Stress-Relief–Anchor-Grouting, a Collaborative Control Technology for Severe Extrusion Floor Heave in a Deep Roadway: A Case Study
Abstract
:1. Introduction
2. Field Background
2.1. Mine Introduction
2.2. Severe Extrusion Floor Heave in Deep Roadways
3. Principle and Technology of Floor-Heave-Relief Weakening Control
3.1. Stress-Relief Control Principle of Floor Heave Boreholes
3.2. Numerical Analysis Model
3.3. Key Technical Parameters Determination of Borehole Stress Relief
3.3.1. Borehole Angle θb
3.3.2. Borehole Length Lb
3.3.3. Borehole Diameter D and Row Spacing R
4. Floor Heave Stress-Relief–Anchor-Grouting Collaborative Control Technology
4.1. Principle of Anchor Grouting Support for Roadway Floors
4.2. Floor Heave Stress-Relief–Anchor-Grouting, a Collaborative Control Technology
4.2.1. Confirmation of Key Parameters
4.2.2. Field Construction Schemes
5. Field Application Effect
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, H.P.; Gao, M.Z.; Zhang, R.; Peng, G.Y.; Wang, W.Y.; Li, A.Q. Study on the Mechanical Properties and Mechanical Response of Coal Mining at 1000 m or Deeper. Rock Mech. Rock Eng. 2019, 52, 1475–1490. [Google Scholar] [CrossRef]
- Kang, H.P.; Gao, F.P.; Xu, G.; Ren, H.W. Mechanical behaviors of coal measures and ground control technologies for China’s deep coal mines—A review. J. Rock Mech. Geotech. Eng. 2023, 15, 37–65. [Google Scholar] [CrossRef]
- Xie, H.P.; Lu, J.; Li, C.B.; Li, M.H.; Gao, M.Z. Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review. Int. J. Min. Sci. Technol. 2022, 32, 915–950. [Google Scholar] [CrossRef]
- Wu, S.S.; Hao, W.Q.; Yao, Y.; Li, D.Q. Investigation into durability degradation and fracture of cable bolts through laboratorial tests and hydrogeochemical modelling in underground conditions. Tunn. Undergr. Space. Technol. 2023, 138, 105198. [Google Scholar] [CrossRef]
- Xie, H.P.; Li, C.; He, Z.Q.; Li, C.B.; Lu, Y.Q.; Zhang, R.; Gao, M.Z.; Gao, F. Experimental study on rock mechanical behavior retaining the in situ geological conditions at different depths. Int. J. Rock Mech. Min. 2021, 138, 104548. [Google Scholar] [CrossRef]
- Jiang, Y.D.; Lu, S.L. Study on floor heave mechanism of roadway. J. China Coal Soc. 1994, 4, 343–351. [Google Scholar] [CrossRef]
- Mo, S.; Ramandi, H.L.; Oh, J.; Masoumi, H.; Canbulat, I.; Hebblewhite, B.; Saydam, S. A new coal mine floor rating system and its application to assess the potential of floor heave. Int. J. Rock Mech. Min. 2020, 128, 104241. [Google Scholar] [CrossRef]
- Mo, S.; Tutuk, K.; Saydam, S. Management of floor heave at Bulga Underground Operations—A case study. Int. J. Min. Sci. Technol. 2019, 29, 73–78. [Google Scholar] [CrossRef]
- Mo, S.; Sheffield, P.; Corbett, P.; Ramandi, H.L.; Oh, J.; Canbulat, I.; Saydam, S. A numerical investigation into floor buckling mechanisms in underground coal mine roadways. Tunn. Undergr. Space Technol. 2020, 103, 103497. [Google Scholar] [CrossRef]
- Kang, H.P.; Lu, S.L. Analysis of roadway floor heave mechanism. Chin. J. Rock Mech. Eng. 1991, 4, 362–373. [Google Scholar]
- Zhu, Q.Z.; Li, T.C.; Zhang, H.; Ran, J.L.; Li, H.; Du, Y.T.; Li, W.T. True 3D geomechanical model test for research on rheological deformation and failure characteristics of deep soft rock roadways. Tunn. Undergr. Space Technol. 2022, 128, 104653. [Google Scholar] [CrossRef]
- Jiang, Y.D.; Zhao, X.Y.; Liu, W.G.; Li, Q. Research on floor heave of roadway in deep mining. Chin. J. Rock Mech. Eng. 2004, 23, 2396–2401. [Google Scholar]
- Tang, S.B.; Tang, C.A. Numerical studies on tunnel floor heave in swelling ground under humid conditions. Int. J. Rock Mech. Min. 2012, 55, 139–150. [Google Scholar] [CrossRef]
- Wang, T.; Yan, C.Z.; Wang, G.; Zheng, Y.C.; Ke, W.H.; Jiao, Y.Y. Numerical study on the deformation and failure of soft rock roadway induced by humidity diffusion. Tunn. Undergr. Space Technol. 2022, 126, 104565. [Google Scholar] [CrossRef]
- He, M.C.; Zhang, G.F.; Wang, G.L.; Xu, Y.L.; Wu, C.Z.; Tang, Q.D. Research on mechanism and application to floor heave control of deep gateway. Chin. J. Rock Mech. Eng. 2009, 28, 2593–2598. [Google Scholar]
- Wang, W.J.; Feng, T. Study on mechanism of reinforcing sides to control floor heave of extraction opening. Chin. J. Rock Mech. Eng. 2005, 5, 808–811. [Google Scholar]
- Li, X.H.; Wang, W.J.; Hou, C.J. Numerical analysis of floor heave controlled by roof reinforced. J. China Univ. Min. Technol. 2003, 4, 98–101. [Google Scholar]
- Chen, Y.; Bai, J.B.; Yan, S.; Xu, Y.; Wang, X.Y.; Ma, S.Q. Control mechanism and technique of floor heave with reinforcing solid coal side and floor corner in gob-side coal entry retaining. Int. J. Min. Sci. Technol. 2012, 22, 841–845. [Google Scholar] [CrossRef]
- Bai, J.B.; Li, W.F.; Wang, X.Y.; Xu, Y.; Huo, L.J. Mechanism of floor heave and control technology of roadway induced by mining. J. Min. Saf. Eng. 2011, 28, 1–5. [Google Scholar]
- Zhang, D.; Bai, J.B.; Yan, S.; Wang, R.; Meng, N.K.; Wang, G.Y. Failure mechanism of surrounding rock and control of floor heave in heterogeneous composite rock roadway. Chin. J. Rock Mech. Eng. 2022, 44, 1699–1709+9–10. [Google Scholar]
- Xu, Y.; Chen, J.; Bai, J.B. Control of floor heaves with steel pile in gob-side entry retaining. Int. J. Min. Sci. Technol. 2016, 26, 527–534. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Liu, N.; Zheng, X.G.; Zhang, N. Mechanical model for controlling floor heave in deep roadways with U-shaped steel closed support. Int. J. Min. Sci. Technol. 2015, 25, 713–720. [Google Scholar] [CrossRef]
- Yang, R.S.; Zhu, Y.; Li, Y.L.; Li, W.Y. Floor heave mechanism and control measures of layered floor in weakly cemented soft rock roadway. J. Min. Saf. Eng. 2020, 37, 443–450. [Google Scholar] [CrossRef]
- Yang, R.S.; Zhu, Y.; Li, Y.L.; Li, W.Y.; Xiao, B. Stability analysis and control strategy of weakly cemented layered floor in mining affected roadway. J. China Coal Soc. 2020, 45, 2667–2680. [Google Scholar] [CrossRef]
- Sun, X.M.; Wang, D.; Feng, J.L.; Zhang, C.; Chen, Y.W. Deformation control of asymmetric floor heave in a deep rock roadway: A case study. Int. J. Min. Sci. Technol. 2014, 24, 799–804. [Google Scholar] [CrossRef]
- Sun, X.M.; Chen, F.; He, M.C.; Gong, W.L.; Xu, H.C.; Lu, H. Physical modeling of floor heave for the deep-buried roadway excavated in ten degrees inclined strata using infrared thermal imaging technology. Tunn. Undergr. Space Technol. 2017, 63, 228–243. [Google Scholar] [CrossRef]
- Sun, X.M.; Miao, P.Y.; Shen, F.X.; Zhao, W.C.; Yang, M.H. Study on floor heave mechanism of horizontal layered soft rock roadway in deep well under different stress states. J. Min. Saf. Eng. 2018, 35, 1099–1106. [Google Scholar] [CrossRef]
- Wang, M.; Guo, G.L.; Wang, X.Y.; Guo, Y.; Dao, V. Floor heave characteristics and control technology of the roadway driven in deep inclined-strata. Int. J. Min. Sci. Technol. 2015, 25, 267–273. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Wang, P.; Lv, W.Y.; Shi, L.; Su, Z.H.; Wu, C.; Yu, F. Mechanism and control of asymmetric floor heave in gob-side entry. J. Min. Saf. Eng. 2021, 38, 215–226. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Wei, Z.J.; Bai, J.C.; Yu, Z.Z.; Xing, K.K.; Li, Q.M.; Wang, J.Y.; Li, X.; Zhang, C.; Zhang, Z.J. Study on floor heave control technology of deep tectonic stress water-rich soft rock roadway based on blasting pressure relief. Coal Sci. Technol. 2022, 50, 117–126. [Google Scholar] [CrossRef]
- Sun, L.H.; Yang, B.S.; Sun, C.D.; Li, X.; Wang, C.W. Experimental research on mechanism and controlling of floor heave in deep soft rock roadway. J. Min. Saf. Eng. 2017, 34, 235–242. [Google Scholar] [CrossRef]
- Wang, X.Q.; Kan, J.G.; Jiao, J.K. Mechanism of floor heave in the roadway with high stress and soft rock and its control practice. J. Min. Saf. Eng. 2017, 34, 214–220+227. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.B.; Yan, Y.B.; Pang, J.W.; Zhao, S.J. Floor heave in the west wing track haulage roadway of the Tingnan Coal Mine: Mechanism and control. Int. J. Min. Sci. Technol. 2012, 22, 295–299. [Google Scholar] [CrossRef]
- Chang, Q.L.; Zhou, H.Q.; Xie, Z.H.; Shen, S.P. Anchoring mechanism and application of hydraulic expansion bolts used in soft rock roadway floor heave control. Int. J. Min. Sci. Technol. 2013, 23, 323–328. [Google Scholar] [CrossRef]
- Hou, C.J. Roadway Surrounding Rock Control; China University of Mining and Technology Press: Xuzhou, China, 2013. [Google Scholar]
- Zhang, J.F.; Jiang, F.X.; Yang, J.B.; Bai, W.S.; Zhang, L. Rockburst mechanism in soft coal seam within deep coal mines. Int. J. Min. Sci. Technol. 2017, 27, 551–556. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, S.T.; Sun, W.F.; Zhang, Q.; Gu, Q.H.; Jia, G.Y. Optimization study on pressure relief gateway layout for fully—Mechanized top coal caving mining with gateway driven along goaf. J. China Univ. Min. Technol. 2017, 45, 34–38. [Google Scholar]
- Yin, W.; Miao, X.X.; Zhang, J.X.; Zhong, S.J. Mechanical analysis of effective pressure relief protection range of upper protective seam mining. Int. J. Min. Sci. Technol. 2017, 27, 537–543. [Google Scholar] [CrossRef]
- He, J.; Cao, L.T.; Wu, J.H.; Wang, B.S. Pressure relief parameters of floor slotting in roadway with rock burst hazards. J. Min. Saf. Eng. 2021, 38, 963–971. [Google Scholar] [CrossRef]
- Kang, H.P. Mechanism and Prevention of Floor Heave in Soft Rock Roadway; Coal Industry Press: Beijing, China, 1993. [Google Scholar]
- Li, G.C.; Yang, S.; Sun, Y.T.; Xu, J.W.; Li, Q.H. Research progress of roadway surrounding strata rock control technologies under complex conditions. J. China Univ. Min. Technol. 2022, 50, 29–45. [Google Scholar]
- Wang, M.; Wang, X.Y.; Xiao, T.Q. Borehole destressing mechanism and determination method of its key parameters in deep roadway. J. China Coal Soc. 2017, 42, 1138–1145. [Google Scholar]
- Chen, T. Principle and parameters optimization of energy release from anti-scour borehole in coal roadway floor. Coal Sci. Technol. 2023, 51, 21–31. [Google Scholar]
- Liu, H.G.; He, Y.N.; Xu, J.H.; Han, L.J. Numerical simulation and industrial test of boreholes destressing technology in deep coal tunnel. J. China Coal Soc. 2007, 148, 33–37. [Google Scholar]
- Wang, H.S.; Li, S.G.; Shuang, H.Q.; Du, Z.X.; You, L.D.; Liu, L. Pressure-relief gas drainage technique by high level borehole in lateral high drainage roadway. J. Cent. South Univ. 2016, 47, 1319–1326. [Google Scholar]
- Cicek, S.; Tulu, I.B.; Dyke, V.M.; Klemetti, T.; Wickline, J. Application of the coal mine floor rating (CMFR) to assess the floor stability in a Central, Appalachian Coal Mine. Int. J. Min. Sci. Technol. 2021, 31, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Li, H.Y.; Zhong, Y.F.; Wang, F. Mechanism and control of floor heave of deep buried roadway with high lateral pressure coefficient. J. Cent. South Univ. 2017, 48, 457–464. [Google Scholar]
- Fu, M.X.; Liu, S.W.; Jia, H.S.; Zhang, W.G. Generation mechanism and size characteristics of the rock fragments during borehole drilling in coal mine roadway floor. J. China Univ. Min. Technol. 2021, 50, 228–238. [Google Scholar]
- Wang, J.; Hao, Y.J.; Guo, Z.B.; Zhu, G.L.; Han, Z. Floor heave mechanism and control technology for east rail roadway of Tingnan coal mine. J. Min. Saf. Eng. 2015, 32, 291–297. [Google Scholar]
- Hua, X.Z.; Yang, M.; Liu, Q.J.; Yang, P. Model test on evolution mechanism of floor heave in gob-side retainingentry of deep mine. J. Min. Saf. Eng. 2015, 35, 1–9. [Google Scholar]
- Chang, J.C.; He, L.P. A research on cable supporting and curtain grouting of hydraulic hosecontrolling the roadway floor heave in deep coal mine. J. Min. Saf. Eng. 2015, 32, 968–972. [Google Scholar]
- Fu, M.; Huang, S.; Liu, S.; Jia, H. Experimental Study on the Size of Rock Fragments Ejected from Boreholes Drilled in Coal Mine Roadway Floors. Minerals 2023, 13, 392. [Google Scholar] [CrossRef]
- Meng, X.Y.; Cheng, D.Q.; Gou, P.F.; Li, S.B. Study on drilling release pressure parameters of gateway in “three soft” coal seam. J. Henan Poly. Univ. 2011, 30, 529–533. [Google Scholar]
- Gai, D.C.; Li, D.; Jiang, F.X.; Wang, C.W.; Chen, Y.; Dong, C.Y.; Sun, S.H.; Yang, G.G. Reasonable pressure-relief borehole spacing in coal of different strength. J. Min. Saf. Eng. 2020, 37, 578–585+593. [Google Scholar]
- Peng, J.; Cai, M.; Rong, G.; Yao, M.D.; Jiang, Q.H.; Zhou, C.B. Determination of confinement and plastic strain dependent post-peak strength of intact rocks. Eng. Geol. 2017, 218, 187–196. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, C.; Cao, W.G.; Zhao, M.H. Statistical meso-damage model for quasi-brittle rocks to account for damage tolerance principle. Environ. Earth Sci. 2016, 75, 862. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, C.Y.; Zhang, H.R.; Yue, X.; Liu, H.D. Research on Roof Cutting Pressure Relief of the Gob-Side Entry Retaining with Roadside Backfilling. Front. Earth Sci. 2022, 10, 835497. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.L.; Zang, C.W.; Zhang, G.C.; Li, Q.; Jiang, B.Z. Experimental Investigation on Pressure Relief Mechanism of Specimens with Prefabricated Reaming Boreholes. Rock Mech. Rock Eng. 2023, 56, 2949–2966. [Google Scholar] [CrossRef]
- Meng, N.K.; Bai, J.B.; Yoo, C. Failure mechanism and control technology of deep soft-rock roadways: Numerical simulation and field study. Undergr. Space 2023, 12, 1–17. [Google Scholar] [CrossRef]
- Freudenthal, T.; Villinger, H.; Riedel, M.; Pape, T. Heat flux estimation from borehole temperatures acquired during logging while tripping: A case study with the sea floor drill rig MARUM-MeBo. Mar. Geophys. Res. 2022, 43, 37. [Google Scholar] [CrossRef]
- Kang, Y.S.; Liu, Q.S.; Gong, G.Q.; Wang, H.C. Application of a combined support system to the weak floor reinforcement in deep underground coal mine. Int. J. Rock Mech. Min. Sci. 2014, 71, 143–150. [Google Scholar] [CrossRef]
- Zhao, C.X.; Li, Y.M.; Liu, G.; Meng, X.R. Mechanism analysis and control technology of surrounding rock failure in deep soft rock roadway. Eng. Fail. Anal. 2020, 115, 104611. [Google Scholar] [CrossRef]
Value/MPa | Azimuth/° | Dip Angle/(°) | |
---|---|---|---|
Maximum principal stress (σ1) | 36.17 | 194.51 | 42.63 |
Intermediate principal stress (σ2) | 23.08 | 119.86 | −39.56 |
Minimum principal stress (σ3) | 19.25 | 262.21 | −15.93 |
In situ stress component | σX/MPa | σY/MPa | σZ/MPa |
24.91 | 34.44 | 19.25 |
Pre-peak parameters | Category | Density/(kg/m3) | Elasticity Modulus/GPa | Poisson | /MPa | /(°) | Tensile Strength /MPa | ||||||
Laboratory experiment | 3663 | 10.26 | 0.31 | 4.41 | 28.5 | 1.14 | |||||||
Inverse modeling | 3663 | 2.57 | 0.31 | 3.26 | 28.3 | 0.35 | |||||||
Post-peak softening parameters | Plastic parameter εps | 0 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.01 | 0.1 | 1 | |||
/MPa | 3.26 | 2.34 | 1.74 | 1.35 | 1.11 | 0.95 | 0.70 | 0.67 | 0.67 | ||||
/(°) | 28.3 | 23.3 | 21.0 | 19.9 | 19.5 | 19.3 | 19.1 | 19.1 | 19.1 |
Scheme | Borehole Stress Relief | Anchor Grouting Support | Borehole Stress-Relief Parameters | Anchor Grouting Support Parameters | ||||
---|---|---|---|---|---|---|---|---|
1 | No | No | θb/(°) | Lb/m | D/m | R/m | Strength/MPa | |
2 | Yes | No | ||||||
20 | 14 | 0.5 | 1 | 0.35 | ||||
3 | Yes | Yes |
Support Intensity Pi/MPa | Density/(kg/m3) | Elasticity Modulus/GPa | Poisson | /MPa | /(°) | Tensile Strength /MPa |
---|---|---|---|---|---|---|
0.35 | 3663 | 3.855 | 0.31 | 1.005 | 28.65 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, D.; Wang, M.; Li, D.; Yu, C.; Huang, S.; Li, J.; Wei, S.; Zhao, L. Stress-Relief–Anchor-Grouting, a Collaborative Control Technology for Severe Extrusion Floor Heave in a Deep Roadway: A Case Study. Sustainability 2023, 15, 13053. https://doi.org/10.3390/su151713053
Shang D, Wang M, Li D, Yu C, Huang S, Li J, Wei S, Zhao L. Stress-Relief–Anchor-Grouting, a Collaborative Control Technology for Severe Extrusion Floor Heave in a Deep Roadway: A Case Study. Sustainability. 2023; 15(17):13053. https://doi.org/10.3390/su151713053
Chicago/Turabian StyleShang, Donghuang, Meng Wang, Dawei Li, Chunsheng Yu, Shiyi Huang, Jie Li, Sijiang Wei, and Liuan Zhao. 2023. "Stress-Relief–Anchor-Grouting, a Collaborative Control Technology for Severe Extrusion Floor Heave in a Deep Roadway: A Case Study" Sustainability 15, no. 17: 13053. https://doi.org/10.3390/su151713053
APA StyleShang, D., Wang, M., Li, D., Yu, C., Huang, S., Li, J., Wei, S., & Zhao, L. (2023). Stress-Relief–Anchor-Grouting, a Collaborative Control Technology for Severe Extrusion Floor Heave in a Deep Roadway: A Case Study. Sustainability, 15(17), 13053. https://doi.org/10.3390/su151713053