Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach
Abstract
:1. Introduction
2. Overview of the Retrieval Approach
3. Emissivity Qualitative Assessment
3.1. Methods
3.2. Examples
4. Emissivity Quantitative Assessment
4.1. Methods
4.2. Examples
5. Examples of Emissivity-Based Products
6. Summary and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Comiso, J.; Zwally, H.J. Temperature corrected bootstrap algorithm. Proc. IEEE IGARS Dig. 1997, 3, 857–861. [Google Scholar]
- Svendsen, E.; Mätzler, C.; Grenfell, T.C. A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz. Int. J. Remote. Sens. 1987, 8, 1479–1487. [Google Scholar] [CrossRef]
- Derksen, C. The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals. Remote Sens. Environ. 2008, 112, 2701–2710. [Google Scholar] [CrossRef]
- Tedesco, M.; Narvekar, P.S. Assessment of the NASA AMSR-E SWE Product. IEEE J.-STARS. 2010, 3, 141–159. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. 2008, 113, F01002. [Google Scholar] [CrossRef]
- Grody, N.C. Satellite-based microwave retrievals of temperature and thermal winds: Effects of channel selection and a priori mean on retrieval accuracy. In Remote Sensing of Atmospheres and Oceans; Deepak, A., Ed.; Academic Press: Cambridge, CA, USA, 1980; pp. 381–410. ISBN 0-12-208460-8. [Google Scholar]
- Prigent, C.; Rossow, W.B.; Matthews, E. Microwave land surface emissivities estimated from SSM/I observations. J. Geophys. Res. 1997, 102, 21867–21890. [Google Scholar] [CrossRef]
- Karbou, F.; Prigent, C.; Eymard, L.; Pardo, J. Microwave land emissivity calculations using AMSU-A and AMSU-B measurements. IEEE Trans. Geosci. Remote Sens. 2005, 43, 948–959. [Google Scholar] [CrossRef]
- Yan, B.; Weng, F.; Meng, H. Retrieval of snow surface emissivity from the advanced microwave sounding unit. J. Geophys. Res. 2008, 113, D19206. [Google Scholar] [CrossRef]
- Boukabara, S.-A.; Garrett, K.; Chen, W.; Grassotti, C.; Kongoli, C.; Chen, R.; Liu, Q.; Yan, B.; Weng, F.; Ferraro, R.; et al. MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1–24. [Google Scholar] [CrossRef]
- Kongoli, C.; Boukabara, S.-A.; Yan, B.; Weng, F.; Ferraro, R. New Sea-Ice Concentration Algorithm Based on Microwave Surface Emissivities. IEEE Trans. Geosci. Remote Sens. 2011, 49, 175–189. [Google Scholar] [CrossRef]
- Han, Y.; Van Delst, P.; Liu, Q.; Weng, F.; Yan, B.; Treadon, R.; Derber, J. JCSDA Community Radiative Transfer Model (CRTM)—Version 1; NOAA Technical Report NESDIS 122; NOAA: Silver Spring, MD, USA, 2006; 33p.
- Iturbide-Sanchez, F.; Boukabara, S.-A.; Chen, R.; Garrett, K.; Grassotti, C.; Chen, W.; Weng, F. Assessment of a Variational Inversion System for Rainfall Rate over Land and Water Surfaces. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1–24. [Google Scholar] [CrossRef]
- Liu, Q.; Weng, F.; English, S.J. An Improved Fast Microwave Water Emissivity Model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1238–1250. [Google Scholar] [CrossRef]
- Ferraro, R.R.; Peters-Lidard, C.D.; Hernandez, C.; Turk, F.J.; Aires, F.; Prigent, C.; Lin, X.; Boukabara, S.-A.; Furuzawa, F.A.; Gopalan, K.; et al. An evaluation of microwave land surface emissivities over the continental United States to benefit the GPM-era Precipitation Algorithms. IEEE Trans. Geosci. Remote Sens. 2013, 51, 378–398. [Google Scholar] [CrossRef]
- Norouzi, H.; Temimi, M.; Prigent, C.; Turk, J.; Khanbilvardi, R.; Tian, Y.; Furuzawa, F.A.; Masunaga, H. Assessment of the consistency among global microwave land surface emissivity products. Atmos. Meas. Tech. 2015, 8, 1197–1205. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Harrison, K.W.; Prigent, C.; Norouzi, H.; Aires, F.; Boukabara, S.-A.; Furuzawa, F.A.; Masunaga, H. Quantifying Uncertainties in Land-Surface Microwave Emissivity Retrievals. IEEE Trans. Geosci. Remote Sens. 2014, 52. [Google Scholar] [CrossRef]
- Boukabara, S.-A.; Garrett, K.; Chen, W.; Liu, Q.; Yan, B.; Weng, F. Global Coverage of Total Precipitable Water Using a Microwave Variational Algorithm. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3608–3621. [Google Scholar] [CrossRef]
Emissivity Reference | Channel 23.8 GHz | Channel 31.4 GHz | Channel 50.3 GHz | |
---|---|---|---|---|
Reference: ECMWF-based analytical emissivity | Land | 0.015 (0.023) | 0.015 (0.023) | 0.015 (0.033) |
Snow | 0.015 (0.025) | 0.003 (0.025) | −0.006 (0.032) | |
Sea-Ice | 0.0001 (0.026) | −0.010 (0.026) | −0.025 (0.036) | |
Reference: GDAS-based analytical emissivity | Land | 0.013 (0.029) | 0.012 (0.026) | 0.011 (0.035) |
Snow | 0.021 (0.025) | 0.008 (0.025) | 0.0006 (0.029) | |
Sea-Ice | 0.0004 (0.026) | −0.012 (0.025) | −0.026 (0.034) |
Emissivity Reference | Channel 19 GHz V | Channel 22 GHz V | Channel 37 GHz V | |
---|---|---|---|---|
Reference: ECMWF-based analytical emissivity | Land | 0.008 (0.029) | 0.009 (0.028) | 0.002 (0.027) |
Snow | 0.003 (0.039) | −0.002 (0.022) | −0.005 (0.023) | |
Sea-Ice | 0.001 (0.041) | 0.002 (0.019) | −0.001 (0.022) | |
Reference: GDAS-based analytical emissivity | Land | 0.004 (0.026) | 0.011 (0.031) | 0.002 (0.029) |
Snow | 0.002 (0.023) | 0.003 (0.025) | −0.002 (0.025) | |
Sea-Ice | 0.002 (0.017) | 0.004 (0.018) | −0.002 (0.018) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukabara, S.-A.; Garrett, K.; Grassotti, C. Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach. Remote Sens. 2018, 10, 679. https://doi.org/10.3390/rs10050679
Boukabara S-A, Garrett K, Grassotti C. Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach. Remote Sensing. 2018; 10(5):679. https://doi.org/10.3390/rs10050679
Chicago/Turabian StyleBoukabara, Sid-Ahmed, Kevin Garrett, and Christopher Grassotti. 2018. "Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach" Remote Sensing 10, no. 5: 679. https://doi.org/10.3390/rs10050679
APA StyleBoukabara, S. -A., Garrett, K., & Grassotti, C. (2018). Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach. Remote Sensing, 10(5), 679. https://doi.org/10.3390/rs10050679