The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 2: Uncertainty and Validation
Abstract
:1. Introduction
2. Data
2.1. Emissivity
2.1.1. The Combined ASTER MODIS Emissivity Over Land
2.1.2. Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Emissivity Dataset v4
2.1.3. University of Wisconsin Global Infrared Land Surface Emissivity Database
2.1.4. Laboratory Validation Data
2.1.5. Long Term Infrared Atmospheric Sounding Interferometer Dataset
2.2. Ancillary Data
2.2.1. European Center for Medium Range Weather Forecasting
2.2.2. Infrared Atmospheric Sounding Interferometer
2.2.3. Moderate Resolution Imaging Spectroradiometer Land Cover
3. CAMEL Uncertainty Estimates
3.1. Method
3.2. Results
4. Validation with Laboratory Spectra
4.1. Field Sites
4.2. CAMEL Intercomparison with IASI Emissivity
4.3. RTTOV IASI Brightness Temperature Calculations
4.3.1. Methodology
4.3.2. Results
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Seemann, S.W.; Borbas, E.E.; Knuteson, R.O.; Stephenson, G.R.; Huang, H.-L. Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements. J. Appl. Meteorol. Climatol. 2008, 47, 108–123. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Rundle, D.; Rayer, P.; Havemann, S.; Matricardi, M.; Geer, A.; Cristina, L.; Brunel, P.; Vidot, J. RTTOV-12 Science and Validation Report; EUMETSAT NWP SAF, NWPSAF-MO-TV-41; EUMETSAT: Darmstadt, Germany, 2017. [Google Scholar]
- Borbas, E.E.; Ruston, B.C. The RTTOV UWiremis IR Land Surface Emissivity Module; EUMETSAT NWP SAF, NWPSAF-MO-VS-042; EUMETSAT: Darmstadt, Germany, 2010. [Google Scholar]
- Zhou, D.K.; Larar, A.M.; Liu, X. MetOp-A/IASI observed continental thermal IR emissivity variations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1156–1162. [Google Scholar] [CrossRef]
- Zhou, D.K.; Larar, A.M.; Liu, X.; Smith, W.L.; Strow, L.L.; Yang, P.; Schlussel, P.; Calbet, X. Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1277–1290. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Channan, S.; Collins, K.; Emanuel, W.R. Global Mosaics of the Standard MODIS Land Cover Type Data; University of Maryland and the Pacific Northwest National Laboratory: College Park, MD, USA, 2014. [Google Scholar]
- Hook, S. Combined ASTER and MODIS Emissivity for Land (CAMEL) Uncertainty Monthly Global 0.05Deg V001 [Data set]. NASA EOSDIS L. Process. DAAC 2017. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Steven Cothern, J.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Borbas, E.E.; Knuteson, R.O.; Seemann, S.W.; Weisz, E.; Moy, L.A.; Huang, H.-L. A high spectral resolution global land surface infrared emissivity database. In Proceedings of the Joint 2007 EUMETSAT Meteorological Satellite Conference and the 15th Satellite Meteorology & Oceanography Conference of the American Meteorological Society, Amsterdam, The Netherlands, 24–28 September 2007. [Google Scholar]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Dozier, J.; Warren, S.G. Effect of viewing angle on the infrared brightness temperature of snow. Water Resour. Res. 1982, 18, 1424–1434. [Google Scholar] [CrossRef]
- Knuteson, R.O.; Best, F.A.; DeSlover, D.H.; Osborne, B.J.; Revercomb, H.E.; Smith, W.L. Infrared land surface remote sensing using high spectral resolution aircraft observations. Adv. Space Res. 2004, 33, 1114–1119. [Google Scholar] [CrossRef]
- Tobin, D.C.; Revercomb, H.E.; Knuteson, R.O.; Lesht, B.M.; Strow, L.L.; Hannon, S.E.; Feltz, W.F.; Moy, L.A.; Fetzer, E.J.; Cress, T.S. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res. D Atmos. 2006, 111, D09S14. [Google Scholar] [CrossRef]
- Wan, Z.; Li, Z.-L. A physics-based algorithm for retrieving land-surface emissivity and temperature from eos/modis data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996. [Google Scholar] [CrossRef]
- Lavanant, L. MAIA AVHRR Cloud Mask and Classification; Meteo-France: Lannion, France, 2002. [Google Scholar]
CAMEL Channel Number | CAMEL Wavelength [μm] | UWBF | ASTER | CAMEL COMBINING METHOD | ALGORITHM UNCERTAINTY |
---|---|---|---|---|---|
1 | 3.6 | Y | - | UWBF1 | Abs(UWBF1 × [(UWBF6 − ASTER2)/UWBF6])/√3 |
2 | 4.3 | Y | - | UWBF2 | Abs(UWBF2 × [(UWBF6 − ASTER2)/UWBF6])/√3 |
3 | 5.0 | Y | - | UWBF3 | Abs(0.01)/√3 |
4 | 5.8 | Y | - | UWBF4 | Abs(0.01)/√3 |
5 | 7.6 | Y | - | UWBF5 | 0 (Minimal variation) |
6 | 8.3 | Y | Y | ASTER 1 + (CAMEL7(UWBF6, ASTER 2) − ASTER 2) | Abs(UWBF6 − ASTER1)/√3 |
7 | 8.6 | Y | Y | Weighted Mean(UWBF6, ASTER 2) | Abs(UWBF6 − ASTER2)/√3 |
8 | 9.1 | - | Y | ASTER 3 + (CAMEL7(UWBF6, ASTER 2) − ASTER 2) | Abs(UWBF6 − ASTER3)/√3 |
9 | 10.6 | - | Y | ASTER 4 | Abs(UWBF8 − ASTER4)/√3 |
10 | 10.8 | - | - | Linear Interpolation(ASTER 4, ASTER 5) | Abs(UWBF8 − [(ASTER4 × 5 + ASTER5 × 2)/7])/√3 |
11 | 11.3 | - | Y | ASTER5 | Abs(UWBF8 − ASTER5)/√3 |
12 | 12.1 | Y | - | UWBF9 but if ASTER5 > UWBF9, UWBF9 + diff(UWBF9, ASTER 5) × w | Abs(UWBF9 − ASTER5)/√3 |
12 * | 12.1 | Y | - | if snowfrac > 0.5UWBF9 + diff(CAMEL10, UWBF8) | Abs(UWBF9 − ASTER5)/√3 |
13 | 14.3 | Y | - | UWBF10 but if ASTER 5 > UWBF9, UWBF9 + diff(UWBF9, ASTER 5) × w | Abs(UWBF10 − ASTER5)/√3 |
13 * | 14.3 | Y | - | if snowfrac > 0.5, CAMEL12 | Abs(UWBF10 − ASTER5)/√3 |
Value | Description |
---|---|
0 | Ocean or no CAMEL data available |
1 | Good quality |
2 | Unphysical uncertainty |
Value | Description |
---|---|
0 | Ocean or inland water |
1 | input UW BF and ASTER data are good quality |
2 | input UW BF is good quality and ASTER is filled |
3 | the input UW BF is filled but ASTER is good quality |
4 | both the UW and ASTER values are filled |
IGBP Category | 15 January 2008 | 14 April 2008 | 15 July 2008 | 29 September 2008 | ||||
---|---|---|---|---|---|---|---|---|
0.98 | CAMEL | 0.98 | CAMEL | 0.98 | CAMEL | 0.98 | CAMEL | |
1: Evergreen Needle Forests | 3.48 | 3.48 | 1.35 | 1.45 | 3.48 | 3.38 | 2.89 | 2.86 |
2: Evergreen Broad Forests | 5.21 | 4.95 | 5.76 | 5.49 | 6.19 | 5.81 | 2.33 | 2.14 |
3: Deciduous Needle Forests | 1.98 | 1.98 | 5.99 | 6.02 | 7.91 | 7.49 | 1.31 | 1.29 |
4: Deciduous Broad Forests | 2.22 | 2.23 | 1.92 | 2.06 | 3.03 | 2.84 | 4.37 | 4.44 |
5: Mixed Forests | 1.97 | 1.96 | 1.24 | 1.3 | 5.34 | 4.96 | 2.73 | 2.64 |
6: Closed Shrubs | 2.27 | 1.98 | 3.61 | 3.57 | 3.62 | 3.2 | 2.87 | 2.41 |
7: Open Shrubs | 4.8 | 2.57 | 4.16 | 1.48 | 4.83 | 1.89 | 4.31 | 1.62 |
8: Woody Savanna | 3.01 | 2.88 | 3.92 | 3.59 | 4.67 | 4.21 | 3.08 | 2.67 |
9: Savanna | 3.76 | 2.93 | 3.77 | 3.11 | 4.68 | 3.75 | 2.18 | 1.52 |
10: Grassland | 2.85 | 2.34 | 2.9 | 2.17 | 2.56 | 1.92 | 2.26 | 1.63 |
11: Wetland | 1.83 | 1.84 | 1.24 | 1.3 | 3.63 | 3.4 | 2 | 1.78 |
12: Cropland | 2.71 | 2.51 | 2.19 | 1.81 | 3.47 | 3.12 | 2.84 | 2.61 |
13: Urban Area | 2.67 | 2.68 | 1.77 | 1.9 | 4.39 | 4.22 | 3.78 | 3.71 |
14: Crop Mosaic | 3.34 | 3.15 | 2.62 | 2.45 | 3.9 | 3.55 | 3.1 | 2.75 |
15: Antarctic/Permanent Snow | 1.25 | 1.3 | 1.16 | 1.2 | 1.46 | 1.45 | 1.57 | 1.72 |
16: Barren/Desert | 6.96 | 2.28 | 13.4 | 2.16 | 10.3 | 2.62 | 14.2 | 1.85 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feltz, M.; Borbas, E.; Knuteson, R.; Hulley, G.; Hook, S. The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 2: Uncertainty and Validation. Remote Sens. 2018, 10, 664. https://doi.org/10.3390/rs10050664
Feltz M, Borbas E, Knuteson R, Hulley G, Hook S. The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 2: Uncertainty and Validation. Remote Sensing. 2018; 10(5):664. https://doi.org/10.3390/rs10050664
Chicago/Turabian StyleFeltz, Michelle, Eva Borbas, Robert Knuteson, Glynn Hulley, and Simon Hook. 2018. "The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 2: Uncertainty and Validation" Remote Sensing 10, no. 5: 664. https://doi.org/10.3390/rs10050664
APA StyleFeltz, M., Borbas, E., Knuteson, R., Hulley, G., & Hook, S. (2018). The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 2: Uncertainty and Validation. Remote Sensing, 10(5), 664. https://doi.org/10.3390/rs10050664