 104304. [Google Scholar] [CrossRef]
- Kumar, M.; Goswami, R.; Patel, A.K.; Srivastava, M.; Das, N. Scenario, perspectives and mechanism of arsenic and fluoride Co-occurrence in the groundwater: A review. Chemosphere 2020, 249, 126126. [Google Scholar] [CrossRef]
- Rango, T.; Kravchenko, J.; Atlaw, B.; McCornick, P.G.; Jeuland, M.; Merola, B.; Vengosh, A. Groundwater quality and its health impact: An assessment of dental fluorosis in rural inhabitants of the Main Ethiopian Rift. Environ. Int. 2012, 43, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Kitalika, A.J.; Machunda, R.L.; Komakech, H.C.; Njau, K.N. Fluoride Variations in Rivers on the Slopes of Mount Meru in Tanzania. J. Chem. 2018, 2018, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Karunanidhi, D.; Aravinthasamy, P.; Kumar, D.; Subramani, T.; Roy, P.D. Sobol sensitivity approach for the appraisal of geomedical health risks associated with oral intake and dermal pathways of groundwater fluoride in a semi-arid region of south India. Ecotoxicol. Environ. Saf. 2020, 194, 110438. [Google Scholar] [CrossRef]
- Fewtrell, L.; Smith, S.; Kay, D.; Bartram, J. An attempt to estimate the global burden of disease due to fluoride in drinking water. J. Water Health 2006, 4, 533–542. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Drinking-Water Quality—Fourth Edition Incorporating the Forst Addendum. 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950-eng.pdf?sequence=1 (accessed on 15 February 2020).
- Egor, M.; Birungi, G. Fluoride contamination and its optimum upper limit in groundwater from Sukulu Hills, Tororo District, Uganda. Sci. Afr. 2020, 7, e00241. [Google Scholar] [CrossRef]
- Jiménez-Farfán, M.D.; Hernández-Guerrero, J.C.; Juárez-López, L.A.; Jacinto-Alemán, L.F.; De la Fuente-Hernández, J. Fluoride Consumption and Its Impact on Oral Health. IJERPH 2011, 8, 148. [Google Scholar] [CrossRef]
- Kimambo, V.; Bhattacharya, P.; Mtalo, F.; Mtamba, J.; Ahmad, A. Fluoride occurrence in groundwater systems at global scale and status of defluoridation—State of the art. Groundw. Sustain. Dev. 2019, 9, 100223. [Google Scholar] [CrossRef]
- Peckham, S.; Awofeso, N. Water Fluoridation: A Critical Review of the Physiological Effects of Ingested Fluoride as a Public Health Intervention. Sci. World J. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.S.; Suganya, S.; Srinivas, S.; Priyadharshini, S.; Karthika, M.; Karishma Sri, R.; Swetha, V.; Naushad, M.; Lichtfouse, E. Treatment of fluoride-contaminated water. A review. Environ. Chem. Lett. 2019, 17, 1707–1726. [Google Scholar] [CrossRef] [Green Version]
- Grandjean, P. Developmental fluoride neurotoxicity: An updated review. Environ. Health 2019, 18. [Google Scholar] [CrossRef] [Green Version]
- Waugh, D.T.; Godfrey, M.; Limeback, H.; Potter, W. Black Tea Source, Production, and Consumption: Assessment of Health Risks of Fluoride Intake in New Zealand. J. Environ. Public Health 2017, 2017, 1–27. [Google Scholar] [CrossRef]
- Rirattanapong, O.; Rirattanapong, P. Fluoride content of commercially available soy milk products in Thailand. Southeast Asian J. Trop. Med. Public Health 2016, 47, 160–164. [Google Scholar]
- Cantoral, A.; Luna-Villa, L.C.; Mantilla-Rodriguez, A.A.; Mercado, A.; Lippert, F.; Liu, Y.; Peterson, K.E.; Hu, H.; Téllez-Rojo, M.M.; Martinez-Mier, E.A. Fluoride Content in Foods and Beverages From Mexico City Markets and Supermarkets. Food Nutr. Bull. 2019, 40, 514–531. [Google Scholar] [CrossRef]
- Demelash, H.; Beyene, A.; Abebe, Z.; Melese, A. Fluoride concentration in ground water and prevalence of dental fluorosis in Ethiopian Rift Valley: Systematic review and meta-analysis. BMC Public Health 2019, 19, 1298. [Google Scholar] [CrossRef] [Green Version]
- Kabir, H.; Gupta, A.K.; Tripathy, S. Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1116–1193. [Google Scholar] [CrossRef]
- Reddy, K.; Reddy, S.; Ravindhar, P.; Balaji, K.; Reddy, H.; Reddy, A. Prevalence of dental caries among 6–12 years school children of Mahbubnagar District, Telangana State, India: A cross-sectional study. Indian J. Dental Sci. 2017, 9, 1. [Google Scholar] [CrossRef]
- Chaudhry, M.; Prabhakar, I.; Gupta, B.; Anand, R.; Sehrawat, P.; Thakar, S.S. Prevalence of Dental Fluorosis Among Adolescents in Schools of Greater Noida, Uttar Pradesh. J. Indian Assoc. Public Health Dent. 2017, 15, 36–41. [Google Scholar]
- Huang, H.; Liu, J.; Zhang, P.; Zhang, D.; Gao, F. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J. 2017, 307, 696–706. [Google Scholar] [CrossRef]
- Cui, H.; Qian, Y.; An, H.; Sun, C.; Zhai, J.; Li, Q. Electrochemical removal of fluoride from water by PAOA-modified carbon felt electrodes in a continuous flow reactor. Water Res. 2012, 46, 3943–3950. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Wang, T.J.; Jiang, Y.; Wang, H. Adsorption of drinking water fluoride on a micron-sized magnetic Fe3O4@Fe-Ti composite adsorbent. Appl. Surf. Sci. 2016, 363, 507–515. [Google Scholar] [CrossRef]
- Bai, Z.; Hu, C.; Liu, H.; Qu, J. Selective adsorption of fluoride from drinking water using NiAl-layered metal oxide film electrode. J. Colloid Interface Sci. 2019, 539, 146–151. [Google Scholar] [CrossRef]
- Ricciardi, P.; Cillari, G.; Carnevale Miino, M.; Collivignarelli, M.C. Valorization of agro-industry residues in building and environmental sector: A review. Waste Manag. Res. 2020, in press. [Google Scholar] [CrossRef]
- Araga, R.; Kali, S.; Sharma, C.S. Coconut-Shell-Derived Carbon/Carbon Nanotube Composite for Fluoride Adsorption from Aqueous Solution. CLEAN—Soil Air Water 2019, 47, 1800286. [Google Scholar] [CrossRef]
- Ajisha, M.A.T.; Rajagopal, K. Characterization and Adsorption Study using Cocus nucifera midribs for Fluoride Removal. J. Inst. Eng. (India) 2013, 94, 209–217. [Google Scholar] [CrossRef]
- Sorlini, S.; Collivignarelli, M.C.; Canato, M. Effectiveness in chlorite removal by two activated carbons under different working conditions: A laboratory study. J. Water Supply Res. Technol. Aqua 2015, 64, 450–461. [Google Scholar] [CrossRef]
- Guan, C.; Lv, X.; Han, Z.; Chen, C.; Xu, Z.; Liu, Q. The adsorption enhancement of graphene for fluorine and chlorine from water. Appl. Surf. Sci. 2020, 516, 146157. [Google Scholar] [CrossRef]
- Bertelkamp, C.; Lekkerkerker-Teunissen, K.; Knol, A.H.; Verberk, J.Q.J.C.; Van Dijk, J.C.; Houtman, C.J. Granular activated carbon filtration or ion exchange as pre-treatment option for the advanced oxidation process: Advantages and limitations. In Proceedings of the Water Quality Technology Conference and Exposition, Savannah, GA, USA, 14–18 November 2010; pp. 228–240. [Google Scholar]
- Ali, I.; Gupta, V.K. Advances in water treatment by adsorption technology. Nat. Protoc. 2006, 1, 2661–2667. [Google Scholar] [CrossRef]
- Wang, G.P. Discussion on Activated Carbon Regeneration Method. Appl. Mech. Mater. 2014, 641, 1127–1130. [Google Scholar] [CrossRef]
- Zevenbergen, C.; van Reeuwijk, L.P.; Frapporti, G.; Louws, R.J.; Schuiling, R.D. A simple method for defluoridation of drinking water at village level by adsorption on Ando soil in Kenya. Sci. Total Environ. 1996, 188, 225–232. [Google Scholar] [CrossRef]
- Kennedy, A.M.; Arias-Paic, M. Fixed-Bed Adsorption Comparisons of Bone Char and Activated Alumina for the Removal of Fluoride from Drinking Water. J. Environ. Eng. 2020, 146, 04019099. [Google Scholar] [CrossRef]
- Keshtkar, M.; Dobaradaran, S.; Keshmiri, S.; Ramavandi, B.; Arfaeinia, H.; Ghaedi, H. Effective Parameters, Equilibrium, and Kinetics of Fluoride Adsorption on Prosopis cineraria and Syzygium cumini Leaves. Environ. Prog. Sustain. Energ. 2019, 38, S429–S440. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; An, X.; Wan, G.; Zhu, W.; Luo, Y. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism. Sci. Total Environ. 2019, 688, 184–198. [Google Scholar] [CrossRef]
- Obijole, O.; Gitari, M.; Ndungu, P.; Samie, A. Mechanochemically Activated Aluminosilicate Clay Soils and their Application for Defluoridation and Pathogen Removal from Groundwater. IJERPH 2019, 16, 654. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Brutus, T.E.; Cheng, J.; Meng, X. Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. J. Environ. Sci. 2017, 57, 190–195. [Google Scholar] [CrossRef]
- Ismail, Z.Z.; AbdelKareem, H.N. Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete. Waste Manag. 2015, 45, 66–75. [Google Scholar] [CrossRef]
- Sorlini, S.; Palazzini, D.; Collivignarelli, C. Fluoride removal from drinking water in Senegal: Laboratory and pilot experimentation on bone char-based treatment. J. Water Sanit. Hyg. Dev. 2011, 1, 213–223. [Google Scholar] [CrossRef]
- Abu Bakar, A.H.; Abdullah, L.C.; Mohd Zahri, N.A.; Alkhatib, M. Column Efficiency of Fluoride Removal Using Quaternized Palm Kernel Shell (QPKS). Int. J. Chem. Eng. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Bashir, M.T.; Salmiaton, A.; Nourouzi, M.M.; Azni, I.; Harun, R. Fluoride Removal by Chemical Modification of Palm Kernel Shell-Based Adsorbent: A Novel Agricultural Waste Utilization Approach. Asian J. Microbiol. Biotechnol. Environ. Sci. 2015, 17, 533–542. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations. 2018. Available online: http://www.fao.org/home/en/ (accessed on 25 February 2020).
- Ferronato, N.; Rada, E.C.; Gorritty Portillo, M.A.; Cioca, L.I.; Ragazzi, M.; Torretta, V. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef]
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Ngan, S.L.; How, B.S.; Teng, S.Y.; Promentilla, M.A.B.; Yatim, P.; Er, A.C.; Lam, H.L. Prioritization of sustainability indicators for promoting the circular economy: The case of developing countries. Renew. Sustain. Energy Rev. 2019, 111, 314–331. [Google Scholar] [CrossRef] [Green Version]
- EC. Circular Economy: Implementation of the Circular Economy Action Plan, European Community. 2018. Available online: http://ec.europa.eu/environment/circular-economy/index_en.htm (accessed on 20 February 2020).
- Abu Bakar, A.H.B.; Koay, Y.S.; Ching, Y.C.; Abdullah, L.C.; Choong, T.S.Y.; Alkhatib, M.; Mobarekeh, M.N.; Mohd Zahri, N.A. Removal of Fluoride using Quaternized Palm Kernel Shell as Adsorbents: Equilibrium Isotherms and Kinetics Studies. BioResources 2016, 11, 4485–4511. [Google Scholar] [CrossRef] [Green Version]
- Medellin-Castillo, N.; Leyva-Ramos, R.; Padilla-Ortega, E.; Perez, R.; Flores-Cano, J.; Berber-Mendoza, M. Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions. J. Ind. Eng. Chem. 2014, 20, 4014–4021. [Google Scholar] [CrossRef]
- Mondal, P.; George, S. A review on adsorbents used for defluoridation of drinking water. Rev. Environ. Sci. Biotechnol. 2014, 14, 195–210. [Google Scholar] [CrossRef]
- Choong, C.E.; Wong, K.T.; Jang, S.B.; Nah, I.W.; Choi, J.; Ibrahim, S.; Yoon, Y.; Jang, M. Fluoride removal by palm shell waste based powdered activated carbon vs. functionalized carbon with magnesium silicate: Implications for their application in water treatment. Chemosphere 2020, 239, 124765. [Google Scholar] [CrossRef]
- Bhaumik, R.; Mondal, N.K. Adsorption of fluoride from aqueous solution by a new low-cost adsorbent: Thermally and chemically activated coconut fibre dust. Clean Technol. Environ. Policy 2015, 17, 2157–2172. [Google Scholar] [CrossRef]
- Choong, C.E.; Kim, M.; Yoon, S.; Lee, G.; Park, C.M. Mesoporous La/Mg/Si-incorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water. J. Taiwan Inst. Chem. Eng. 2018, 93, 306–314. [Google Scholar] [CrossRef]
- Das, D.; Das, J.; Parida, K. Physicochemical characterization and adsorption behaviour of calcined Zn/Al hydrotalcite-like compound (HT/c) towards removal of fluoride from water. J. Colloid Interface Sci. 2003, 261, 213–220. [Google Scholar] [CrossRef]
- Mahapatra, D.; Mishra, D.; Mishra, S.P.; Choudhury, G.R.; Das, R.P. Use of oxide minerals to absorbed fluoride from water. J. Colloid Interface Sci. 2004, 275, 355–359. [Google Scholar] [CrossRef]
- Daifullah, A.A.M.; Yakout, S.M.; Elreefy, S.A. Adsorption of fluoride n aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. J. Hazard. Mater. 2007, 147, 633–643. [Google Scholar] [CrossRef]
- Sadaf, S.; Bhatti, H.N. Evaluation of peanut husk as a novel, low cost biosorbent for the removal of Indosol Orange RSN dye from aqueous solutions: Batch and fixed bed studies. Clean Technol. Environ. Policy 2014, 16, 527–544. [Google Scholar] [CrossRef]
- Mondal, N.K.; Bhaumik, R.; Datta, J.K. Removal of fluoride by aluminum impregnated coconut fiber from synthetic fluoride solution and natural water. Alex. Eng. J. 2015, 54, 1273–1284. [Google Scholar] [CrossRef] [Green Version]
- Kardam, A.; Raj, K.R.; Srivastava, S.; Srivastava, M.M. Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol. Environ. Policy 2014, 16, 385–393. [Google Scholar] [CrossRef]
- George, A.M.; Tembhurkar, A.R. Analysis of equilibrium, kinetic, and thermodynamic parameters for biosorption of fluoride from water onto coconut (Cocos nucifera Linn.) root developed adsorbent. Chin. J. Chem. Eng. 2019, 27, 92–99. [Google Scholar] [CrossRef]
- Nashine, A.L.; Tembhurkar, A.R. Equilibrium, kinetic and thermodynamic studies for adsorption of As(III) on coconut (Cocos nucifera L.) fiber. J. Environ. Chem. Eng. 2016, 4, 3267–3273. [Google Scholar] [CrossRef]
- Yadav, A.; Abbassi, R.; Gupta, A.; Dadashzadeh, M. Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecol. Eng. 2013, 52, 211–218. [Google Scholar] [CrossRef]
- Radhika, V. Requisites of Stipulation for Sorbent in Defluoridation of Drinking Water. Proc. Natl. Acad. Sci. India Sect. Phys. Sci. 2014, 84, 481–483. [Google Scholar] [CrossRef]
- Xu, X.; Gao, B.-Y.; Tan, X.; Yue, Q.-Y.; Zhong, Q.-Q.; Li, Q. Characteristics of amine-crosslinked wheat straw and its adsorption mechanisms for phosphate and chromium (VI) removal from aqueous solution. Carbohydr. Polym. 2011, 84, 1054–1060. [Google Scholar] [CrossRef]
- Murugan, M.; Subramanian, E. Studies on defluoridation of water by Tamarind seed, an unconventional biosorbent. J. Water Health 2006, 4, 453–461. [Google Scholar] [CrossRef]
- Mohan, D.; Sharma, R.; Singh, V.K.; Steele, P.; Pittman, C.U. Fluoride Removal from Water using Bio-Char, a Green Waste, Low-Cost Adsorbent: Equilibrium Uptake and Sorption Dynamics Modeling. Ind. Eng. Chem. Res. 2012, 51, 900–914. [Google Scholar] [CrossRef]
- Papari, F.; Najafabadi, P.R.; Ramavandi, B. Fluoride ion removal from aqueous solution, groundwater, and seawater by granular and powdered Conocarpus erectus biochar. Desalin. Water Treat. 2017, 65, 375–386. [Google Scholar] [CrossRef]
- Ben Nasr, A.; Walha, K.; Charcosset, C.; Ben Amar, R. Removal of fluoride ions using cuttlefish bones. J. Fluor. Chem. 2011, 132, 57–62. [Google Scholar] [CrossRef]
- Talat, M.; Mohan, S.; Dixit, V.; Singh, D.K.; Hasan, S.H.; Srivastava, O.N. Effective removal of fluoride from water by coconut husk activated carbon in fixed bed column: Experimental and breakthrough curves analysis. Groundw. Sustain. Dev. 2018, 7, 48–55. [Google Scholar] [CrossRef]
- Sathish, R.S.; Raju, N.S.R.; Raju, G.S.; Nageswara Rao, G.; Kumar, K.A.; Janardhana, C. Equilibrium and Kinetic Studies for Fluoride Adsorption from Water on Zirconium Impregnated Coconut Shell Carbon. Sep. Sci. Technol. 2007, 42, 769–788. [Google Scholar] [CrossRef]
- Sathish, R.S.; Sairam, S.; Raja, V.G.; Rao, G.N.; Janardhana, C. Defluoridation of Water Using Zirconium Impregnated Coconut Fiber Carbon. Sep. Sci. Technol. 2008, 43, 3676–3694. [Google Scholar] [CrossRef]
Type of PRs | Surface Area (m2 g−1) | Fluoride in (mg F− L−1) | Operative Conditions | Adsorption Capacity (mg F− gPR−1) | References |
---|---|---|---|---|---|
Palm kernel shell | 1099.8 | 5–125 | pH = 7; T = 25 °C; dosage = 0.2 g L−1 | 116 | Choong et al. [66] |
772.1 | 5–125 | + magnesium silicate; pH = 7; T = 25 °C; dosage = 0.2 g L−1 | 150 | Choong et al. [66] | |
422.5 | 100 | + La/Mg/Si-loaded; pH = 7; T = 25 °C; dosage = 0.2 g L−1 | 285.7 | Choong et al. [68] | |
21.75 | 2–12 | pH = 3; T = 25 °C; bed height = 2–10 cm | 5.6–27.9 | Abu Bakar et al. [56] | |
1.717 | 10–50 | pH = 3; contact time = 4 h | 1.7 | Abu Bakar et al. [63] | |
n.p. | 2.5–15 | pH = 6; contact time = 45 min | 2.35 | Bashir et al. [57] | |
Palm midribs | 255.1 | 2–10 | pH = 1–3.4; T = 30–60 °C; dosage = 0.1–1 g L−1 contact time = 15–300 min | n.p. | Ajisha et al. [42] |
Coconut husk | 358 | 4.4 | pH = 2–10; T = 30–50 °C; dosage = 10 g L−1; contact time = 3 h | 1.3 | Araga et al. [41] |
1448 | 10 | pH = 5; dosage = 1.4 g L−1 | 6.5 | Talat et al. [84] | |
Coconut shell | n.p. | 2–20 | + alumina; T = 20 min; dosage = 20 g L−1 | n.p.1 | Radhika et al. [78] |
2.82 | 10 | + zirconium; pH = 2–10; T = 25 °C; dosage = 10 g L−1 | 6.4–9.1 | Sathish et al. [85] | |
Coconut fiber | 163.2 | 20 | + zirconium; pH = 4; T = 25 °C; Dosage = 20 g L−1; contact time = 6 h | 1.95 | Sathish et al. [86] |
26.3 | 6 | + aluminium; pH = 5; T = 40 °C; dosage = 0.5 g L−1 | 3.2 | Mondal et al. [73] | |
285.6 –824.5 | 1.5–15 | pH = 7.6–7.8; T = 30–60 °C; dosage = 0.05–2 g L−1; contact time = 20–240 min | 12.7–38.5 | Bhaumik et al. [67] | |
Coconut root | 312.84 | 2–25 | pH = 7; T = 50 °C; dosage = 8 g L−1; contact time = 90 min | 2.037 | George et al. [75] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collivignarelli, M.C.; Abbà, A.; Carnevale Miino, M.; Torretta, V.; Rada, E.C.; Caccamo, F.M.; Sorlini, S. Adsorption of Fluorides in Drinking Water by Palm Residues. Sustainability 2020, 12, 3786. https://doi.org/10.3390/su12093786
Collivignarelli MC, Abbà A, Carnevale Miino M, Torretta V, Rada EC, Caccamo FM, Sorlini S. Adsorption of Fluorides in Drinking Water by Palm Residues. Sustainability. 2020; 12(9):3786. https://doi.org/10.3390/su12093786
Chicago/Turabian StyleCollivignarelli, Maria Cristina, Alessandro Abbà, Marco Carnevale Miino, Vincenzo Torretta, Elena Cristina Rada, Francesca Maria Caccamo, and Sabrina Sorlini. 2020. "Adsorption of Fluorides in Drinking Water by Palm Residues" Sustainability 12, no. 9: 3786. https://doi.org/10.3390/su12093786
APA StyleCollivignarelli, M. C., Abbà, A., Carnevale Miino, M., Torretta, V., Rada, E. C., Caccamo, F. M., & Sorlini, S. (2020). Adsorption of Fluorides in Drinking Water by Palm Residues. Sustainability, 12(9), 3786. https://doi.org/10.3390/su12093786