Oilseed Brassica Species Diversification and Crop Geometry Influence the Productivity, Economics, and Environmental Footprints under Semi-Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Weather Conditions
2.2. Experimental Details
2.3. Crop Management and Yield Measurements
2.4. Productivity and Production Efficiency Estimation
2.5. Carbon-Emission and C- Efficiencies Estimation
2.6. Carbon Sustainability Index (CSI)
2.7. Energy Estimation
2.8. Water Use and Water Footprint
2.9. Economic Analysis
2.10. Statistical Analysis
3. Results
3.1. Effect on OSB Productivity and Economics
3.2. Carbon-Use Dynamics and Efficacy
3.3. Water Usage and Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA. Global Production: USDA, India’s Production: DVVOF, Exporters & Importers: Comtrade. Commodity Profile of Edible Oil for September 2019; USDA: Washington, DC, USA, 2019.
- Rathore, S.S.; Shekhawat, K.; Babu, S. Improved Agronomy for Self-Reliance in Oilseed Crops; Scientific International Pvt. Ltd.: New Delhi, India, 2021; p. 222. ISBN 978-93-89396-74-3. [Google Scholar]
- Kumar, A.; Sharma, P.; Thomas, L.; Agnihotri, A.; Banga, S.S. Canola Cultivation in India: Scenario and Future Strategy; 16th Australian Research Assembly on Brassicas: Ballarat, VIC, Australia, 2009. [Google Scholar]
- Rathore, S.S.; Shekhawat, K.; Singh, R.K.; Upadhyay, P.K.; Singh, V.K. Best management practices for doubling oilseed productivity: Aiming India for self-reliance in edible oil. Indian J. Agric. Sci. 2019, 89, 1225–1231. [Google Scholar]
- NMOOP. National Mission on Oilseeds and Oilpalm; Ministry of Agriculture and Frarmers Welfare, GoI: New Delhi, India, 2020. [Google Scholar]
- Status Paper. National Mission on Oilseeds and Oil Palm, Ministry of Agriculture and Farmers Welfare, Govt of India. Available online: https://nmoop.gov.in/Publication/StatusPaper_RandM_2017.pdf.2017 (accessed on 15 August 2021).
- Shekhawat, K.; Rathore, S.S.; Premi, O.P.; Kandpal, B.K.; Chauhan, J.S. Advances in agronomic management of Indian Mustard (Brassica juncea (L.) Czernj. Cosson): An overview. Int. J. Agron. 2012, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cardone, M.; Mazzoncini, M.; Menini, S.; Rocco, V.; Senatore, A.; Seggiani, M.; Vitolo, S. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: Agronomic evaluation, fuel production by transesterification and characterization. Biomass Bioenergy 2003, 25, 623–636. [Google Scholar] [CrossRef]
- Kaur, P.; Sidhu, M. Effect of sowing date, nitrogen level and row spacing on the growth and yield of African sarson (Brassica carinata A. Br.). J. Res. Punjab Agric. Univ. 2004, 41, 27–34. [Google Scholar]
- Setia, R.; Bhathal, G.; Setia, N. Influence of paclobutrazol on growth and yield of Brassica carinata A. Br. Plant Growth Regul. 1995, 16, 121–127. [Google Scholar] [CrossRef]
- Zanetti, F.; Vamerali, T.; Mosca, G. Yield and oil variability in modern varieties of high-erucic winter oilseed rape (Brassica napus L. var. oleifera) and Ethiopian mustard (Brassica carinata A. Braun) under reduced agricultural inputs. Ind. Crop. Prod. 2009, 30, 265–270. [Google Scholar] [CrossRef]
- Lal, B.; Rana, K.; Rana, D.; Shivay, Y.; Sharma, D.; Meena, B.; Gautam, P. Biomass, yield, quality and moisture use of Brassica carinata as influenced by intercropping with chickpea under semiarid tropics. J. Saudi Soc. Agric. Sci. 2017, 18, 61–71. [Google Scholar] [CrossRef]
- Canola Council. What is Canola? Available online: https://www.canolacouncil.org/oil-and-meal/what-is-canola/ (accessed on 12 May 2019).
- Jat, R.S.; Singh, V.V.; Sharma, P.; Rai, P.K. Gobhi mustard (B. napus) and Ethopian mustard/Karan rai (B. carinata) are the new emerging oilseed crops having a limited area under cultivation in northern India. Sci. Rep. 2019, 26, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Kuai, J.; Sun, Y.; Zuo, Q.; Huang, H.; Liao, Q.; Wu, C.; Lu, J.; Wu, J.; Zhou, G. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci. Rep. 2015, 5, 18835. [Google Scholar] [CrossRef] [Green Version]
- Kirkegaard, J.; Gardner, P.; Angus, J.; Koetz, E. Effect of Brassica break crops on the growth and yield of wheat. Aust. J. Agric. Res. 1994, 45, 529–545. [Google Scholar] [CrossRef]
- Cresswell, H.P.; Kirkegaard, J.A. Subsoil amelioration by plant roots—The Process and the Evidence. Aust. J. Soil Res. 1995, 33, 221–239. [Google Scholar] [CrossRef]
- Kirkegaard, J.; Hocking, P.; Angus, J.; Howe, G.; Gardner, P. Comparison of canola, Indian mustard and Linola in two contrasting environments. II. Break-crop and nitrogen effects on subsequent wheat crops. Field Crop. Res. 1997, 52, 179–191. [Google Scholar] [CrossRef]
- Alberti, P.K. Development of Best Management Practices for Production of Ethiopian Mustard (Brassica carinata) in South Dakota. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2017. [Google Scholar]
- Mulvaney, M.J.; Leon, R.G.; Seepaul, R.; Wright, D.L.; Hoffman, T.L. Brassica carinata Seeding Rate and Row Spacing Effects on Morphology, Yield, and Oil. Agron. J. 2019, 111, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, G.; Ripa, M.; Mellino, S.; Fahd, S.; Ulgiati, S. Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals. J. Clean. Prod. 2014, 66, 174–187. [Google Scholar] [CrossRef]
- Licata, M.; La Bella, S.; Leto, C.; Bonsangue, G.; Gennaro, M.C.; Tuttolomondo, T.; Mario, L. Agronomic evaluation of ethiopian mustard (Brassica carinata A. Braun) germplasm and physical-energy characterization of crop residues in a semi-arid area of sicily (Italy). Chem. Eng. Trans. 2017, 58, 535–540. [Google Scholar]
- Rathore, S.S.; Shekhawat, K.; Dass, A.; Kandpal, B.K.; Singh, V.K. Phytoremediation Mechanism in Indian Mustard (Brassica juncea) and Its Enhancement Through Agronomic Interventions. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 89, 419–427. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Viswanath, T.; Bhadraray, S.; Chhonkar, P.K.; Adhikari, P.P.; Suribabu, K. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int. J. Phytoremediat. 2008, 10, 61–72. [Google Scholar] [CrossRef]
- Taylor, D.; Kevin, C.; Falk, C.; Don, P.; Joe, H.; Vivijan, B.; Elzbieta, M.; Ashok, J.; Elizabeth-France, M.; Tammy, F.; et al. Brassica carinata—A new molecular farming platform for delivering bio-industrial oil feedstocks: Case studies of genetic modifi cations to improve very long-chain fatty acid and oil content in seeds David. Biofuels Bioprod. Biorefining 2010, 4, 538–561. [Google Scholar] [CrossRef] [Green Version]
- Diepenbrock, W. Yield analysis of winter oilseed rape (Brassica napus L.): A review. Field Crops Res. 2000, 67, 35–49. [Google Scholar] [CrossRef]
- Shekhawat, K.; Rathore, S.S.; Kandpal, B.K.; Premi, O.P.; Singh, D. Enhancing Carbon Sequestration Potential, Productivity and Sustainability of Mustard Under Conservation Agriculture in Semi-arid Regions of India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2016, 88, 199–208. [Google Scholar] [CrossRef]
- Jansson, C.; Faiola, C.; Wingler, A.; Zhu, X.-G.; Kravchenko, A.; de Graaff, M.-A.; Ogden, A.J.; Handakumbura, P.P.; Werner, C.; Beckles, D.M. Crops for Carbon Farming. Front. Plant Sci. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Meier, E.A.; Thorburn, P.J.; Bell, L.W.; Harrison, M.T.; Biggs, J.S. Greenhouse Gas Emissions from Cropping and Grazed Pastures Are Similar: A Simulation Analysis in Australia. Front. Sustain. Food Syst. 2020, 3, 121. [Google Scholar] [CrossRef] [Green Version]
- Rathore, S.S.; Shekhawat, K.; Rajanna, G.A. Land configurations in surface drip irrigation for enhancing productivity, profitability and water-use efficiency of Indian mustard (Brassica juncea) under semi-arid conditions. Indian J. Agric. Sci. 2020, 90, 1538–1543. [Google Scholar]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Jansson, C.; Wullschleger, S.D.; Udaya, C.K.; Tuskan, G.A. Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 2010, 60, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. Water Footprint Manual: State of the Art 2009; Water Footprint Network: Enschede, The Netherlands, 2012. [Google Scholar]
- Mekonnen, M.M.; Gerbens-Leenes, W. The Water Footprint of Global Food Production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- Rathore, S.S.; Shekhawat, K.; Kandpal, B.K.; Premi, O.P. Micro-irrigation and fertigation improves gas exchange, productivity traits and economics of Indian mustard (Brassica juncea L. Czernj and Cosson) under semi-arid conditions. Aust. J. Crop. Sci. 2014, 8, 582–595. [Google Scholar]
- Rathore, S.S.; Shekhawat, K.; Premi, O.P.; Kandpal, B.K.; Chauhan, J.S. Productivity, water use efficiency and sustainability of pressurized irrigation systems for mustard under semi-arid conditions of Rajasthan. Indian J. Agron. 2014, 59, 112–118. [Google Scholar]
- Sharma, B.R.; Gulati, A.; Mohan, G.; Manchanda, S.; Ray, I.; Amarasingh, U. Water Productivity Mapping of Major Indian Crops; NABARD: Mumbai, India; ICRIER: New Delhi, India, 2018; p. 180. [Google Scholar]
- Rathore, S.S.; Shekhawat, K. Climate Smart Agronomy; Bhavya Books (BET): New Delhi, India, 2020; p. 260. ISBN 978-93-83992-49-2. [Google Scholar]
- Lal, R. Carbon emissions from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Babu, S.; Mohapatra, K.; Das, A.; Yadav, G.S.; Tahasildar, M.; Singh, R.; Panwar, A.; Yadav, V.; Chandra, P. Designing energy-efficient, economically sustainable and environmentally safe cropping system for the rainfed maize–fallow land of the Eastern Himalayas. Sci. Total Environ. 2020, 722, 137874. [Google Scholar] [CrossRef] [PubMed]
- Unakitan, G.; Hurma, H.; Yilmaz, F. An analysis of energy use efficiency of canola production in Turkey. Energy 2010, 35, 3623–3627. [Google Scholar] [CrossRef]
- Tuti, M.D.; Prakash, V.; Pandey, B.M. Energy Budgeting of colocasia-based cropping system in the Indian sub-Himalayas. Energy 2012, 45, 986–993. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Avasthe, R.K.; Yadav, G.S.; Rajkhowa, D.J. Intensification of maize (Zea mays)-based cropping sequence in rainfed ecosystem of Sikkim Himalayas for improving system productivity, profitability, employment generation and energy-use efficiency under organic management condition. Indian J. Agric. Sci. 2016, 86, 778–784. [Google Scholar]
- Babu, S.; Rana, D.S.; Yadav, G.S.; Singh, R. Influence of sunflower stover and nutrient management on growth, yield and energetics of sunflower (Helianthus annuus) in a pigeonpea (Cajanuscajan)-sunflower cropping system. Indian J. Agric. Sci. 2016, 6, 315–320. [Google Scholar]
- Parihar, C.M.; Jat, S.L.; Singh, A.K.; Kumar, B.; Rathore, N.S.; Jat, M.L.; Saharawat, Y.S.; Kuri, B.R. Energy auditing of long-term conservation agriculture based irrigated intensive maize systems in semi-arid tropics of India. Energy 2018, 142, 289–302. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Lal, R.; Babu, S.; Meena, R.S.; Saha, P.; Singh, R.; Datta, M. Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J. Clean. Prod. 2018, 191, 144–157. [Google Scholar] [CrossRef]
- Jat, H.S.; Jat, R.D.; Nanwal, R.K.; Lohan, S.K.; Yadav, A.K.; Poonia, T.; Sharma, P.C.; Jat, M.L. Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India. Renew. Energy 2020, 155, 1372–1382. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 2010, 14, 1259–1276. [Google Scholar] [CrossRef] [Green Version]
- Stewart, B.A.; Peterson, G.A. Managing Green Water in Dryland Agriculture. Agron. J. 2015, 107, 1544–1553. [Google Scholar] [CrossRef] [Green Version]
- Arnon, I. Physiological principles of dryland crop production. In Physiological Aspects of Dryland Farming; Gupta, U.S., Ed.; Oxford and IBH Publishing Co.: New Delhi, India, 1975. [Google Scholar]
- Ajaya kumar, M.Y.; Umesh, M.R.; Shivaleela, S.; Nidagundi, J.M. Light interception and yield response of cotton varieties to high density planting and fertilizers in sub-tropical India. J. Appl. Nat. Sci. 2018, 9, 1835–1839. [Google Scholar] [CrossRef] [Green Version]
- Venugopalan, M.V.; Kranthi, K.R.; Blaise, D.; Lakde, S.; Sankaranarayana, K. High density planting system in cotton—The Brazil experience and Indian initiatives. Cott. Res. J. 2014, 5, 1–7. [Google Scholar]
- Zhi, X.Y.; Han, Y.C.; Li, Y.B.; Wang, G.P.; Du, W.L.; Li, X.X.; Mao, S.C.; Lu, F. Effects of plant density on cotton yield components and quality. J. Integr. Agric. 2018, 15, 1469–1479. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Meili, C.; Wenqing, Z.; Binglin, C.; Youhua, W.; Shan-shan, W.; Yali, M.; Zhiguo, Z. The effects of sowing date on cottonseed properties at different fruiting-branch positions. J. Integr. Agric. 2017, 16, 1322–1330. [Google Scholar]
- DARE. Annual Report of Department of Agricultural Research (DARE) and Education/Indian Council of Agricultural Research (ICAR) 2009–2010; Indian Council of Agricultural Research: New Delhi, India, 2010; p. 48. [Google Scholar]
- Rathore, S.S.; Shekhawat, K.; Premi, O.P.; Kandpal, B.K.; Singh, D. Improved Agronomic Practices for Cultivation of Rapeseed-Mustard in India; ICAR-Directorate of Rapeseed-Mustard Research Sewar: Bharatpur, India, 2015; p. 26. [Google Scholar]
- Morteza, S.G.; Far, D.J.; Esmaeil, Y.; Morteza, N.; Saedeh, M. Canola (Brassica napus L.) Cultivation in Rotation after Rice under Different Levels of Nitrogen and Plant Densities. Asian J. Plant Sci. 2008, 7, 500–504. [Google Scholar] [CrossRef]
- Oad, F.C.; Solangi, B.K.; Samo, M.A.; Lakho AAHassan, Z.U.; Oad, N.L. Growth, yield and relationship of rapeseed (Brassica napus L.) under different row spacing. Int. J. Agric. Biol. 2001, 3, 475–476. [Google Scholar]
- Uzun, B.; Yol, E.; Furat, S. The influence of row and intra-row spacing to seed yield and its components of winter sowing canola in the true mediterranean type environment. Bulg. J. Agric. Sci. 2012, 18, 83–91. [Google Scholar]
- Montemurro, F.; Diacono, M.; Scarcella, M.; Andrea, L.D.; Boari, F.; Santino, A.; Mastrorilli, M. Agronomic performance for biodiesel production potential of Brassica carinata A. Braun in Mediterranean marginal areas. Ital. J. Agron. 2016, 11, 57–64. [Google Scholar]
- Choudhary, B.R.; Joshi, P.; Ramarao, S. Interspecific hybridization between Brassica carinata and Brassica rapa. Plant Breed. 2000, 119, 417–420. [Google Scholar] [CrossRef]
- Prakash, S.; Chopra, V.L. Introgression of Resistance to Shattering in Brassica napus from Brassica juncea through Non-Homologous Recombination. Plant Breed. 1988, 101, 167–168. [Google Scholar] [CrossRef]
- Seepaul, R.; George, S.; Wright, D.L. Comparative response of Brassica carinata and B. napus vegetative growth, development and photosynthesis to nitrogen nutrition. Ind. Crop. Prod. 2016, 94, 872–883. [Google Scholar] [CrossRef]
- Wendling, B.; Jucksch, I.; Mendonca, E.S.; Alvarenga, R.C. Organic-matter pools of soil under pines and annual cultures. Commun. Soil Sci. Plant Anal. 2010, 41, 1707–1722. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 2002, 116, 353–362. [Google Scholar] [CrossRef]
- Saha, M.; Das, M.; Sarkar, S. Distinct nature of soil organic carbon pools and indices under nineteen years of rice based crop diversification switched over from uncultivated land in eastern plateau region of India. Soil Tillage Res. 2021, 207, 104856. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Pandey, S.C.; Bisht, J.K.; Bhatt, J.C.; Gupta, H.S.; Tuti, M.D.; Mahanta, D.; Mina, B.L.; Singh, R.D.; Chandra, S.; et al. Tillage and Irrigation Effects on Soil Aggregation and Carbon Pools in the Indian Sub-Himalayas. Agron. J. 2013, 105, 101–112. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Huang, G.; Malhi, S.S.; Brandt, S.A.; Katepa-Mupondwa, F. Carbon footprint of canola and mustard is a function of the rate of N fertilizer. Int. J. Life Cycle Assess. 2011, 17, 58–68. [Google Scholar] [CrossRef]
- Miller, P.R.; Gan YMcConkey, B.G.; McDonald, C.L. Pulse crops in the northem Great Plains: I-grain productivity and residual effects on soil water and nitrogen. Agron. J. 2003, 95, 972–979. [Google Scholar]
- Brandt, S.A.; Malhi, S.S.; Ulrich, D.; Lafond, G.B.; Kutcher, H.R.; Johnston, A.M. Seeding rate, fertilizer level and disease management effects on hybrid versus open pollinated canola (Brassica napus L.). Can. J. Plant Sci. 2007, 87, 255–266. [Google Scholar] [CrossRef]
- Karamanos, R.E.; Goh, T.B.; Poisson, D.P. Nitrogen, phosphorus and sulfur fertilization olhybrid canola. J. Plant Nutr. 2005, 28, 1145–1161. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; et al. Global carbon budget 2018. Earth Syst. Sci. 2018, 10, 2141–2194. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Campbell, N.; Dorich, C.; Marx, E.; Swan, A. Assessment of Potential Greenhouse Gas. Mitigation from Chanes to Crop. Root Mass and Architecture. Final Report fo ARPA-E; 2016, Independent Consultant Agreement #107142CL/CB0471—Booz Allen Hamilton Inc. Available online: https://arpa-e.energy.gov/sites/default/files/documents/files/Revised_Final_Report_to_ARPA_Bounding_Analysis.pdf (accessed on 5 December 2020).
- The Carbon Cycle Institute. Carbon Farming. Available online: http://www.carboncycle.org/%20carbon-farming/ (accessed on 5 December 2020).
- Maheswarappa, H.P.; Srinivasan, V.; Lal, R. Carbon Footprint and Sustainability of Agricultural Production Systems in India. J. Crop. Improv. 2011, 25, 303–322. [Google Scholar] [CrossRef]
- Francescangeli, N.; Sangiacomo, M.A.; Martí, H. Effects of plant density in broccoli on yield and radiation use efficiency. Sci. Hortic. 2006, 110, 135–143. [Google Scholar] [CrossRef]
- Li, X.; Zuo, Q.; Chang, H.; Bai, G.; Kuai, J.; Zhou, G. Higher density planting benefits mechanical harvesting of rapeseed in the yangtze river basin of china. Field Crops Res. 2018, 218, 97–105. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Xie, Y.; Wang, B.; Kuai, J.; Zhou, G. An improvement in oilseed rape (Brassica napus L.) productivity through optimization of rice-straw quantity and plant density. Field Crop. Res. 2021, 273, 108290. [Google Scholar] [CrossRef]
- Liu, L.B.; Gan, Y.T.; Bueckert, R.; Rees, K. Rooting systems of oilseed and pulse crops. II: Vertical distribution pattems across the soil profile. Field Crops Res. 2011, 122, 248–255. [Google Scholar] [CrossRef]
- Mandal, K.G.; Hati, K.M.; Misra, A.K.; Bandyopadhya, K.K. Assessment of irrigation and nutrient effects on growth, yield and water use efficiency of Indian mustard (Brassica juncea) in central India. Agric. Water Manag. 2006, 85, 279–286. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. HESS 2010, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Rana, K.; Singh, J.P.; Singh, R.K.; Jatav, S.S.; Kumar, U. Evaluation of Indian mustard (Brassica juncea L.) varieties for productivity, profitability, energetics and carbon dynamics under diverse irrigation regimes and sulphur application rates. Environ. Sustain. 2021, 4, 805–821. [Google Scholar] [CrossRef]
- Escobar, J.C.; Lora, E.S.; Venturini, O.J.; Yáñez, E.E.; Castillo, E.F.; Almazan, O. Biofuels: Environment, technology and food security. Renew. Sustain. Energy Rev. 2009, 13, 1275–1287. [Google Scholar] [CrossRef]
- Bielski, S.; Jankowski, K.; Budzyński, W. The energy efficiency of oil seed crops production and their biomass conversion into liquid fuels. Przem. Chem. 2014, 93, 2270–2273. [Google Scholar]
- Jankowski, K.J.; Budzyński, W.S.; Kijewski, Ł. An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland. Energy 2015, 81, 674–681. [Google Scholar] [CrossRef]
Operations | B. carinata | B. napus | B. juncea |
---|---|---|---|
Variety | PC 6 | GSC7 | Pusa vijay |
Nursery and field preparation | Three ploughings followed by planking | Three ploughings followed by planking | Three ploughings followed by planking |
Seed | 2.5–3.0 kg ha−1 | 2.5–3.0 kg ha−1 | 5 kg ha−1 |
Transplanting | 30-day-old seedlings | 30-day-old seedlings | - |
Irrigation | Three irrigations (180 mm) | Three irrigations (180 mm) | Two irrigations (120 mm) |
Fertilizer (N-P-K-S) | 100-50-40-40 | 100-50-40-40 | 80-40-40-40 |
Herbicide | Oxadiargyl 16 @ 90 gha−1 and two hand-weedings | Oxadiargyl 16 @ 90 gha−1 and two hand-weedings | Oxadiargyl 16 @ 90 gha−1 |
Insecticide | Need-based | Two sprays of Dimethoiate 30 EC @ 600 mL ha−1 | Two sprays of Dimethoiate 30 EC @ 600 mL ha−1 |
Fungicide | Downy mildew endemic areas; the disease is managed by treating the seeds with metalaxyl-M 31.8% ES @ 6 mLkg−1 seed | Treating the seeds with metalaxyl-M 31.8% ES @ 6 mLkg−1 seed | Soil incorporation of Trichoderma based product @ 2.5 kg ha−1 pre- incubated in 50 kg of well rotten farm yard manure to reduce soil-borne inoculum of Alternaria blight, white rust, downy mildew, club root, and Sclerotinia rot. |
Harvesting and threshing | At physiological maturity | At physiological maturity | At physiological maturity |
Treatments | Seed Yield (kg ha−1) | Biological Productivity (kg ha−1) | Production Efficiency (kg ha−1 day−1) |
---|---|---|---|
Oilseed Brassica species-A | |||
B. carinata | 3173.8 A | 17,179 A | 17.2 A |
B. napus | 2511.7 B | 13,764 B | 13.6 B |
B. juncea | 2298.4 B | 12,012 B | 15.9 AB |
Crop geometry-B | |||
S1: 60 × 60 | 2836.4 A | 15,559 A | 15.9 |
S2: 45 × 45 | 2631.7 A,B | 13,971 B | 15.4 |
S3: 45 × 15 | 2515.9 B | 13,425 B | 15.3 |
Treatments | NR (US$ ha−1) | B:C Ratio | Profitability Index (USD ha−1 day−1) |
---|---|---|---|
Oilseed Brassica species-A | |||
B. carinata | 1417.2 A | 3.76 A | 7.66 A |
B. napus | 1018.9 B | 2.71 B | 5.51 B |
B. juncea | 920.5 B | 2.45 B | 6.35 B |
Crop geometry-B | |||
S1: 60 × 60 | 1199.0 A | 2.99 A,B | 6.93 A |
S2: 45 × 45 | 1089.6 A | 2.72 B | 6.36 A |
S3: 45 × 15 | 1068.6 A | 3.21 A | 6.23 A |
Treatments | Energy Input (MJ ha−1) | Energy Output (MJ ha−1) | Net Energy (MJ ha−1) | Energy Efficiency | Energy Productivity | Energy Profitability | Specific Energy |
---|---|---|---|---|---|---|---|
Oilseed Brassica species-A | |||||||
B. carinata | 8994 A | 246,445 A | 233,814 A | 27.40 A | 26.00 A | 0.35 A | 2.9 B |
B. napus | 8994 A | 200,091 B | 193,492 B | 22.25 B | 21.51 B | 0.28 B | 3.69 A |
B. juncea | 8382 C | 172,872 B | 162,707 C | 20.62 B | 19.41 B | 0.27 B | 3.71 A |
Crop geometry-B | |||||||
S1 | 8790 C | 224,492 A | 213,714 A | 25.45 A | 24.23 A | 0.32 A | 3.24 |
S2 | 8790 B | 203,731 A,B | 194,223 A,B | 23.13 A,B | 22.04 A,B | 0.3 A,B | 3.44 |
S3 | 8790 A | 191,185 B | 182,077 B | 21.69 B | 20.65 B | 0.29 B | 3.61 |
Treatments | Carbon Input (kg ha−1) | Carbon Gain (kg ha−1) | Carbon Output (kg ha−1) | CPE (Kg Seed CO2-eq/ha−1) | GHGi (Kg CO2-eq per kg−1 Grain Yield) | CEE (Kg per ha DW ha−1 kg-eq CO2) | CEcoE (USD ha−1 CO2-eq) | CSI |
---|---|---|---|---|---|---|---|---|
Oilseed Brassica species-A | ||||||||
B. carinata | 1152 C | 6578 A | 7730 A | 2.63 A | 0.37 B | 14.90 A | 1.24 A | 5.71 A |
B. napus | 1152 B | 5042 B | 6194 B | 1.95 B | 0.47 A | 11.94 B | 0.89 B | 4.38 A,B |
B. juncea | 1152 A | 4253 C | 5405 BC | 1.97 B | 0.51 A | 10.42 B | 0.80 B | 3.69 B |
Crop geometry-B | ||||||||
S1 | 1154 B | 5847 A | 7002 A | 2.34 A | 0.43 A | 13.48 A | 1.05 A | 5.07 A |
S2 | 1154 A | 5133 B | 6287 B | 2.11 B | 0.45 A | 12.10 A,B | 0.95 A | 4.45 A,B |
S3 | 1148 C | 4893 C | 6041 B | 2.09 B | 0.47 A | 11.69 B | 0.94 A | 4.26 B |
Treatments | WUEIW (kg ha−1-mm) | WPIW (kg m−3) | Water Footprint (L kg−1 Seed Yield) |
---|---|---|---|
Oilseed Brassica species-A | |||
B. carinata | 17.63 A | 1.79 A | 578.8 B |
B. napus | 13.95 B | 1.42 B | 892.5 A |
B. juncea | 19.15 A | 1.93 A | 503.1 BC |
Crop geometry-B | |||
S1: 60 × 60 | 17.88 A | 1.82 A | 630.0 B |
S2: 45 × 45 | 16.83 A | 1.70 A | 677.7 A |
S3: 45 × 15 | 16.03 B | 1.63 B | 666.6 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathore, S.S.; Babu, S.; Shekhawat, K.; Singh, V.K.; Upadhyay, P.K.; Singh, R.K.; Raj, R.; Singh, H.; Zaki, F.M. Oilseed Brassica Species Diversification and Crop Geometry Influence the Productivity, Economics, and Environmental Footprints under Semi-Arid Regions. Sustainability 2022, 14, 2230. https://doi.org/10.3390/su14042230
Rathore SS, Babu S, Shekhawat K, Singh VK, Upadhyay PK, Singh RK, Raj R, Singh H, Zaki FM. Oilseed Brassica Species Diversification and Crop Geometry Influence the Productivity, Economics, and Environmental Footprints under Semi-Arid Regions. Sustainability. 2022; 14(4):2230. https://doi.org/10.3390/su14042230
Chicago/Turabian StyleRathore, Sanjay Singh, Subhash Babu, Kapila Shekhawat, Vinod K. Singh, Pravin Kumar Upadhyay, Rajiv Kumar Singh, Rishi Raj, Harveer Singh, and Fida Mohammad Zaki. 2022. "Oilseed Brassica Species Diversification and Crop Geometry Influence the Productivity, Economics, and Environmental Footprints under Semi-Arid Regions" Sustainability 14, no. 4: 2230. https://doi.org/10.3390/su14042230
APA StyleRathore, S. S., Babu, S., Shekhawat, K., Singh, V. K., Upadhyay, P. K., Singh, R. K., Raj, R., Singh, H., & Zaki, F. M. (2022). Oilseed Brassica Species Diversification and Crop Geometry Influence the Productivity, Economics, and Environmental Footprints under Semi-Arid Regions. Sustainability, 14(4), 2230. https://doi.org/10.3390/su14042230