AI-Based Quantification of Fitness Activities Using Smartphones
Abstract
:1. Introduction
- The study investigates the impact of the window sizes, showing that the optimal window size depends on the different datasets used in various models. For example, KNN and SVM perform better using a 2 s window size, but SNN and DNN are more favorable to a 40 s window size.
- Different machine models act similarly well if the handcrafted dataset is evaluated thoroughly in terms of the optimal window size and sophisticated feature extraction.
- The DNN presents superior performance classifying four gym aerobic excises with only an accelerometer in terms of the overall performance and the performance associated with each activity provided in Appendix C.
2. Data and Methods
2.1. Overview of the Activities Analysed
2.2. Raw Data Collection
2.3. Handcrafted Features
2.4. PCA
- Obtain the most crucial information from the 38-feature dataset;
- Exclude the less critical information to achieve a smaller dataset;
- Simpify the description of the dataset;
- Assess the attributes of the new representation.
2.5. Machine Learning Algorithms
2.6. Evaluations Measures of Machine Learning Algorithms
3. Results
3.1. Window Sizes
3.2. Explained Variance Ratio
3.3. Hyper-Parameter Tunning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Window Sizes
Window Sizes | 1 s | 2 s | 5 s | 10 s | 20 s | 40 s | 60 s | 80 s | |
---|---|---|---|---|---|---|---|---|---|
Measures | |||||||||
KNN training accuracy | 0.979 | 0.981 | 0.977 | 0.972 | 0.966 | 0.961 | 0.939 | 0.930 | |
KNN testing accuracy | 0.959 | 0.965 | 0.959 | 0.952 | 0.937 | 0.904 | 0.848 | 0.856 | |
KNN precision | 0.931 0.981 0.939 0.987 | 0.939 0.984 0.957 0.980 | 0.945 0.976 0.940 0.976 | 0.923 0.971 0.936 0.976 | 0.875 0.992 0.891 0.989 | 0.811 0.935 0.919 0.967 | 0.778 0.897 0.783 0.931 | 0.747 0.891 0.845 0.984 | |
KNN recall | 0.943 0.957 0.964 0.971 | 0.952 0.967 0.963 0.976 | 0.928 0.964 0.971 0.974 | 0.911 0.960 0.945 0.990 | 0.941 0.889 0.933 0.989 | 0.896 0.841 0.913 0.975 | 0.811 0.805 0.783 0.979 | 0.903 0.814 0.790 0.909 | |
KNN F-measure | 0.937 0.969 0.952 0.979 | 0.946 0.976 0.960 0.978 | 0.937 0.970 0.956 0.975 | 0.917 0.966 0.940 0.983 | 0.907 0.938 0.912 0.989 | 0.851 0.885 0.916 0.971 | 0.794 0.848 0.783 0.954 | 0.818 0.851 0.817 0.945 | |
SVM training accuracy | 0.953 | 0.961 | 0.958 | 0.942 | 0.926 | 0.904 | 0.835 | 0.770 | |
SVM testing accuracy | 0.950 | 0.961 | 0.952 | 0.945 | 0.917 | 0.869 | 0.814 | 0.793 | |
SVM precision | 0.905 0.979 0.935 0.986 | 0.922 0.983 0.960 0.982 | 0.907 0.985 0.949 0.972 | 0.906 0.975 0.915 0.982 | 0.824 0.992 0.869 0.985 | 0.782 0.940 0.803 0.992 | 0.885 0.784 0.685 0.947 | 0.884 0.762 0.642 0.968 | |
SVM recall | 0.930 0.957 0.945 0.969 | 0.952 0.960 0.960 0.973 | 0.935 0.952 0.958 0.965 | 0.900 0.953 0.948 0.976 | 0.882 0.885 0.933 0.968 | 0.776 0.797 0.927 0.983 | 0.568 0.874 0.892 0.938 | 0.528 0.914 0.839 0.909 | |
SVM F-measure | 0.917 0.968 0.940 0.978 | 0.937 0.971 0.960 0.977 | 0.921 0.968 0.954 0.968 | 0.903 0.964 0.931 0.979 | 0.852 0.936 0.900 0.977 | 0.779 0.863 0.861 0.987 | 0.692 0.826 0.775 0.942 | 0.661 0.831 0.727 0.937 | |
SNN training accuracy | 0.978 | 0.991 | 0.995 | 0.991 | 0.992 | 0.994 | 0.995 | 0.968 | |
SNN testing accuracy | 0.967 | 0.973 | 0.974 | 0.974 | 0.973 | 0.982 | 0.967 | 0.933 | |
SNN precision | 0.953 0.975 0.957 0.983 | 0.963 0.980 0.978 0.972 | 0.959 0.983 0.974 0.982 | 0.967 0.964 0.987 0.976 | 0.943 0.997 0.969 0.982 | 0.943 0.993 0.993 0.999 | 0.948 0.999 0.962 0.960 | 0.930 0.999 0.900 0.903 | |
SNN recall | 0.943 0.974 0.972 0.976 | 0.957 0.979 0.972 0.986 | 0.966 0.984 0.969 0.978 | 0.956 0.977 0.970 0.990 | 0.976 0.970 0.965 0.982 | 0.985 0.978 0.973 0.992 | 0.958 0.989 0.916 0.999 | 0.917 0.957 0.871 0.985 | |
SNN F-measure | 0.948 0.975 0.964 0.980 | 0.960 0.979 0.975 0.979 | 0.962 0.984 0.972 0.98 | 0.962 0.971 0.979 0.983 | 0.959 0.983 0.967 0.982 | 0.964 0.985 0.983 0.996 | 0.953 0.994 0.938 0.980 | 0.923 0.978 0.885 0.942 | |
DNN training accuracy | 0.979 | 0.984 | 0.980 | 0.986 | 0.990 | 0.995 | 0.992 | 0.944 | |
DNN testing accuracy | 0.967 | 0.970 | 0.963 | 0.961 | 0.957 | 0.974 | 0.942 | 0.896 | |
DNN precision | 0.949 0.981 0.953 0.985 | 0.941 0.982 0.985 0.975 | 0.925 0.989 0.975 0.968 | 0.943 0.971 0.963 0.967 | 0.937 0.983 0.925 0.978 | 0.949 0.999 0.973 0.975 | 0.937 0.977 0.924 0.929 | 0.882 0.957 0.864 0.877 | |
DNN recall | 0.945 0.972 0.975 0.975 | 0.966 0.973 0.956 0.987 | 0.959 0.967 0.949 0.978 | 0.939 0.966 0.959 0.979 | 0.929 0.956 0.965 0.975 | 0.970 0.971 0.967 0.992 | 0.937 0.989 0.880 0.958 | 0.833 0.957 0.823 0.970 | |
DNN F-measure | 0.947 0.977 0.964 0.980 | 0.953 0.978 0.970 0.980 | 0.942 0.978 0.962 0.973 | 0.941 0.969 0.961 0.973 | 0.933 0.969 0.944 0.977 | 0.959 0.985 0.970 0.983 | 0.937 0.983 0.901 0.944 | 0.857 0.957 0.843 0.921 |
Appendix B. PCA
Appendix C. Hyper-Parameter Tuning
Number of Neighbors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Training accuracy | 0.990 | 0.980 | 0.978 | 0.972 | 0.971 | 0.967 | 0.966 | 0.964 | 0.963 | 0.962 |
Testing accuracy | 0.961 | 0.957 | 0.960 | 0.958 | 0.959 | 0.957 | 0.958 | 0.958 | 0.957 | 0.957 |
Precision | 0.939 0.974 0.952 0.979 | 0.908 0.975 0.959 0.989 | 0.935 0.979 0.949 0.980 | 0.924 0.981 0.948 0.982 | 0.936 0.980 0.943 0.979 | 0.926 0.981 0.943 0.981 | 0.934 0.981 0.940 0.980 | 0.928 0.981 0.942 0.982 | 0.931 0.982 0.937 0.981 | 0.928 0.981 0.938 0.983 |
Recall | 0.943 0.968 0.957 0.975 | 0.969 0.964 0.935 0.960 | 0.948 0.962 0.959 0.974 | 0.954 0.960 0.949 0.969 | 0.944 0.963 0.957 0.972 | 0.948 0.961 0.952 0.969 | 0.942 0.961 0.959 0.970 | 0.948 0.961 0.953 0.968 | 0.942 0.959 0.957 0.970 | 0.946 0.959 0.954 0.968 |
F-measure | 0.941 0.971 0.955 0.977 | 0.938 0.970 0.947 0.974 | 0.941 0.970 0.954 0.977 | 0.939 0.970 0.948 0.975 | 0.940 0.971 0.950 0.975 | 0.937 0.971 0.948 0.975 | 0.938 0.971 0.949 0.975 | 0.938 0.971 0.947 0.975 | 0.937 0.970 0.947 0.975 | 0.937 0.970 0.946 0.975 |
Number of C | 1 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 |
---|---|---|---|---|---|---|---|---|---|---|---|
Training accuracy | 0.967 | 0.972 | 0.974 | 0.975 | 0.977 | 0.978 | 0.978 | 0.979 | 0.979 | 0.980 | 0.980 |
Testing accuracy | 0.965 | 0.967 | 0.967 | 0.968 | 0.968 | 0.969 | 0.969 | 0.969 | 0.969 | 0.970 | 0.970 |
Precision | 0.935 0.978 0.961 0.986 | 0.938 0.978 0.963 0.988 | 0.940 0.979 0.963 0.987 | 0.941 0.980 0.964 0.987 | 0.943 0.980 0.964 0.987 | 0.944 0.981 0.964 0.987 | 0.944 0.981 0.965 0.987 | 0.943 0.982 0.966 0.987 | 0.944 0.980 0.965 0.987 | 0.945 0.981 0.966 0.989 | 0.945 0.981 0.966 0.989 |
Recall | 0.955 0.966 0.962 0.976 | 0.957 0.968 0.962 0.979 | 0.957 0.971 0.962 0.980 | 0.957 0.971 0.962 0.981 | 0.958 0.971 0.963 0.982 | 0.959 0.971 0.962 0.982 | 0.959 0.971 0.964 0.982 | 0.960 0.972 0.963 0.982 | 0.959 0.972 0.963 0.982 | 0.961 0.974 0.963 0.983 | 0.961 0.974 0.963 0.983 |
F-measure | 0.945 0.972 0.962 0.981 | 0.948 0.973 0.963 0.984 | 0.948 0.975 0.963 0.984 | 0.949 0.975 0.963 0.984 | 0.950 0.976 0.963 0.984 | 0.951 0.976 0.963 0.985 | 0.951 0.976 0.964 0.984 | 0.951 0.977 0.964 0.985 | 0.951 0.976 0.964 0.985 | 0.953 0.977 0.965 0.986 | 0.953 0.977 0.965 0.986 |
Number of Neurons | 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
---|---|---|---|---|---|---|---|---|---|---|---|
Training accuracy | 0.944 | 0.985 | 0.990 | 0.990 | 0.994 | 0.995 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 |
Testing accuracy | 0.910 | 0.945 | 0.969 | 0.963 | 0.959 | 0.965 | 0.961 | 0.969 | 0.965 | 0.970 | 0.970 |
Precision | 0.857 0.985 0.858 0.944 | 0.904 0.971 0.938 0.967 | 0.934 0.993 0.966 0.983 | 0.915 0.985 0.966 0.992 | 0.906 0.985 0.966 0.983 | 0.914 0.985 0.979 0.983 | 0.913 0.985 0.966 0.983 | 0.927 0.993 0.973 0.983 | 0.908 0.999 0.959 0.999 | 0.921 0.993 0.979 0.992 | 0.934 0.978 0.980 0.992 |
Recall | 0.806 0.964 0.887 0.992 | 0.910 0.978 0.913 0.983 | 0.955 0.971 0.960 0.992 | 0.963 0.964 0.940 0.992 | 0.940 0.971 0.940 0.992 | 0.55 0.971 0.947 0.992 | 0.940 0.971 0.947 0.992 | 0.948 0.978 0.960 0.992 | 0.963 0.971 0.940 0.992 | 0.963 0.978 0.953 0.990 | 0.955 0.978 0.960 0.992 |
F-measure | 0.831 0.974 0.872 0.967 | 0.907 0.975 0.926 0.975 | 0.945 0.982 0.963 0.988 | 0.938 0.974 0.953 0.992 | 0.923 0.978 0.953 0.988 | 0.934 0.978 0.963 0.988 | 0.926 0.978 0.956 0.988 | 0.937 0.985 0.966 0.988 | 0.935 0.985 0.949 0.996 | 0.942 0.985 0.966 0.992 | 0.945 0.978 0.970 0.992 |
Number of Neurons | 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
---|---|---|---|---|---|---|---|---|---|---|---|
Training accuracy | 0.927 | 0.979 | 0.973 | 0.986 | 0.983 | 0.988 | 0.990 | 0.993 | 0.992 | 0.995 | 0.992 |
Testing accuracy | 0.915 | 0.939 | 0.954 | 0.959 | 0.956 | 0.958 | 0.969 | 0.970 | 0.972 | 0.965 | 0.972 |
Precision | 0.833 0.954 0.925 0.959 | 0.882 0.956 0.940 0.983 | 0.924 0.978 0.924 0.999 | 0.914 0.985 0.959 0.983 | 0.899 0.978 0.952 0.999 | 0.913 0.978 0.966 0.975 | 0.947 0.985 0.954 0.992 | 0.941 0.985 0.966 0.992 | 0.955 0.993 0.961 0.983 | 0.914 0.993 0.966 0.992 | 0.955 0.978 0.961 0.999 |
Recall | 0.896 0.906 0.900 0.967 | 0.896 0.942 0.940 0.983 | 0.903 0.964 0.967 0.983 | 0.948 0.971 0.947 0.975 | 0.933 0.971 0.933 0.992 | 0.940 0.964 0.947 0.983 | 0.940 0.978 0.967 0.992 | 0.955 0.978 0.960 0.992 | 0.940 0.978 0.980 0.992 | 0.955 0.971 0.947 0.992 | 0.948 0.978 0.973 0.992 |
F-measure | 0.863 0.929 0.912 0.963 | 0.889 0.949 0.940 0.983 | 0.913 0.971 0.945 0.992 | 0.930 0.978 0.953 0.979 | 0.916 0.975 0.943 0.996 | 0.926 0.971 0.956 0.979 | 0.944 0.982 0.960 0.992 | 0.948 0.982 0.963 0.992 | 0.947 0.985 0.970 0.988 | 0.934 0.982 0.956 0.992 | 0.951 0.978 0.967 0.996 |
Number of Neurons | 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
---|---|---|---|---|---|---|---|---|---|---|---|
Training accuracy | 0.907 | 0.918 | 0.917 | 0.920 | 0.93 | 0.917 | 0.931 | 0.903 | 0.930 | 0.923 | 0.921 |
Testing accuracy | 0.902 | 0.906 | 0.911 | 0.911 | 0.926 | 0.895 | 0.924 | 0.889 | 0.919 | 0.917 | 0.913 |
Precision | 0.807 0.963 0.879 0.967 | 0.807 0.992 0.866 0.975 | 0.831 0.985 0.868 0.975 | 0.821 0.992 0.872 0.975 | 0.883 0.999 0.862 0.975 | 0.901 0.978 0.781 0.967 | 0.882 0.992 0.863 0.975 | 0.748 0.992 0.874 0.975 | 0.846 0.993 0.875 0.975 | 0.835 0.993 0.879 0.975 | 0.895 0.978 0.830 0.975 |
Recall | 0.813 0.949 0.873 0.983 | 0.843 0.957 0.860 0.975 | 0.843 0.964 0.873 0.975 | 0.858 0.957 0.867 0.975 | 0.843 0.964 0.920 0.983 | 0.679 0.971 0.953 0.975 | 0.836 0.957 0.927 0.983 | 0.866 0.949 0.787 0.975 | 0.858 0.964 0.887 0.975 | 0.866 0.964 0.873 0.975 | 0.761 0.964 0.947 0.983 |
F-measure | 0.810 0.956 0.876 0.975 | 0.825 0.974 0.863 0.975 | 0.837 0.974 0.870 0.975 | 0.839 0.974 0.870 0.975 | 0.863 0.982 0.890 0.979 | 0.774 0.975 0.859 0.971 | 0.858 0.974 0.894 0.979 | 0.803 0.970 0.828 0.975 | 0.852 0.978 0.881 0.975 | 0.850 0.978 0.876 0.975 | 0.823 0.971 0.885 0.979 |
Number of Neurons in Each Hidden Layer | 80, 5 | 80, 10 | 80, 15 | 80, 5, 5 | 80, 10, 5 | 80, 10, 10 | 80, 10, 10, 5 | 80, 10, 10, 10 | 80, 15, 5, 5 | 80, 15, 10, 5 | 80, 15, 10, 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Training accuracy | 0.994 | 0.995 | 0.998 | 0.995 | 0.994 | 0.999 | 0.996 | 0.999 | 0.993 | 0.999 | 0.999 |
Testing accuracy | 0.963 | 0.963 | 0.967 | 0.961 | 0.967 | 0.974 | 0.965 | 0.961 | 0.952 | 0.965 | 0.967 |
Precision | 0.914 0.985 0.979 0.975 | 0.908 0.978 0.972 0.999 | 0.927 0.978 0.973 0.992 | 0.920 0.999 0.940 0.992 | 0.933 0.985 0.966 0.983 | 0.935 0.993 0.973 0.993 | 0.915 0.978 0.979 0.992 | 0.914 0.993 0.966 0.975 | 0.923 0.964 0.935 0.992 | 0.934 0.964 0.966 0.999 | 0.915 0.985 0.973 0.999 |
Recall | 0.955 0.957 0.953 0.992 | 0.955 0.971 0.940 0.992 | 0.948 0.971 0.960 0.992 | 0.940 0.978 0.933 0.999 | 0.940 0.978 0.960 0.992 | 0.963 0.978 0.967 0.983 | 0.963 0.971 0.940 0.992 | 0.955 0.964 0.940 0.992 | 0.896 0.971 0.953 0.992 | 0.948 0.964 0.953 0.999 | 0.963 0.971 0.947 0.992 |
F-measure | 0.934 0.971 0.966 0.983 | 0.931 0.975 0.956 0.996 | 0.937 0.975 0.966 0.992 | 0.930 0.989 0.936 0.996 | 0.937 0.982 0.963 0.988 | 0.949 0.985 0.970 0.988 | 0.938 0.975 0.959 0.992 | 0.934 0.978 0.953 0.983 | 0.909 0.968 0.944 0.992 | 0.941 0.964 0.960 0.999 | 0.938 0.978 0.959 0.996 |
References
- Blair, S.N. Physical inactivity: The biggest public health problem of the 21st century. Br. J. Sports Med. 2009, 43, 294–305. [Google Scholar]
- Kohl, H.W., 3rd; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S.; Lancet Physical Activity Series Working Group. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Yang, P.; Hanneghan, M.; Tang, S.; Zhou, B. A Hybrid Hierarchical Framework for Gym Physical Activity Recognition and Measurement Using Wearable Sensors. IEEE Internet Things J. 2019, 6, 1384–1393. [Google Scholar] [CrossRef] [Green Version]
- Koskimäki, H.; Siirtola, P.; Röning, J. Myogym: Introducing an open gym data set for activity recognition collected using myo armband. In Proceedings of the UbiComp ′17: 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017. [Google Scholar]
- Koskimäki, H.; Siirtola, P. Recognizing gym exercises using acceleration data from wearable sensors. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Orlando, FL, USA, 9–12 December 2014; pp. 321–328. [Google Scholar]
- Khan, U.A.; Khan, I.A.; Din, A.; Jadoon, W.; Jadoon, R.N.; Khan, M.A.; Khan, F.G.; Khan, A.N. Towards a Complete Set of Gym Exercises Detection Using Smartphone Sensors. Sci. Program. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Li, K.; Habre, R.; Deng, H.; Urman, R.; Morrison, J.; Gilliland, F.D.; Ambite, J.L.; Stripelis, D.; Chiang, Y.-Y.; Lin, Y.; et al. Applying Multivariate Segmentation Methods to Human Activity Recognition from Wearable Sensors’ Data. JMIR Mhealth Uhealth 2019, 7, e11201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference (SAI), London, UK, 27–29 August 2014; pp. 372–378. [Google Scholar]
- Yang, J.; Zhang, D.; Frangi, A.F.; Yang, J.Y. Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jokanovic, B.; Amin, M.; Ahmad, F.; Boashash, B. Radar fall detection using principal component analysis. In Radar Sensor Technology; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2016; Volume 20, p. 982919. [Google Scholar]
- Song, F.; Guo, Z.; Mei, D. Feature selection using principal component analysis. In Proceedings of the 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization, Yichang, China, 12–14 November 2010. [Google Scholar]
- Banos, O.; Galvez, J.-M.; Damas, M.; Pomares, H.; Rojas, I. Window Size Impact in Human Activity Recognition. Sensors 2014, 14, 6474–6499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, G.M.; Timko, J.L.; Gallagher, C.M.; Yoneda, K.; Schreiber, A.J. Smartwatch-based activity recognition: A machine learning approach. In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las Vegas, NV, USA, 24–27 February 2016. [Google Scholar]
- Ahmadi, M.; O’Neil, M.; Fragala-Pinkham, M.; Lennon, N.; Trost, S. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy. J. Neuroeng. Rehabil. 2018, 15, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, U.; Smailagic, A.; Siewiorek, D.P.; Deisher, M. Activity recognition and monitoring using multiple sensors on different body positions. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN‘06), Cambridge, MA, USA, 3–5 April 2006. [Google Scholar]
- Amjad, F.; Khan, M.; Nisar, M.; Farid, M.; Grzegorzek, M. A Comparative Study of Feature Selection Approaches for Human Activity Recognition Using Multimodal Sensory Data. Sensors 2021, 21, 2368. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, H.; Xu, X.; Zhang, L.; Li, P. Kernel sparse subspace clustering with a spatial max pooling operation for hyperspectral remote sensing data interpretation. Remote Sens. 2017, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Weston, J.; Watkins, C. Multiclass Support Vector Machines; Technical Report CSD-TR-98-04; Royal Holloway University of London, Department of Computer Science: Egham, UK, 1998. [Google Scholar]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Proceedings of the AI 2006: Australasian Joint Conference on Artificial Intelligence, Canberra, Australia, 4–8 December 2006. [Google Scholar]
- Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kaewunruen, S.; Lei, C. Smartphone Sensing and Identification of Shock Noise and Vibration Induced by Gym Activities. Acoust. Aust. 2020, 48, 349–361. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Huang, J.; Haslam, J. Insights into noise and vibration stemming from the gym’s heavy lifting. Sport Sci. Health 2021, 1–10. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Shi, Y. Impact Noise and Vibration Sources Induced by Heavy Gym Activities: Do They in Turn Unnecessarily, Indirectly Affect Our Health? Appl. Sci. 2021, 11, 11812. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sresakoolchai, J.; Huang, J.; Harada, S.; Wisetjindawat, W. Human Activity Vibrations. Data 2021, 6, 104. [Google Scholar] [CrossRef]
Indicator (m/s2) | Direction | Ascending | Cycling | Elliptical | Running |
---|---|---|---|---|---|
Maximum | X | 55.6 | 22.9 | 32.6 | 56.1 |
Y | 56.9 | 20.6 | 37.0 | 47.7 | |
Z | 42.7 | 33.0 | 47.1 | 45.7 | |
Mean | X | 2.3 | 1.6 | 2.5 | 6.2 |
Y | 2.4 | 2.4 | 3.5 | 4.6 | |
Z | 2.0 | 1.0 | 2.3 | 4.8 | |
Standard deviation | X | 1.9 | 1.4 | 2.2 | 4.9 |
Y | 2.2 | 1.9 | 2.6 | 3.3 | |
Z | 2.1 | 0.9 | 1.8 | 4.1 | |
P 20% | X | 0.7 | 0.5 | 0.7 | 2.0 |
Y | 0.6 | 1.0 | 1.2 | 1.5 | |
Z | 0.5 | 0.3 | 0.7 | 1.2 | |
P 50% | X | 1.9 | 1.3 | 1.9 | 5.3 |
Y | 1.8 | 2.4 | 3.0 | 4.1 | |
Z | 1.4 | 0.7 | 1.9 | 3.7 | |
P 80% | X | 3.5 | 2.5 | 3.8 | 9.6 |
Y | 3.9 | 4.3 | 5.6 | 7.4 | |
Z | 3.0 | 1.5 | 3.7 | 7.8 |
Category | Extracted Features |
---|---|
Frequency domain | Spectral energy |
Time-domain | Max, min, average, standard deviation, percentile 20, percentile 50, percentile 80, interquartile, skewness, kurtosis, correlation, the standard deviation of SMV, an average of SMV, maximum of SMV, and a minimum of SMV. |
Window Size | 2 s | 40 s | ||||
---|---|---|---|---|---|---|
Type of Activity | No. Samples | No. Features | Total Subjects | No. Samples | No. Features | Total Subjects |
Ascending on a treadmill | 9000 | 38 | 10 | 450 | 38 | 10 |
Cycling | 9000 | 38 | 10 | 450 | 38 | 10 |
Elliptical | 9000 | 38 | 10 | 450 | 38 | 10 |
Running on a treadmill | 9000 | 38 | 10 | 450 | 38 | 10 |
Type of Algorithms | Parameter |
---|---|
KNN |
|
SVM |
|
SNN |
|
DNN |
|
Ascending | Ascending | Cycling | Cycling | Running | Running | |
---|---|---|---|---|---|---|
Precision | 0.824 | 0.935 | 0.826 | 0.993 | 0.904 | 0.993 |
Recall | 0.788 | 0.963 | 0.812 | 0.978 | 0.882 | 0.983 |
F-measure | 0.805 | 0.949 | 0.898 | 0.985 | 0.912 | 0.988 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Kaewunruen, S.; Ning, J. AI-Based Quantification of Fitness Activities Using Smartphones. Sustainability 2022, 14, 690. https://doi.org/10.3390/su14020690
Huang J, Kaewunruen S, Ning J. AI-Based Quantification of Fitness Activities Using Smartphones. Sustainability. 2022; 14(2):690. https://doi.org/10.3390/su14020690
Chicago/Turabian StyleHuang, Junhui, Sakdirat Kaewunruen, and Jingzhiyuan Ning. 2022. "AI-Based Quantification of Fitness Activities Using Smartphones" Sustainability 14, no. 2: 690. https://doi.org/10.3390/su14020690
APA StyleHuang, J., Kaewunruen, S., & Ning, J. (2022). AI-Based Quantification of Fitness Activities Using Smartphones. Sustainability, 14(2), 690. https://doi.org/10.3390/su14020690