The Potential of Bio-Based Polylactic Acid (PLA) as an Alternative in Reusable Food Containers: A Review
Abstract
:1. Introduction
2. Food Storage Container International Regulations
2.1. Introduction
2.2. Food and Drug Administration (FDA): Code of Federal Regulations
2.3. EU Regulations
3. PLA as a Feasible Replacement for PP
3.1. Operational Parameters for Food Storage Containers
- What effect will heating in a microwave have on the material?
- What effect will dishwashing have on the material?
- Will mechanical properties be maintained after cooling in fridge (4 °C) or freezer (−20 °C)?
- Will the material leach into food at unsafe levels over a range of temperatures?
- Does the material have sufficient barrier properties to exclude oxygen?
- Is the material optically transparent?
3.1.1. Microwaving
3.1.2. Dishwashing
3.1.3. Sterilizing
3.2. Mechanical Properties of PLA and PP
3.3. Thermal Properties of PLA and PP
3.4. Migration and Sorption Properties
3.5. Barrier Properties of PLA and PP
3.6. Optical Transparency of PLA and PP
4. Modifications of PLA
4.1. Methods to Improve PLA Ductility and Thermal Resistance
Methods | Benefits | Drawbacks | Types Used | Results | Ref. |
---|---|---|---|---|---|
Plasticizers | Improved ductility, improved crystallization (Tg reduction) | Strength and stiffness reduction | Oligomeric LA (OLA) (25 wt.%) | Increased elongation at break from 4% to 315% | [107] |
Cinnamate esters (20 wt.%) | Increased elongation at break from 3.9% to 339.4% | [108] | |||
Copolymerization | Increased impact strength | Ductility not improved/can decrease depending on composition | 80/20 wt.% PLA/PCL blend (3 wt.% GMA) | Impact strength increased by 160% | [102,103,104] |
90/10 wt.% PLA/PBS blend | Elongation at break increased from 9% to 64% | [111] | |||
Biocomposites | Increased ductility and impact strength, fully bio-based | Can increase moisture absorption | Corn starch maleate and epoxidized soybean oil | Increased the elongation at break of PLA film (93 wt.%) from 3.63% to 36.75% | [109] |
Nanofibrillated cellulose (4 wt.%) | Increased the impact strength, elongation at break, and tensile strength | [110] |
Method | Mode | Types Used | Results | Ref. |
---|---|---|---|---|
Nucleating Agent Addition | Increased crystallinity, increased Tm, increased HDT, resistance to heat-induced distortions | Multiamide nucleator (TMC) | Improved crystallinity leading to improved HDT up to 150 °C | [113,114] |
EBHS (1 wt.%) | Improved HDT up to 93 °C | [115] | ||
Fiber Reinforcement | Chain motion of PLA when heated is restricted | Kenaf fiber (40 wt.%) | Increased the HDT up to 122 °C, increase in impact strength and tensile strength | [116] |
Composites | Increased thermal expansion in the polymer film | Cyclodextrin (7 wt.%) | Modest increases in Tg (55.6 °C to 60.7 °C) and Tc (82.6 °C to 88.4 °C) | [117] |
Blending | Polymers with polar and flexible groups blended with PLA to improve interaction between the polymer chains | PLA/L-PVAc (80/20 wt.%) | Increase in Xc by 78.8% | [118] |
PLA/PCL (80/20 wt.%) | Increase in Xc from 2% for neat PLA to 11%. | [120,121] |
4.2. Methods to Improve the Barrier Properties of PLA
Material Used | Benefits | Drawbacks | Ref. |
---|---|---|---|
PLA/TPS (50/49.25), citric acid stabilizer (0.75) | Decrease in water vapor permeability (g/m/Pa/day), biodegradable | Decrease in thermal properties (Tc = 88 °C), brittleness at lower temperatures | [125] |
PLA/PHBV (75/25) | Decrease in oxygen and water vapor permeabilities, thermal properties maintained, compostable properties maintained | Decreased mechanical properties (impact strength and strain at break), processability (cost) | [126,127,130] |
4.3. Composites to Improve the Barrier Properties of PLA
4.3.1. Metals and Metal Oxide-Based Nanocomposites
4.3.2. Clay-Based Nanocomposites
4.3.3. Cellulose-Based Nanocomposites
5. End of Life
5.1. Recyclability of PLA
5.2. Compostability of PLA
- At least 90% disintegration due to bacterial fermentation must take place within 12 weeks.
- A level of 90% mineralisation of the composted material must be achieved within less than 6 months.
- Material must not have a negative impact on the compost quality.
5.3. Composting Worldwide
6. PLA Material Processing Costs
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Xu, H.; Julian McClements, D.; Chen, L.; Jiao, A.; Tian, Y.; Miao, M.; Jin, Z. Recent Advances in Intelligent Food Packaging Materials: Principles, Preparation and Applications. Food Chem. 2022, 375, 131738. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Suh, S. Strategies to Reduce the Global Carbon Footprint of Plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Cabernard, L.; Pfister, S.; Oberschelp, C.; Hellweg, S. Growing Environmental Footprint of Plastics Driven by Coal Combustion. Nat. Sustain. 2022, 5, 139–148. [Google Scholar] [CrossRef]
- Marsh, K.; Bugusu, B. Food Packaging—Roles, Materials, and Environmental Issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef] [PubMed]
- Muneer, F.; Hussain, S.; Sidra-Tul-Muntaha; Riaz, M.; Nadeem, H. Plastics vs Bioplastics. In Degradation of Plastics; Materials Research Fourm LLC.: Millersville, PA, USA, 2021; pp. 195–198. ISBN 978-1-64490-133-5. [Google Scholar]
- Maddah, H.A. Polypropylene as a Promising Plastic: A Review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar]
- Chen, L.; Lin, Z. Polyethylene: Properties, Production and Applications. In Proceedings of the 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Guangzhou, China, 10–12 December 2021; pp. 1191–1196. [Google Scholar]
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials 2020, 13, 4994. [Google Scholar] [CrossRef]
- Agarwal, A.; Gandhi, S.; Tripathi, A.D.; Iammarino, M.; Homroy, S. Analysis of Bisphenol A Migration from Microwaveable Polycarbonate Cups into Coffee during Microwave Heating. Int. J. Food Sci. Technol. 2022, 57, 7477–7485. [Google Scholar] [CrossRef]
- Nisticò, R. Polyethylene Terephthalate (PET) in the Packaging Industry. Polym. Test. 2020, 90, 106707. [Google Scholar] [CrossRef]
- Mtibe, A.; Motloung, M.P.; Bandyopadhyay, J.; Ray, S.S. Synthetic Biopolymers and Their Composites: Advantages and Limitations—An Overview. Macromol. Rapid Commun. 2021, 42, 2100130. [Google Scholar] [CrossRef]
- Alsabri, A.; Al-Ghamdi, S.G. Carbon Footprint and Embodied Energy of PVC, PE, and PP Piping: Perspective on Environmental Performance. Energy Rep. 2020, 6, 364–370. [Google Scholar] [CrossRef]
- Greenhouse Gas Reporting: Conversion Factors. 2022. Available online: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2022 (accessed on 23 March 2023).
- Mannheim, V.; Simenfalvi, Z. Total Life Cycle of Polypropylene Products: Reducing Environmental Impacts in the Manufacturing Phase. Polymers 2020, 12, 1901. [Google Scholar] [CrossRef] [PubMed]
- Skariyachan, S.; Patil, A.A.; Shankar, A.; Manjunath, M.; Bachappanavar, N.; Kiran, S. Enhanced Polymer Degradation of Polyethylene and Polypropylene by Novel Thermophilic Consortia of Brevibacillus Sps. and Aneurinibacillus Sp. Screened from Waste Management Landfills and Sewage Treatment Plants. Polym. Degrad. Stab. 2018, 149, 52–68. [Google Scholar] [CrossRef]
- Ru, J.; Huo, Y.; Yang, Y. Microbial Degradation and Valorization of Plastic Wastes. Front. Microbiol. 2020, 11, 442. [Google Scholar] [CrossRef]
- Jain, K.; Bhunia, H.; Sudhakara Reddy, M. Degradation of Polypropylene–Poly-L-Lactide Blend by Bacteria Isolated from Compost. Bioremediation J. 2017, 22, 73–90. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Plastic Market Size, Share & Growth [2023 Global Report]. Available online: https://www.grandviewresearch.com/industry-analysis/global-plastics-market (accessed on 18 September 2023).
- Di Bartolo, A.; Infurna, G.; Dintcheva, N.T. A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers 2021, 13, 1229. [Google Scholar] [CrossRef]
- Momayez, F.; Karimi, K.; Horváth, I.S. Sustainable and Efficient Sugar Production from Wheat Straw by Pretreatment with Biogas Digestate. RSC Adv. 2019, 9, 27692–27701. [Google Scholar] [CrossRef]
- Ulkir, O. Energy-Consumption-Based Life Cycle Assessment of Additive-Manufactured Product with Different Types of Materials. Polymers 2023, 15, 1466. [Google Scholar] [CrossRef]
- Abdelshafy, A.; Hermann, A.; Herres-Pawlis, S.; Walther, G. Opportunities and Challenges of Establishing a Regional Bio-Based Polylactic Acid Supply Chain. Glob. Chall. 2023, 7, 2200218. [Google Scholar] [CrossRef]
- Ögmundarson, Ó.; Sukumara, S.; Laurent, A.; Fantke, P. Environmental Hotspots of Lactic Acid Production Systems. GCB Bioenergy 2020, 12, 19–38. [Google Scholar] [CrossRef]
- Sukumar, M.; Sudharsan, K.; Radha Krishnan, K. Polylactic Acid (PLA)-Based Composites in Food Packaging. In Biopolymer-Based Food Packaging; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 264–281. ISBN 978-1-119-70231-3. [Google Scholar]
- Rojas, A.; Velásquez, E.; Patiño Vidal, C.; Guarda, A.; Galotto, M.J.; López de Dicastillo, C. Active PLA Packaging Films: Effect of Processing and the Addition of Natural Antimicrobials and Antioxidants on Physical Properties, Release Kinetics, and Compostability. Antioxidants 2021, 10, 1976. [Google Scholar] [CrossRef] [PubMed]
- Malek, N.S.A.; Faizuwan, M.; Khusaimi, Z.; Bonnia, N.N.; Rusop, M.; Asli, N.A. Preparation and Characterization of Biodegradable Polylactic Acid (PLA) Film for Food Packaging Application: A Review. J. Phys. Conf. Ser. 2021, 1892, 012037. [Google Scholar] [CrossRef]
- Benavides, P.T.; Lee, U.; Zarè-Mehrjerdi, O. Life Cycle Greenhouse Gas Emissions and Energy Use of Polylactic Acid, Bio-Derived Polyethylene, and Fossil-Derived Polyethylene. J. Clean. Prod. 2020, 277, 124010. [Google Scholar] [CrossRef]
- Freeland, B.; McCarthy, E.; Balakrishnan, R.; Fahy, S.; Boland, A.; Rochfort, K.D.; Dabros, M.; Marti, R.; Kelleher, S.M.; Gaughran, J. A Review of Polylactic Acid as a Replacement Material for Single-Use Laboratory Components. Materials 2022, 15, 2989. [Google Scholar] [CrossRef] [PubMed]
- Zaaba, N.F.; Jaafar, M. A Review on Degradation Mechanisms of Polylactic Acid: Hydrolytic, Photodegradative, Microbial, and Enzymatic Degradation. Polym. Eng. Sci. 2020, 60, 2061–2075. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, F.; Pan, Y.; Chen, C.; Jiang, L.; Dan, Y. Effect of Hydrophobic Fluoropolymer and Crystallinity on the Hydrolytic Degradation of Poly(Lactic Acid). Eur. Polym. J. 2017, 97, 308–318. [Google Scholar] [CrossRef]
- GRAS Substances (SCOGS) Database-Select Committee on GRAS Substances (SCOGS) Opinion: Calcium Lactate, Lactic Acid. Available online: http://wayback.archive-it.org/7993/20171031061521/https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/ucm260888.htm (accessed on 22 March 2023).
- SCOGS (Select Committee on GRAS Substances). Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=SCOGS&sort=Sortsubstance&order=ASC&startrow=1&type=basic&search=lactic%20acid (accessed on 22 March 2023).
- 21 CFR Part 110—Current Good Manufacturing Practice in Manufacturing, Packing, or Holding Human Food. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-110 (accessed on 22 March 2023).
- 21 CFR Part 184—Direct Food Substances Affirmed as Generally Recognized as Safe. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1061 (accessed on 22 March 2023).
- 21 CFR Part 184—Listing of Specific Substances Affirmed as GRAS. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=184 (accessed on 22 March 2023).
- 21 CFR Part 170—Food Additives. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=170.39 (accessed on 3 April 2023).
- About the FCS Review Program. Available online: https://www.fda.gov/food/inventory-effective-food-contact-substance-fcs-notifications/about-fcs-review-program (accessed on 13 October 2023).
- Inventory of Effective Food Contact Substance (FCS) Notifications—Total Corbion PLA. Available online: https://www.fda.gov/food/packaging-food-contact-substances-fcs/inventory-effective-food-contact-substance-fcs-notifications (accessed on 22 March 2023).
- Inventory of Effective Food Contact Substance (FCS) Notifications—NatureWorks LLC 1. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=FCN&id=475&sort=FCN_No&order=DESC&startrow=1&type=basic&search=lactic%20acid (accessed on 3 April 2023).
- Inventory of Effective Food Contact Substance (FCS) Notifications—Nature Works LLC 2. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=FCN&id=178&sort=FCN_No&order=DESC&startrow=1&type=basic&search=NatureWorks (accessed on 3 April 2023).
- Commission Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:012:0001:0089:en:PDF (accessed on 13 October 2023).
- Food Contact Materials | Food Safety Authority of Ireland. Available online: https://www.fsai.ie/food_businesses/food_contact_materials/intro.html (accessed on 22 March 2023).
- Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives (Text with EEA Relevance). Available online: https://www.legislation.gov.uk/eur/2008/1333/data.pdf (accessed on 13 October 2023).
- Evaluation of Certain Food Additives and Contaminants: Fifty-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives. Available online: https://www.who.int/publications-detail-redirect/9241209097 (accessed on 13 October 2023).
- López-Rodríguez, N.; López-Arraiza, A.; Meaurio, E.; Sarasua, J.R. Crystallization, Morphology, and Mechanical Behavior of Polylactide/Poly(ε-Caprolactone) Blends. Polym. Eng. Sci. 2006, 46, 1299–1308. [Google Scholar] [CrossRef]
- Oksiuta, Z.; Jalbrzykowski, M.; Mystkowska, J.; Romanczuk, E.; Osiecki, T. Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers 2020, 12, 2939. [Google Scholar] [CrossRef]
- Perego, G.; Cella, G.D.; Bastioli, C. Effect of Molecular Weight and Crystallinity on Poly(Lactic Acid) Mechanical Properties. J. Appl. Polym. Sci. 1996, 59, 37–43. [Google Scholar] [CrossRef]
- Tejada-Oliveros, R.; Balart, R.; Ivorra-Martinez, J.; Gomez-Caturla, J.; Montanes, N.; Quiles-Carrillo, L. Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Linseed Oil for Applications in Rigid Packaging. Molecules 2021, 26, 240. [Google Scholar] [CrossRef] [PubMed]
- Valentina, I.; Haroutioun, A.; Fabrice, L.; Vincent, V.; Roberto, P. Tuning the Hydrolytic Degradation Rate of Poly-Lactic Acid (PLA) to More Durable Applications. AIP Conf. Proc. 2017, 1914, 210001. [Google Scholar] [CrossRef]
- Copinet, A.; Bertrand, C.; Govindin, S.; Coma, V.; Couturier, Y. Effects of Ultraviolet Light (315 Nm), Temperature and Relative Humidity on the Degradation of Polylactic Acid Plastic Films. Chemosphere 2004, 55, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Barrasa, J.; Ferrández-Montero, A.; Ferrari, B.; Pastor, J.Y. Natural Ageing of PLA Filaments, Can It Be Frozen? Polymers 2022, 14, 3361. [Google Scholar] [CrossRef] [PubMed]
- Moraczewski, K.; Stepczyńska, M.; Malinowski, R.; Karasiewicz, T.; Jagodziński, B.; Rytlewski, P. The Effect of Accelerated Aging on Polylactide Containing Plant Extracts. Polymers 2019, 11, 575. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Imre, B.; Tátraaljai, D.; Pukánszky, B. Physical Ageing of Poly(Lactic Acid): Factors and Consequences for Practice. Polymer 2020, 186, 122014. [Google Scholar] [CrossRef]
- Nur Diyana, A.F.; Khalina, A.; Sapuan, M.S.; Lee, C.H.; Aisyah, H.A.; Nurazzi, M.N.; Ayu, R.S. Physical, Mechanical, and Thermal Properties and Characterization of Natural Fiber Composites Reinforced Poly(Lactic Acid): Miswak (Salvadora Persica L.) Fibers. Int. J. Polym. Sci. 2022, 2022, e7253136. [Google Scholar] [CrossRef]
- Rezaei, F.; Yunus, R.; Ibrahim, N.A. Effect of Fiber Length on Thermomechanical Properties of Short Carbon Fiber Reinforced Polypropylene Composites. Mater. Des. 2009, 30, 260–263. [Google Scholar] [CrossRef]
- Li, H.; Huneault, M.A. Effect of Nucleation and Plasticization on the Crystallization of Poly(Lactic Acid). Polymer 2007, 48, 6855–6866. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, C.; Coppola, B.; Barra, G.; Di Maio, L.; Incarnato, L.; Lafdi, K. Effect of Porosity and Crystallinity on 3D Printed PLA Properties. Polymers 2019, 11, 1487. [Google Scholar] [CrossRef]
- Chen, X.; Chen, F.; Wang, G.; Ma, X.; Wang, J.; Deng, J. Eco-Friendly, Disposable Bamboo Fiber Dishware: Static and Dynamic Mechanical Properties and Creep Behavior. Ind. Crops Prod. 2022, 187, 115305. [Google Scholar] [CrossRef]
- Gálvez, J.; Correa Aguirre, J.P.; Hidalgo Salazar, M.A.; Vera Mondragón, B.; Wagner, E.; Caicedo, C. Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA. Polymers 2020, 12, 2111. [Google Scholar] [CrossRef] [PubMed]
- Peelman, N.; Ragaert, P.; Ragaert, K.; De Meulenaer, B.; Devlieghere, F.; Cardon, L. Heat Resistance of New Biobased Polymeric Materials, Focusing on Starch, Cellulose, PLA, and PHA. J. Appl. Polym. Sci. 2015, 132, 42305. [Google Scholar] [CrossRef]
- Zhou, Y.; Rangari, V.; Mahfuz, H.; Jeelani, S.; Mallick, P.K. Experimental Study on Thermal and Mechanical Behavior of Polypropylene, Talc/Polypropylene and Polypropylene/Clay Nanocomposites. Mater. Sci. Eng. A 2005, 402, 109–117. [Google Scholar] [CrossRef]
- Tábi, T.; Ageyeva, T.; Kovács, J.G. Improving the Ductility and Heat Deflection Temperature of Injection Molded Poly(Lactic Acid) Products: A Comprehensive Review. Polym. Test. 2021, 101, 107282. [Google Scholar] [CrossRef]
- Abdelwahab, M.A.; Rodriguez-Uribe, A.; Misra, M.K.; Mohanty, A. Injection Molded Novel Biocomposites from Polypropylene and Sustainable Biocarbon. Molecules 2019, 24, 4026. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, A.; Öksüz, M.; Ates, M.; Aydin, I. Thermal and Mechanical Properties of Polypropylene/Post-Consumer Poly (Ethylene Terephthalate) Blends: Bottle-to-Bottle Recycling. J. Polym. Res. 2022, 29, 433. [Google Scholar] [CrossRef]
- Suryanegara, L.; Nakagaito, A.N.; Yano, H. The Effect of Crystallization of PLA on the Thermal and Mechanical Properties of Microfibrillated Cellulose-Reinforced PLA Composites. Compos. Sci. Technol. 2009, 69, 1187–1192. [Google Scholar] [CrossRef]
- Ruz-Cruz, M.A.; Herrera-Franco, P.J.; Flores-Johnson, E.A.; Moreno-Chulim, M.V.; Galera-Manzano, L.M.; Valadez-González, A. Thermal and Mechanical Properties of PLA-Based Multiscale Cellulosic Biocomposites. J. Mater. Res. Technol. 2022, 18, 485–495. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Z.; Li, T.; Peng, X.; Jiang, S.; Turng, L.-S. Quantification of the Young’s Modulus for Polypropylene: Influence of Initial Crystallinity and Service Temperature. J. Appl. Polym. Sci. 2020, 137, 48581. [Google Scholar] [CrossRef]
- Brylka, B.; Schemmann, M.; Wood, J.; Böhlke, T. DMA Based Characterization of Stiffness Reduction in Long Fiber Reinforced Polypropylene. Polym. Test. 2018, 66, 296–302. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, S.; Yan, W.; He, M.; Qin, J.; Qin, S.; Yu, J. Crystallization Morphology Regulation on Enhancing Heat Resistance of Polylactic Acid. Polymers 2020, 12, 1563. [Google Scholar] [CrossRef] [PubMed]
- Aliotta, L.; Sciara, L.M.; Cinelli, P.; Canesi, I.; Lazzeri, A. Improvement of the PLA Crystallinity and Heat Distortion Temperature Optimizing the Content of Nucleating Agents and the Injection Molding Cycle Time. Polymers 2022, 14, 977. [Google Scholar] [CrossRef] [PubMed]
- Barkhad, M.S.; Abu-Jdayil, B.; Mourad, A.H.I.; Iqbal, M.Z. Thermal Insulation and Mechanical Properties of Polylactic Acid (PLA) at Different Processing Conditions. Polymers 2020, 12, 2091. [Google Scholar] [CrossRef] [PubMed]
- Muratov, D.S.; Vanyushin, V.O.; Luchnikov, L.O.; Degtyaryov, M.Y.; Kolesnikov, E.A.; Stepashkin, A.A.; Kuznetsov, D.V. Improved Thermal Conductivity of Polypropylene Filled with Exfoliated Hexagonal Boron Nitride (hBN) Particles. Mater. Res. Express 2021, 8, 035010. [Google Scholar] [CrossRef]
- Lebedev, S.M.; Gefle, O.S.; Amitov, E.T.; Berchuk, D.Y.; Zhuravlev, D.V. Poly(Lactic Acid)-Based Polymer Composites with High Electric and Thermal Conductivity and Their Characterization. Polym. Test. 2017, 58, 241–248. [Google Scholar] [CrossRef]
- Ubeda, S.; Aznar, M.; Alfaro, P.; Nerín, C. Migration of Oligomers from a Food Contact Biopolymer Based on Polylactic Acid (PLA) and Polyester. Anal. Bioanal. Chem. 2019, 411, 3521–3532. [Google Scholar] [CrossRef] [PubMed]
- Nerin, C.; Alfaro, P.; Aznar, M.; Domeño, C. The Challenge of Identifying Non-Intentionally Added Substances from Food Packaging Materials: A Review. Anal. Chim. Acta 2013, 775, 14–24. [Google Scholar] [CrossRef]
- Canellas, E.; Vera, P.; Nerín, C. UPLC–ESI-Q-TOF-MSE and GC–MS Identification and Quantification of Non-Intentionally Added Substances Coming from Biodegradable Food Packaging. Anal. Bioanal. Chem. 2015, 407, 6781–6790. [Google Scholar] [CrossRef]
- Taylor, R.B.; Sapozhnikova, Y. Assessing Chemical Migration from Plastic Food Packaging into Food Simulant by Gas and Liquid Chromatography with High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2022, 70, 4805–4816. [Google Scholar] [CrossRef]
- Kaseke, T.; Lujic, T.; Cirkovic Velickovic, T. Nano- and Microplastics Migration from Plastic Food Packaging into Dairy Products: Impact on Nutrient Digestion, Absorption, and Metabolism. Foods 2023, 12, 3043. [Google Scholar] [CrossRef] [PubMed]
- Petrovics, N.; Kirchkeszner, C.; Tábi, T.; Magyar, N.; Kovácsné Székely, I.; Szabó, B.S.; Nyiri, Z.; Eke, Z. Effect of Temperature and Plasticizer Content of Polypropylene and Polylactic Acid on Migration Kinetics into Isooctane and 95 v/v% Ethanol as Alternative Fatty Food Simulants. Food Packag. Shelf Life 2022, 33, 100916. [Google Scholar] [CrossRef]
- Grob, K.; Pfenninger, S.; Pohl, W.; Laso, M.; Imhof, D.; Rieger, K. European Legal Limits for Migration from Food Packaging Materials: 1. Food Should Prevail over Simulants; 2. More Realistic Conversion from Concentrations to Limits per Surface Area. PVC Cling Films in Contact with Cheese as an Example. Food Control 2007, 18, 201–210. [Google Scholar] [CrossRef]
- Mutsuga, M.; Kawamura, Y.; Tanamoto, K. Migration of Lactic Acid, Lactide and Oligomers from Polylactide Food-Contact Materials. Food Addit. Contam. Part A 2008, 25, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Castillo Martinez, F.A.; Balciunas, E.M.; Salgado, J.M.; Domínguez González, J.M.; Converti, A.; de Souza Oliveira, R.P. Lactic Acid Properties, Applications and Production: A Review. Trends Food Sci. Technol. 2013, 30, 70–83. [Google Scholar] [CrossRef]
- Trifol, J.; Plackett, D.; Szabo, P.; Daugaard, A.E.; Giacinti Baschetti, M. Effect of Crystallinity on Water Vapor Sorption, Diffusion, and Permeation of PLA-Based Nanocomposites. ACS Omega 2020, 5, 15362–15369. [Google Scholar] [CrossRef] [PubMed]
- Rogovina, S.; Zhorina, L.; Yakhina, A.; Shapagin, A.; Iordanskii, A.; Berlin, A. Hydrolysis, Biodegradation and Ion Sorption in Binary Biocomposites of Chitosan with Polyesters: Polylactide and Poly(3-Hydroxybutyrate). Polymers 2023, 15, 645. [Google Scholar] [CrossRef] [PubMed]
- Conchione, C.; Lucci, P.; Moret, S. Migration of Polypropylene Oligomers into Ready-to-Eat Vegetable Soups. Foods 2020, 9, 1365. [Google Scholar] [CrossRef]
- Banjo, A.D.; Agrawal, V.; Auad, M.L.; Celestine, A.-D.N. Moisture-Induced Changes in the Mechanical Behavior of 3D Printed Polymers. Compos. Part C Open Access 2022, 7, 100243. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, P.; Liu, S.; Chen, J.; Chen, R.; He, X.; Ma, G.; Lei, Z. Factors Affecting the Properties of Superabsorbent Polymer Hydrogels and Methods to Improve Their Performance: A Review. J. Mater. Sci. 2021, 56, 16223–16242. [Google Scholar] [CrossRef]
- Yew, G.H.; Mohd Yusof, A.M.; Mohd Ishak, Z.A.; Ishiaku, U.S. Water Absorption and Enzymatic Degradation of Poly(Lactic Acid)/Rice Starch Composites. Polym. Degrad. Stab. 2005, 90, 488–500. [Google Scholar] [CrossRef]
- Rosli, N.A.; Karamanlioglu, M.; Kargarzadeh, H.; Ahmad, I. Comprehensive Exploration of Natural Degradation of Poly(Lactic Acid) Blends in Various Degradation Media: A Review. Int. J. Biol. Macromol. 2021, 187, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, J.C.; Diehl, J.C.; Wauben, L.S.G.L.; Dankelman, J. The Effect of Chemical Cleaning on Mechanical Properties of Three-Dimensional Printed Polylactic Acid. J. Med. Devices 2020, 14, 011109. [Google Scholar] [CrossRef] [PubMed]
- Swetha, T.A.; Bora, A.; Mohanrasu, K.; Balaji, P.; Raja, R.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A Comprehensive Review on Polylactic Acid (PLA)—Synthesis, Processing and Application in Food Packaging. Int. J. Biol. Macromol. 2023, 234, 123715. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Xi, Y.; Weng, Y. Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications. Molecules 2022, 27, 5953. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, D.; Iyyappan, J.; Gnanasekaran, R.; Ishwarya, G.; Harshini, R.P.; Dhithya, V.; Chandran, M.; Kanishka, V.; Gomathi, K. Advances in Bio Food Packaging—An Overview. Heliyon 2021, 7, e07998. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Bilotti, E.; Bastiaansen, C.W.M.; Peijs, T. Transparent Semi-Crystalline Polymeric Materials and Their Nanocomposites: A Review. Polym. Eng. Sci. 2020, 60, 2351–2376. [Google Scholar] [CrossRef]
- Wang, X.; Hu, S.; Guo, Y.; Li, G.; Xu, R. Toughened High-Flow Polypropylene with Polyolefin-Based Elastomers. Polymers 2019, 11, 1976. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.-W. Preparation of Bioactive Functional Poly(Lactic Acid)/Curcumin Composite Film for Food Packaging Application. Int. J. Biol. Macromol. 2020, 162, 1780–1789. [Google Scholar] [CrossRef]
- Rigotti, D.; Soccio, M.; Dorigato, A.; Gazzano, M.; Siracusa, V.; Fredi, G.; Lotti, N. Novel Biobased Polylactic Acid/Poly(Pentamethylene 2,5-Furanoate) Blends for Sustainable Food Packaging. ACS Sustain. Chem. Eng. 2021, 9, 13742–13750. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yu, H.-Y.; Yang, L.; Abdalkarim, S.Y.H.; Chen, W.-L. Enhancing Long-Term Biodegradability and UV-Shielding Performances of Transparent Polylactic Acid Nanocomposite Films by Adding Cellulose Nanocrystal-Zinc Oxide Hybrids. Int. J. Biol. Macromol. 2019, 141, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Desidery, L.; Lanotte, M. 1—Polymers and Plastics: Types, Properties, and Manufacturing. In Plastic Waste for Sustainable Asphalt Roads; Giustozzi, F., Nizamuddin, S., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2022; pp. 3–28. ISBN 978-0-323-85789-5. [Google Scholar]
- Chee, W.K.; Ibrahim, N.A.; Zainuddin, N.; Abd Rahman, M.F.; Chieng, B.W. Impact Toughness and Ductility Enhancement of Biodegradable Poly(Lactic Acid)/Poly(ε-Caprolactone) Blends via Addition of Glycidyl Methacrylate. Adv. Mater. Sci. Eng. 2013, 2013, e976373. [Google Scholar] [CrossRef]
- García-Campo, M.J.; Boronat, T.; Quiles-Carrillo, L.; Balart, R.; Montanes, N. Manufacturing and Characterization of Toughened Poly(Lactic Acid) (PLA) Formulations by Ternary Blends with Biopolyesters. Polymers 2018, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Fortelny, I.; Ujcic, A.; Fambri, L.; Slouf, M. Phase Structure, Compatibility, and Toughness of PLA/PCL Blends: A Review. Front. Mater. 2019, 6, 206. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, D.; Zhou, Z.; Wu, Y.; Li, H.; Zhao, C.; Li, Y. Biaxial Stretching of Polymer Nanocomposites: A Mini-Review. Front. Mater. 2021, 8, 725422. [Google Scholar] [CrossRef]
- Xu, S.; Tahon, J.-F.; De-Waele, I.; Stoclet, G.; Gaucher, V. Brittle-to-Ductile Transition of PLA Induced by Macromolecular Orientation. Express Polym. Lett. 2020, 14, 1037–1047. [Google Scholar] [CrossRef]
- Burgos, N.; Martino, V.P.; Jiménez, A. Characterization and Ageing Study of Poly(Lactic Acid) Films Plasticized with Oligomeric Lactic Acid. Polym. Degrad. Stab. 2013, 98, 651–658. [Google Scholar] [CrossRef]
- Barandiaran, A.; Gomez-Caturla, J.; Ivorra-Martinez, J.; Lascano, D.; Selles, M.A.; Moreno, V.; Fenollar, O. Esters of Cinnamic Acid as Green Plasticizers for Polylactide Formulations with Improved Ductility. Macromol. Mater. Eng. 2023, 308, 2300022. [Google Scholar] [CrossRef]
- Roy Goswami, S.; Sudhakaran Nair, S.; Zhang, X.; Tanguy, N.; Yan, N. Starch Maleate/Epoxidized Soybean Oil/Polylactic Acid Films with Improved Ductility and Biodegradation Potential for Packaging Fatty Foods. ACS Sustain. Chem. Eng. 2022, 10, 14185–14194. [Google Scholar] [CrossRef]
- Tian, J.; Cao, Z.; Qian, S.; Xia, Y.; Zhang, J.; Kong, Y.; Sheng, K.; Zhang, Y.; Wan, Y.; Takahashi, J. Improving Tensile Strength and Impact Toughness of Plasticized Poly(Lactic Acid) Biocomposites by Incorporating Nanofibrillated Cellulose. Nanotechnol. Rev. 2022, 11, 2469–2482. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, D.; Yu, S.; Zhou, H.; Peng, S. Recent Advances in Compatibility and Toughness of Poly(Lactic Acid)/Poly(Butylene Succinate) Blends. e-Polymers 2021, 21, 793–810. [Google Scholar] [CrossRef]
- Hashima, K.; Nishitsuji, S.; Inoue, T. Structure-Properties of Super-Tough PLA Alloy with Excellent Heat Resistance. Polymer 2010, 51, 3934–3939. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, L.; Li, G.; Liang, N.; Zhang, J.; Zhu, Z.; Wang, R. Effect of Nucleating Agents on the Crystallization Behavior and Heat Resistance of Poly(l-Lactide). J. Appl. Polym. Sci. 2016, 133, 42999. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, J.; Liang, X.; Huang, Z.; Li, J.; Peng, S. Crystallization Behaviors Regulations and Mechanical Performances Enhancement Approaches of Polylactic Acid (PLA) Biodegradable Materials Modified by Organic Nucleating Agents. Int. J. Biol. Macromol. 2023, 233, 123581. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhang, C.; Liu, X.; Zhu, J. The Crystallization Behavior and Mechanical Properties of Polylactic Acid in the Presence of a Crystal Nucleating Agent. J. Appl. Polym. Sci. 2012, 125, 1108–1115. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Lian, H.-Y.; Shih, Y.-F.; Chen-Wei, S.-M.; Jeng, R.-J. Preparation, Characterization and Crystallization Kinetics of Kenaf Fiber/Multi-Walled Carbon Nanotube/Polylactic Acid (PLA) Green Composites. Mater. Chem. Phys. 2017, 196, 249–255. [Google Scholar] [CrossRef]
- Byun, Y.; Rodriguez, K.; Han, J.H.; Kim, Y.T. Improved Thermal Stability of Polylactic Acid (PLA) Composite Film via PLA–β-Cyclodextrin-Inclusion Complex Systems. Int. J. Biol. Macromol. 2015, 81, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Luo, Q.; Wang, M.; Ouyang, Y.; Lin, H.; Sheng, L.; Su, S. Preparation and Properties of Poly(Lactic Acid)/Lignin-Modified Polyvinyl Acetate Composites. J. Appl. Polym. Sci. 2021, 138, 49844. [Google Scholar] [CrossRef]
- Jin, F.-L.; Hu, R.-R.; Park, S.-J. Improvement of Thermal Behaviors of Biodegradable Poly(Lactic Acid) Polymer: A Review. Compos. Part B Eng. 2019, 164, 287–296. [Google Scholar] [CrossRef]
- Ye, G.; Gu, T.; Chen, B.; Bi, H.; Hu, Y. Mechanical, Thermal Properties and Shape Memory Behaviors of PLA/PCL/PLA-g-GMA Blends. Polym. Eng. Sci. 2023, 63, 2084–2092. [Google Scholar] [CrossRef]
- Navarro-Baena, I.; Sessini, V.; Dominici, F.; Torre, L.; Kenny, J.M.; Peponi, L. Design of Biodegradable Blends Based on PLA and PCL: From Morphological, Thermal and Mechanical Studies to Shape Memory Behavior. Polym. Degrad. Stab. 2016, 132, 97–108. [Google Scholar] [CrossRef]
- Mulla, M.Z.; Rahman, M.R.T.; Marcos, B.; Tiwari, B.; Pathania, S. Poly Lactic Acid (PLA) Nanocomposites: Effect of Inorganic Nanoparticles Reinforcement on Its Performance and Food Packaging Applications. Molecules 2021, 26, 1967. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H.; Okino, R.; Daimon, H.; Fujie, K. Water Vapor Permeability of Poly(Lactide)s: Effects of Molecular Characteristics and Crystallinity. J. Appl. Polym. Sci. 2006, 99, 2245–2252. [Google Scholar] [CrossRef]
- Liu, J.-H.; Huang, M.-L.; Tao, J.-R.; Weng, Y.-X.; Wang, M. Fabrication of Recyclable Nucleating Agent and Its Effect on Crystallization, Gas Barrier, Thermal, and Mechanical Performance of Poly(l-Lactide). Polymer 2021, 231, 124121. [Google Scholar] [CrossRef]
- Shirai, M.A.; Zanela, J.; Kunita, M.H.; Pereira, G.M.; Rubira, A.F.; Müller, C.M.O.; Grossmann, M.V.E.; Yamashita, F. Influence of Carboxylic Acids on Poly(Lactic Acid)/Thermoplastic Starch Biodegradable Sheets Produced by Calendering–Extrusion. Adv. Polym. Technol. 2018, 37, 332–338. [Google Scholar] [CrossRef]
- Zembouai, I.; Kaci, M.; Bruzaud, S.; Benhamida, A.; Corre, Y.-M.; Grohens, Y. A Study of Morphological, Thermal, Rheological and Barrier Properties of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Polylactide Blends Prepared by Melt Mixing. Polym. Test. 2013, 32, 842–851. [Google Scholar] [CrossRef]
- Zembouai, I.; Bruzaud, S.; Kaci, M.; Benhamida, A.; Corre, Y.-M.; Grohens, Y. Mechanical Recycling of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Polylactide Based Blends. J. Polym. Environ. 2014, 22, 449–459. [Google Scholar] [CrossRef]
- Marano, S.; Laudadio, E.; Minnelli, C.; Stipa, P. Tailoring the Barrier Properties of PLA: A State-of-the-Art Review for Food Packaging Applications. Polymers 2022, 14, 1626. [Google Scholar] [CrossRef]
- Madbouly, S.A. Bio-Based Polyhydroxyalkanoates Blends and Composites. Phys. Sci. Rev. 2023, 8, 1107–1125. [Google Scholar] [CrossRef]
- Muniyasamy, S.; Ofosu, O.; John, M.; Anandjiwala, R. Mineralization of Poly (Lactic Acid)(PLA), Poly (3-Hydroxybutyrate-Co-Valerate)(PHBV) and PLA/PHBV Blend in Compost and Soil Environments. J. Renew. Mater. 2016, 4, 133–145. [Google Scholar] [CrossRef]
- Greene, J.P. 12—Polymer Composites. In Automotive Plastics and Composites; Greene, J.P., Ed.; Plastics Design Library; William Andrew Publishing: Norwich, NY, USA, 2021; pp. 191–222. ISBN 978-0-12-818008-2. [Google Scholar]
- Afzal, A.; Nawab, Y. 5—Polymer Composites. In Composite Solutions for Ballistics; Nawab, Y., Sapuan, S.M., Shaker, K., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2021; pp. 139–152. ISBN 978-0-12-821984-3. [Google Scholar]
- Shankar, S.; Wang, L.-F.; Rhim, J.-W. Incorporation of Zinc Oxide Nanoparticles Improved the Mechanical, Water Vapor Barrier, UV-Light Barrier, and Antibacterial Properties of PLA-Based Nanocomposite Films. Mater. Sci. Eng. C 2018, 93, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, E.; Peltzer, M.; Armentano, I.; Jiménez, A.; Kenny, J.M. Combined Effects of Cellulose Nanocrystals and Silver Nanoparticles on the Barrier and Migration Properties of PLA Nano-Biocomposites. J. Food Eng. 2013, 118, 117–124. [Google Scholar] [CrossRef]
- Fortunati, E.; Armentano, I.; Zhou, Q.; Iannoni, A.; Saino, E.; Visai, L.; Berglund, L.A.; Kenny, J.M. Multifunctional Bionanocomposite Films of Poly(Lactic Acid), Cellulose Nanocrystals and Silver Nanoparticles. Carbohydr. Polym. 2012, 87, 1596–1605. [Google Scholar] [CrossRef]
- Fortunati, E.; Rinaldi, S.; Peltzer, M.; Bloise, N.; Visai, L.; Armentano, I.; Jiménez, A.; Latterini, L.; Kenny, J.M. Nano-Biocomposite Films with Modified Cellulose Nanocrystals and Synthesized Silver Nanoparticles. Carbohydr. Polym. 2014, 101, 1122–1133. [Google Scholar] [CrossRef]
- Yu, H.-Y.; Yang, X.-Y.; Lu, F.-F.; Chen, G.-Y.; Yao, J.-M. Fabrication of Multifunctional Cellulose Nanocrystals/Poly(Lactic Acid) Nanocomposites with Silver Nanoparticles by Spraying Method. Carbohydr. Polym. 2016, 140, 209–219. [Google Scholar] [CrossRef]
- Tang, Z.; Fan, F.; Chu, Z.; Fan, C.; Qin, Y. Barrier Properties and Characterizations of Poly(Lactic Acid)/ZnO Nanocomposites. Molecules 2020, 25, 1310. [Google Scholar] [CrossRef]
- Vasile, C.; Râpă, M.; Stefan, M.; Stan, M.; Sergiu, M.; Darie-Nita, R.; Barbu-Tudoran, L.; Vodnar, D.; Popa, E.; Stefan, R.; et al. New PLA/ZnO:Cu/Ag Bionanocomposites for Food Packaging. Express Polym. Lett. 2017, 11, 531–544. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, F.; Ahmed, S.; Liu, Y. Physico-Mechanical and Antibacterial Properties of PLA/TiO2 Composite Materials Synthesized via Electrospinning and Solution Casting Processes. Coatings 2019, 9, 525. [Google Scholar] [CrossRef]
- Li, W.; Zhang, C.; Chi, H.; Li, L.; Lan, T.; Han, P.; Chen, H.; Qin, Y. Development of Antimicrobial Packaging Film Made from Poly(Lactic Acid) Incorporating Titanium Dioxide and Silver Nanoparticles. Molecules 2017, 22, 1170. [Google Scholar] [CrossRef]
- Singha, S.; Hedenqvist, M.S. A Review on Barrier Properties of Poly(Lactic Acid)/Clay Nanocomposites. Polymers 2020, 12, 1095. [Google Scholar] [CrossRef]
- Thellen, C.; Orroth, C.; Froio, D.; Ziegler, D.; Lucciarini, J.; Farrell, R.; D’Souza, N.A.; Ratto, J.A. Influence of Montmorillonite Layered Silicate on Plasticized Poly(l-Lactide) Blown Films. Polymer 2005, 46, 11716–11727. [Google Scholar] [CrossRef]
- Lai, C.Y.; Groth, A.; Gray, S.; Duke, M. Nanocomposites for Improved Physical Durability of Porous PVDF Membranes. Membranes 2014, 4, 55–78. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, A.; Ali, N. Mechanical, Color and Barrier, Properties of Biodegradable Nanocomposites Polylactic Acid/Nanoclay. J. Bioremediation Biodegrad. 2018, 09, 455. [Google Scholar] [CrossRef]
- Ammar, Z.; Ibrahim, H.; Adly, M.; Sarris, I.; Mehanny, S. Influence of Natural Fiber Content on the Frictional Material of Brake Pads—A Review. J. Compos. Sci. 2023, 7, 72. [Google Scholar] [CrossRef]
- Mehanny, S.; Abu-El Magd, E.E.; Ibrahim, M.; Farag, M.; Gil-San-Millan, R.; Navarro, J.; El Habbak, A.E.H.; El-Kashif, E. Extraction and Characterization of Nanocellulose from Three Types of Palm Residues. J. Mater. Res. Technol. 2021, 10, 526–537. [Google Scholar] [CrossRef]
- Elsayed, H.; Farag, M.; Megahed, H.; Mehanny, S. Influence of Flax Fibers on Properties of Starch-Based Composites. Am. Soc. Mech. Eng. Digit. Collect. 2013, 45196, 1397–1408. [Google Scholar]
- Faraj, H.; Follain, N.; Sollogoub, C.; Almeida, G.; Chappey, C.; Marais, S.; Tencé-Girault, S.; Gouanvé, F.; Espuche, E.; Domenek, S. Gas Barrier Properties of Polylactide/Cellulose Nanocrystals Nanocomposites. Polym. Test. 2022, 113, 107683. [Google Scholar] [CrossRef]
- Yu, H.-Y.; Zhang, H.; Song, M.-L.; Zhou, Y.; Yao, J.; Ni, Q.-Q. From Cellulose Nanospheres, Nanorods to Nanofibers: Various Aspect Ratio Induced Nucleation/Reinforcing Effects on Polylactic Acid for Robust-Barrier Food Packaging. ACS Appl. Mater. Interfaces 2017, 9, 43920–43938. [Google Scholar] [CrossRef]
- Plastic Pollution Is Growing Relentlessly as Waste Management and Recycling Fall Short, Says OECD. Available online: https://www.oecd.org/environment/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.html (accessed on 23 March 2023).
- ISO 14040:2006. Available online: https://www.iso.org/standard/37456.html (accessed on 23 March 2023).
- ISO 14044:2006. Available online: https://www.iso.org/standard/38498.html (accessed on 23 March 2023).
- Majgaonkar, P.; Hanich, R.; Malz, F.; Brüll, R. Chemical Recycling of Post-Consumer PLA Waste for Sustainable Production of Ethyl Lactate. Chem. Eng. J. 2021, 423, 129952. [Google Scholar] [CrossRef]
- Dedieu, I.; Peyron, S.; Gontard, N.; Aouf, C. The Thermo-Mechanical Recyclability Potential of Biodegradable Biopolyesters: Perspectives and Limits for Food Packaging Application. Polym. Test. 2022, 111, 107620. [Google Scholar] [CrossRef]
- Fogašová, M.; Figalla, S.; Danišová, L.; Medlenová, E.; Hlaváčiková, S.; Vanovčanová, Z.; Omaníková, L.; Baco, A.; Horváth, V.; Mikolajová, M.; et al. PLA/PHB-Based Materials Fully Biodegradable under Both Industrial and Home-Composting Conditions. Polymers 2022, 14, 4113. [Google Scholar] [CrossRef] [PubMed]
- Maga, D.; Hiebel, M.; Thonemann, N. Life Cycle Assessment of Recycling Options for Polylactic Acid. Resour. Conserv. Recycl. 2019, 149, 86–96. [Google Scholar] [CrossRef]
- Production, Use, and Fate of All Plastics Ever Made | Science Advances. Available online: https://www.science.org/doi/full/10.1126/sciadv.1700782 (accessed on 12 October 2023).
- Morão, A.; de Bie, F. Life Cycle Impact Assessment of Polylactic Acid (PLA) Produced from Sugarcane in Thailand. J. Polym. Environ. 2019, 27, 2523–2539. [Google Scholar] [CrossRef]
- Musioł, M.; Sikorska, W.; Adamus, G.; Janeczek, H.; Richert, J.; Malinowski, R.; Jiang, G.; Kowalczuk, M. Forensic Engineering of Advanced Polymeric Materials. Part III—Biodegradation of Thermoformed Rigid PLA Packaging under Industrial Composting Conditions. Waste Manag. 2016, 52, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Montes, M.L.; Soccio, M.; Luzi, F.; Puglia, D.; Gazzano, M.; Lotti, N.; Manfredi, L.B.; Cyras, V.P. Evaluation of the Factors Affecting the Disintegration under a Composting Process of Poly(Lactic Acid)/Poly(3-Hydroxybutyrate) (PLA/PHB) Blends. Polymers 2021, 13, 3171. [Google Scholar] [CrossRef] [PubMed]
- Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [PubMed]
- Rezvani Ghomi, E.; Khosravi, F.; Saedi Ardahaei, A.; Dai, Y.; Neisiany, R.E.; Foroughi, F.; Wu, M.; Das, O.; Ramakrishna, S. The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers 2021, 13, 1854. [Google Scholar] [CrossRef] [PubMed]
- EN 13432 Certified Bioplastics. Available online: https://docs.european-bioplastics.org/publications/bp/EUBP_BP_En_13432.pdf (accessed on 13 October 2023).
- National Plastics Plan. 2021. Available online: https://www.agriculture.gov.au/sites/default/files/documents/national-plastics-plan-2021.pdf (accessed on 13 October 2023).
- Rujnić-Sokele, M.; Pilipović, A. Challenges and Opportunities of Biodegradable Plastics: A Mini Review. Waste Manag. Res. 2017, 35, 132–140. [Google Scholar] [CrossRef]
- EUBIO_Admin Labels. Available online: https://www.european-bioplastics.org/bioplastics/standards/labels/ (accessed on 13 October 2023).
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Motloung, M.P.; Ojijo, V.; Bandyopadhyay, J.; Ray, S.S. Cellulose Nanostructure-Based Biodegradable Nanocomposite Foams: A Brief Overview on the Recent Advancements and Perspectives. Polymers 2019, 11, 1270. [Google Scholar] [CrossRef]
- Dasan, Y.K.; Bhat, A.H.; Ahmad, F. Polymer Blend of PLA/PHBV Based Bionanocomposites Reinforced with Nanocrystalline Cellulose for Potential Application as Packaging Material. Carbohydr. Polym. 2017, 157, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Piekarska, K.; Sowinski, P.; Piorkowska, E.; Haque, M.M.-U.; Pracella, M. Structure and Properties of Hybrid PLA Nanocomposites with Inorganic Nanofillers and Cellulose Fibers. Compos. Part Appl. Sci. Manuf. 2016, 82, 34–41. [Google Scholar] [CrossRef]
- Ates, B.; Koytepe, S.; Ulu, A.; Gurses, C.; Thakur, V.K. Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chem. Rev. 2020, 120, 9304–9362. [Google Scholar] [CrossRef] [PubMed]
- Escobar, N.; Haddad, S.; Börner, J.; Britz, W. Land Use Mediated GHG Emissions and Spillovers from Increased Consumption of Bioplastics. Environ. Res. Lett. 2018, 13, 125005. [Google Scholar] [CrossRef]
- Govil, T.; Wang, J.; Samanta, D.; David, A.; Tripathi, A.; Rauniyar, S.; Salem, D.R.; Sani, R.K. Lignocellulosic Feedstock: A Review of a Sustainable Platform for Cleaner Production of Nature’s Plastics. J. Clean. Prod. 2020, 270, 122521. [Google Scholar] [CrossRef]
- Fahim, I.S.; Chbib, H.; Mahmoud, H.M. The Synthesis, Production & Economic Feasibility of Manufacturing PLA from Agricultural Waste. Sustain. Chem. Pharm. 2019, 12, 100142. [Google Scholar] [CrossRef]
Type of Food Contact Plastic | Advantages | Disadvantages |
---|---|---|
High-Density Polyethylene (HDPE) | Heat and cold resistant, solvent resistant, high mechanical strength, UV resistant, good moisture barrier, chemical resistant | Poor weathering, stress cracking occurs over time |
Low-Density Polyethylene (LDPE) | Better extensibility and processability compared to HDPE, chemical resistance, low-temperature resistance | Poor mechanical strength, low moisture barrier, poor weathering, not heat resistant |
Polyethylene terephthalate (PET) | High mechanical strength, high gas barrier, chemically resistant | Lower moisture barrier compared to HDPE, oxidation over time leading to shorter shelf life |
Polycarbonate (PC) | Excellent mechanical strength, good insulator, good weathering | Bisphenol A migration into food upon heating |
Polypropylene | Heat and cold resistant, solvent resistant, good moisture and gas barriers, high mechanical strength, chemical resistant, good weathering | Impact strength decreases at low temperatures, degraded by UV |
Polylactic Acid (PLA) | Made from renewable resources, non-toxic, better UV resistance compared to LDPE, better thermal properties compared to other biobased plastics, biodegradable | Brittle, low moisture and gas barriers, not heat resistant |
Category | Maximum Level (mg/L or mg/kg as Appropriate) | Restrictions/Exceptions |
---|---|---|
Infant Formula | Quantum satis | L(+) form only |
Follow-on Formula | Quantum satis | L(+) form only |
Processed Cereal Based Food and Baby Foods for Infants and Young Children | 5000 | Only for pH adjustment, L(+) form only |
Other Foods for Young Children | Quantum satis | L(+) form only |
Lactic Acid Esters of Mono- and Diglycerides of Fatty Acids | 5000 | Only biscuits and rusks, cereal-based foods, baby foods |
Polymer | Young’s Modulus (MPa) | Ultimate Tensile Strength (MPa) | Elongation at Break (%) | Impact Strength (J/m2) |
---|---|---|---|---|
PLA | 2996–3750 | 40–59 | 1.3–7 | 1300 |
PP | 1300 | 31–45 | 50–145 | 3000–6500 |
Polymer | Tg (°C) | Tm (°C) | Xc (%) | THDT (°C) | λ (W/mK) |
---|---|---|---|---|---|
PLA | 55–63 | 148–168 | 10–22 | 55 | 0.2–0.26 |
PP | −18–0 | 156–170 | 30–45 | 57–90 | 0.18–0.2 |
Material | Benefits | Drawbacks | Ref. |
---|---|---|---|
PLA/Ag | Reduction in OTR and WVP | Tensile strength and elongation at break decreased | [134,135] |
PLA/CNC/Ag | Reduction in OTR and WVP Migration levels below FDA and EFSA levels for Ag | Tensile strength and elongation at break decreased | [134,135,136] |
PLA/CNF/Ag | Reduction in WVP and water uptake, migration levels below EU food contact requirements | Elongation at break decreased, optical transparency is reduced with increased composite concentration | [137] |
Material | Benefits | Drawbacks | Ref. |
---|---|---|---|
PLA/ZnO + Plasticizer | Reduction in OTR and WVP | Low opacity compared to neat PLA, elongation at break decreased | [138] |
PLA/ZnO:Cu/Ag | Reduction in WVP and OTR, Young’s modulus and tensile strength reduced (improved ductility) | Tg reduced, crystallinity increased | [139] |
PLA/TiO2 | WVP reduced Opacity of film to UVC and UVB reduced | Elongation at break decreased | [140] |
Material | Results |
---|---|
PLA/CNC | Increase in tensile strength (210%) and Young’s modulus (250%), decrease in WVP (79.1%) and OTR (26%) |
PLA/CNF | Increase in tensile strength (260%) and Young’s modulus (350%), decrease in WVP (66.5%) |
PLA/CNS | Increase in tensile strength (130%) and Young’s modulus (140%), decrease in WVP (76.3%) |
Item | Unit Price PLA MOQ 50,000 | Unit Price PP MOQ 50,000 | Unit Price PLA MOQ 100,000 | Unit Price PP MOQ 100,000 |
---|---|---|---|---|
11.7 g container | EUR 0.163 | EUR 0.138 | EUR 0.158 | EUR 0.132 |
17.9 g container | EUR 0.202 | EUR 0.161 | EUR 0.196 | EUR 0.155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Loughlin, J.; Doherty, D.; Herward, B.; McGleenan, C.; Mahmud, M.; Bhagabati, P.; Boland, A.N.; Freeland, B.; Rochfort, K.D.; Kelleher, S.M.; et al. The Potential of Bio-Based Polylactic Acid (PLA) as an Alternative in Reusable Food Containers: A Review. Sustainability 2023, 15, 15312. https://doi.org/10.3390/su152115312
O’Loughlin J, Doherty D, Herward B, McGleenan C, Mahmud M, Bhagabati P, Boland AN, Freeland B, Rochfort KD, Kelleher SM, et al. The Potential of Bio-Based Polylactic Acid (PLA) as an Alternative in Reusable Food Containers: A Review. Sustainability. 2023; 15(21):15312. https://doi.org/10.3390/su152115312
Chicago/Turabian StyleO’Loughlin, Jennie, Dylan Doherty, Bevin Herward, Cormac McGleenan, Mehreen Mahmud, Purabi Bhagabati, Adam Neville Boland, Brian Freeland, Keith D. Rochfort, Susan M. Kelleher, and et al. 2023. "The Potential of Bio-Based Polylactic Acid (PLA) as an Alternative in Reusable Food Containers: A Review" Sustainability 15, no. 21: 15312. https://doi.org/10.3390/su152115312
APA StyleO’Loughlin, J., Doherty, D., Herward, B., McGleenan, C., Mahmud, M., Bhagabati, P., Boland, A. N., Freeland, B., Rochfort, K. D., Kelleher, S. M., Fahy, S., & Gaughran, J. (2023). The Potential of Bio-Based Polylactic Acid (PLA) as an Alternative in Reusable Food Containers: A Review. Sustainability, 15(21), 15312. https://doi.org/10.3390/su152115312