A Remote-Sensing-Based Alteration Zonation Model of the Duolong Porphyry Copper Ore District, Tibet
Abstract
:1. Introduction
2. Geological Setting
2.1. Tectonic Setting
2.2. Ore Geology
3. Methodology
3.1. Remote Sensing Data
3.2. Technical Flow
3.3. Spectral Analysis of Ground Samples
3.4. Remote Sensing of Alteration Minerals
3.5. Alteration Zones Information Extraction
3.6. Application of Magnetic Anomalies
4. Results and Analysis
4.1. Horizontal Alteration Zonation
4.2. Remote Sensing Model
4.3. Field Validation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abrams, M.J.; Ashley, R.P.; Brown, L.C.; Goetz, A.F.H.; Kahle, A.B. Mapping of hydrothermal alteration in the cuprite mining district, Nevada, using aircraft scanning images for the spectral region 0.46 to 2.36 mm. Geology 1977, 5, 713–718. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Hunt, G.R. Near-infrared(1.3–2.4μm) spectra of alteration minerals potential for use in remote sensing. Geophysics 1979, 44, 1974–1986. [Google Scholar] [CrossRef]
- Rutz-Armenta, J.R.; Prol-Ledesma, R.M. Techniques for enhancing the spectral response of hydrothermal alteratioin minerals in Thematic Mapper images of central Mexico. Int. J. Remote Sens. 1998, 19, 1981–2000. [Google Scholar] [CrossRef]
- Tangestani, M.H.; Moore, F. Comparison of three principal component analysis techniques to porphyry copper alteration mapping: A case study, Meiduk area, Kerman, Iran. Can. J. Remote Sens. 2001, 27, 176–181. [Google Scholar] [CrossRef]
- Crowley, J.K.; Hubbard, B.E.; Mars, J.C. Hydrothermal alteration on the cascade stratovolcanoes: A remote sensing survey. Geol. Soc. Am. Abstr. Programs 2003, 35, 552. [Google Scholar]
- Crosta, A.; Moore, M.J. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: A prospecting case history in greenstone belt terrain. In Proceedings of the 7th ERIM Thematic Conference: Remote Sensing for Exploration Geology, Calgary, AB, Canada, 2–6 October 1989; pp. 1173–1187. [Google Scholar]
- Mohammadzadeh, M.J.; Babaee, H.A. Application of Crosta Technique for Porphyry Copper Alteration Mapping Using TM data in Varzegan, East Azarbijan, Iran. Eur. J. Sci. Res. 2006, 13, 213–221. [Google Scholar]
- Kwatli, M.A.A.; Gillot, P.Y.; Zeyen, H.; Hildenbrand, A.; Gharib, I.A. Volcano-tectonic evolution of the northern part of the Arabian plate in the light of new K-Ar ages and remote sensing: Harrat Ash Shaam Volcanic province (Syria). Tectonophysicsn 2012, 580, 192–207. [Google Scholar] [CrossRef]
- Dehnavi, A.G.; Sarikhani, R.; Nagaraju, D. Image Processing and Analysis of Mapping Alteration Zones In environment Research, East of Kurdistan, Iran. World Appl. Sci. J. 2010, 11, 278–283. [Google Scholar]
- Kwatli, M.A.A.; Gillot, P.Y.; Gharib, I.A.; Lefevre, J.C. Integration of K-Ar geochronology and remote sensing: Mapping volcanic rocks and constraining the timing of alteration processes(Al-Lajat Plateau, Syria). Quat. Int. 2012, 251, 22–30. [Google Scholar] [CrossRef]
- Peng, G.X.; Chen, F.R.; Pang, Y. Molybdenum Mineralization Mapping Based on Hyperion Hyperspectral image in Angou, China. Appl. Mech. Mater. 2013, 246–247, 1135–1139. [Google Scholar] [CrossRef]
- Abrams, M.; Yamaguchi, Y. Twenty years of ASTER contributions to lithologic mapping and mineral exploration. Remote Sens. 2019, 11, 1394. [Google Scholar] [CrossRef] [Green Version]
- Rajan Girija, R.; Mayappan, S. Mapping of mineral resources and lithological units: A review of remote sensing techniques. Int. J. Image Data Fusion 2019, 10, 79–106. [Google Scholar]
- Meer, F.D.; Werff, H.M.A.; Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; Meijde, M.M.; Carranza, J.M.; Smeth, J.B.; Woldai, T. Multi- and Hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar]
- King, T.V.V.; Koaly, R.F.; Hoefen, T.M.; Johnson, M.R. Hyperspectral remote sensing data maps minerals in Afghanistan. Eos Trans. Am. Geophys. Union 2012, 93, 325–326. [Google Scholar] [CrossRef]
- Morais, M.C.D.; Junior, P.P.M.; Paradella, W.R. Multi-scale approach using remote sensing images to characterize the iron deposit N1 influence areas in Carajas Mineral province (Brazilian Amazon). Environ. Earth Sci. 2012, 66, 2085–2096. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar]
- Petrovic, A.; Khan, S.D.; Thurmond, A.K. Integrated hyperspectral remote sensing, geochemical and isotopic studies for understanding hydrocarbon-induced rock alterations. Mar. Pet. Geol. 2012, 35, 292–308. [Google Scholar]
- Ducart, D.F.; Crosta, A.P.; Filho, C.R.S. Alteration Mineralogy at the Cerro La Mina Epithermal Prospect, Patagonia, Argentina: Field Mapping, Short-Wave Infrared Spectroscopy, and ASTER Images. Econ. Geol. 2006, 101, 981–996. [Google Scholar] [CrossRef]
- Mar, J.C.; Rowan, L.C. Regional Mapping of Phyllic- and Argillic-altered rocks in the Zagros magmatic arc, Iran, Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Logical Operator Algorithms. Geosphere 2006, 2, 161–186. [Google Scholar]
- Kratt, C.; Calvin, W.M.; Coolbaugh, M.F. Mineral maping in the Pyramid lake basin: Hydrothermal alteration, chemical precipitates and geothermal energy potential. Remote Sens. Environ. 2010, 114, 2297–2304. [Google Scholar] [CrossRef]
- Rajendran, S.; Thirunavukkarasu, A.; Balamurugan, G.; Shankar, K. Discrimination of Iron Ore Deposits of Granulite Terrain of Southern Peninsular India using ASTER data. J. Asian Earth Sci. 2011, 41, 99–106. [Google Scholar] [CrossRef]
- Gabr, S.; Ghulam, A.; Kusky, T. Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol. Rev. 2010, 38, 59–69. [Google Scholar] [CrossRef]
- Hubbard, B.E.; Crowley, J.K. Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sens. Environ. 2005, 99, 173–186. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Zhang, X.F.; Pazner, M.; Duke, N. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS J. Photogramm. Remote Sens. 2007, 62, 271–282. [Google Scholar] [CrossRef]
- Meerdink, S.K.; Hook, S.J.; Roberts, D.A.; Abbott, E.A. The ECOSTRESS spectral library version 1.0. Remote Sens. Environ. 2019, 230, 111196. [Google Scholar] [CrossRef]
- Aboelkhair, H.; Ninomiya, Y.; Watanabe, Y.; Sato, I. Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert of Egypt. J. Afr. Earth Sci. 2010, 58, 141–151. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B.H.; Cudhy, T.J. Detecting lithology with Advanced Spaceborne Thermal Emission and Refection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens. Environ. 2005, 99, 127–135. [Google Scholar] [CrossRef]
- Zamyad, M.; Afzal, P.; Pourkermani, M.; Nouri, R.; Jafari, M.R. Determination of Hydrothermal Alteration Zones Using Remote Sensing Methods in Tirka Area, Toroud, NE Iran. J. Indian Soc. Remote Sens. 2019, 47, 1817–1830. [Google Scholar] [CrossRef]
- Son, Y.S.; Kim, K.E.; Yoon, W.J.; Cho, S.J. Regional mineral mapping of island arc terranes in southeastern Mongolia using multi-spectral remote sensing data. Ore Geol. Rev. 2019, 113, 103106. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Z.F.; Jiang, Q.G.; Zhou, J.X.; Tian, Y.G.; Zeng, S.H.; Wang, J.L. Detecting subtle alteration information from ASTER data using a multifractal-based method: A case study from Wuliang Mountain, SW China. Ore Geol. Rev. 2019, 115, 103182. [Google Scholar] [CrossRef]
- Safari, M.; Maghsoudi, A.; Pour, A.B. Application of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: A case study from Shahr-e-Babak, Kerman, South of Iran. Geocarto Int. 2018, 33, 1186–1201. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J. Asian Earth Sci. 2011, 42, 1309–1323. [Google Scholar] [CrossRef]
- Di Tommaso, I.; Rubinstein, N. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol. Rev. 2007, 32, 275–290. [Google Scholar] [CrossRef]
- Shirmard, H.; Farahbakhsh, E.; Pour, A.B.; Muslim, A.M.; Dietmar Müller, R.; Chandra, R. Integration of selective dimensionality reduction techniques for mineral exploration using ASTER satellite data. Remote Sens. 2020, 12, 1261. [Google Scholar] [CrossRef] [Green Version]
- Farahbakhsh, E.; Chandra, R.; Olierook, H.K.H.; Scalzo, R.; Clark, C.; Reddy, S.M.; Müller, R.D. Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data. Int. J. Remote Sens. 2020, 41, 1760–1787. [Google Scholar] [CrossRef]
- Wu, M.J.; Zhou, K.F.; Wang, Q.; Wang, J.L. Mapping Hydrothermal Zoning Pattern of Porphyry Cu Deposit Using Absorption Feature Parameters Calculated from ASTER Data. Remote Sens. 2019, 11, 1729. [Google Scholar] [CrossRef] [Green Version]
- Janati, M.E. Application of remotely sensed ASTER data in detecting alteration hosting Cu, Ag and Au bearing mineralized zones in Taghdout area, Central Anti-Atlas of Morocco. J. Afr. Earth Sci. 2019, 151, 95–106. [Google Scholar] [CrossRef]
- Li, G.M.; Li, J.X.; Qin, K.Z.; Duo, J.; Zhang, T.P.; Xiao, B.; Zhao, J.X. Geology and Hydrothermal Alteration of the Duobuza Gold-Rich Porphyry Copper District in the Bangongco Metallogenetic Belt, Northwestern Tibet. Resour. Geol. 2011, 62, 99–118. [Google Scholar] [CrossRef]
- No.5 Geological Team, Tibet Bureau of Geology and Exploration (TBGE). Geological reconnaissance report of the Duobuza ore district. 2003; Unpublished work. [Google Scholar]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and pre–Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Sun, J.; Mao, J.W.; Beaudoin, G.; Duan, X.Z.; Yao, F.; Ouyang, H.G.; Wu, Y.; Li, Y.B.; Meng, X.Y. Geochronology and Geochemistry of Porphyritic Intrusions in the Duolong Porphyry and Epithermal Cu-Au District, Central Tibet: Implications for the Genesis and Exploration of Porphyry Copper Deposits. Ore Geol. Rev. 2017, 80, 1004–1019. [Google Scholar] [CrossRef]
- Li, J.X.; Qin, K.; Li, G.; Xiao, B.; Zhao, J.; Chen, L. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology. J. Asian Earth Sci. 2011, 41, 525–536. [Google Scholar] [CrossRef]
- Gustafson, L.B.; Hunt, J.P. The porphyry copper deposit at El Salvador, Chile. Econ. Geol. 1975, 70, 857–912. [Google Scholar] [CrossRef]
- Sillitoe, R.H. The Tops and Bottoms of Porphyry Copper Deposits. 1973. Econ. Geol. 1975, 68, 799–815. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Proffett, J.M. Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina. Econ. Geol. 2003, 98, 1535–1574. [Google Scholar] [CrossRef]
- She, H.Q.; Li, J.W.; Ma, D.F.; Li, G.M.; Zhang, D.Q.; Feng, C.Y.; Qu, W.J.; Pan, G.T. Molybdenite Re-Os and Shrimp Zircon U-Pb dating of Duolong porphyry copper deposit in Tibet and its geological implications (in Chinese). Miner. Depos. 2009, 28, 37–746. [Google Scholar]
- Li, J.X.; Qin, K.Z.; Li, G.M.; Xiao, B.; Zhao, J.X.; Cao, M.J.; Chen, L. Petrogenesis of ore-bearing porphyries from the Duolong Porphyry Cu-Au deposit, Central Tibet: Evidence from U-Pb geochronology, petrochemistry and Sr-Nd-Hf-O isotope characteristics. Lithos 2013, 160–161, 216–227. [Google Scholar] [CrossRef]
- Salisbury, J.W.; Wald, A.; D’Aria, D.M. Thermal-infrared Romote sensing and Kirchhloff’s Law 1. Laboratoy Meansurement. J. Geophys. Res. 1994, 99, 11897–11911. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B.H. Thermal infrared multispectral Remote sensing of Lithology and Mineralogy Based on Spectral Properties of Materials. Ore Geol. Rev. 2019, 108, 54–72. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B.H. Regioal Lithological Mapping Using ASTER-TIR Data: Case Study for the Tibetan Plateau and the Surrounding Area. Geosciences 2016, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, S.; Hersi, O.S.; Al-Harthy, A.; Al-Wardi, M.; EI-Ghali, M.A.; Al-Abri, A.H. Capability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on Discrimination of Carbonates and Associated Rocks and Mineral Identification of Eastern Mountain Region (Saih Hatat WIndow) of Sultanate of Oman. Carbonates Evaporites 2011, 26, 351–364. [Google Scholar] [CrossRef]
- Available online: www.intspec.com (accessed on 21 October 2006).
- Riveros, K.; Veloso, E.; Campos, E.; Menzies, A.; Veliz, W. Magnetic properties related to hydrothermal alteration processes at the Escondida porphyry copper deposit, northern Chile. Miner. Deposita 2014, 49, 693–707. [Google Scholar] [CrossRef]
- Gao, H.M. A Summary of Researches on Porphyry Copper Deposits. Adv. Earth Sci. 1995, 10, 40–46. (In Chinese) [Google Scholar]
- Lowell, J.D.; Guilbert, J.M. Lateral and Vertical Alteration-Mineralization Zoning in Porphyry Ore Deposit. Econ. Geol. 1970, 65, 373–408. [Google Scholar] [CrossRef]
- Abrams, M.J.; Brown, D. Silver Bell, Arizona, Porphyry Copper Test Site Report: Tulsa, Oklahoma. In The Joint NASA–Geosat Test Case Project, Final Report, Chapter 4; The American Association of Petroleum Geologists: Tulsa, OK, USA, 1984; pp. 4–73. [Google Scholar]
- Abrams, M.J.; Brown, D.; Lepley, L.; Sadowski, R. Remote sensing of porphyry copper deposits in Southern Arizona. Econ. Geol. 1983, 78, 591–604. [Google Scholar] [CrossRef]
- Spatz, D.M.; Wilson, R.T. Remote sensing characteristics of porphyry copper systems, western America Cordillera. In Porphyry Copper Deposits of the American Cordillera; Pierce, F.W., Bolm, J.G., Eds.; Arizona Geological Society Digest: Tucson, AZ, USA, 1995; Volume 20, pp. 94–108. [Google Scholar]
- Moore, F.; Rastmanesh, F.; Asady, H.; Modabberi, S. Mapping mineralogical alteration using principal component analysis and matched filter processing in Takab area, north-west Iran, from ASTER data. Int. J. Remote Sens. 2008, 29, 2851–2867. [Google Scholar] [CrossRef]
- Pour, B.A.; Hashim, M. Spectral transformation of ASTER data and the discrimination of hydrothermal alteration minerals in a semi-arid region, SE Iran. Int. J. Phys. Sci. 2011, 6, 2037–2059. [Google Scholar]
- Tangestani, M.H.; Mazhari, N.; Ager, B.; Moore, F. Evaluating advance spaceborne thermal emission and reflection radiometer (ASTER) data for alteration zone enhancement in a semi-arid area, northern Shahr-e-Babak, SE Iran. Int. J. Remote Sens. 2008, 29, 2833–2850. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- Crowley, J.K.; Vergo, N. Near-infrared reflectance spectra of mixtures of kaolin group minerals: Use in clay mineral studies. Clays Clay Miner. 1988, 36, 310–316. [Google Scholar] [CrossRef]
- Dalton, J.B.; Bove, D.J.; Mladinich, C.S.; Rockwell, B.W. Identification of spectrally similar materials using the USGS Tetracorder algorithm: The calcite–epidot–chlorite problem. Remote Sens. Environ. 2004, 89, 455–466. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Naito, C. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. Int. J. Remote Sens. 2003, 24, 4311–4323. [Google Scholar] [CrossRef]
- Ninomiya, Y. A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. In Proceedings of the IEEE 2003 International Geoscience and Remote Sensing Symposium (IGARSS’03), Toulouse, France, 21–25 July 2003; Volume 3, pp. 1552–1554. [Google Scholar]
- Ninomiya, Y. Advanced remote lithologic mapping in ophiolite zone with ASTER multispectral thermal infrared data. In Proceedings of the IEEE 2003 International Geoscience and Remote Sensing Symposium (IGARSS’03), Toulouse, France, 21–25 July 2003; Volume 3, pp. 1561–1563. [Google Scholar]
- Ninomiya, Y. Rock type mapping with indices defined for multispectral thermal infrared ASTER data: Case studies. Proc. SPIE 2003, 4886, 123–132. [Google Scholar]
- Ninomiya, Y. Lithological mapping with ASTER TIR and SWIR data. Proc. SPIE 2004, 5234, 180–190. [Google Scholar]
- Ninomiya, Y.; Fu, B. Mapping quartz, carbonate minerals and mafic–ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. Proc. SPIE 2002, 4710, 191–202. [Google Scholar]
- Crosta, A.P.; Filho, C.R.S.; Azevedo, F.; Brodie, C. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Hunt, G.R.; Ashley, P. Spectra of altered rocks in the visible and near infrared. Econ. Geol. 1979, 74, 1613–1629. [Google Scholar] [CrossRef]
- Li, J.X.; Qin, K.Z.; Li, G.M. Basic characteristics of gold-rich porphyry copper de posits and their ore sources and evolving processes of high oxidation magma and ore-forming fluid. Acta Petrol. Sin. 2006, 22, 678–688. [Google Scholar]
- Liang, H.Y.; Sun, W.D.; Su, W.C.; Zartman, R.E. Porphyry copper–gold mineraliza tion at Yulong, China: Promoted by decreasing redox potential during magnetite alteration. Econ. Geol. 2009, 104, 587–596. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Gold-rich porphyry copper deposits: Descriptive and genetic models and their role in exploration and discovery. In Gold in 2000: Society of Economic Geologists Reviews in Economic Geology; Hagemann, S.G., Brown, P.E., Eds.; 2000; Volume 13, pp. 315–345. Available online: https://app.ingemmet.gob.pe/biblioteca/pdf/REG13-315.pdf (accessed on 18 January 2020).
Bands | ASTER Bands | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VNIR | SWIR | TIR | |||||||||||||
Zones | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | B12 | B13 | B14 | |
Potassium silicification zone | Orthoclase | H | H | H | L | L | H | L | L | - | L(L) | L | H | H | |
Muscovite | L | H | L | H | L | L | - | L | L | H | H | ||||
Chlorite | L | H | H | L | L | H | H | - | L | - | |||||
Quartz | H | H | H | L | L | L(H) | L | H | H | ||||||
Phyllic zone | Mucovite | L | H | L | H | L | L | - | L | L | H | H | |||
kaolinite | H | L | L | L | - | L | L | H | H | ||||||
Illite | H | L | L | - | L | L | H | H | |||||||
Quartz | H | H | H | L | L | L(H) | L | H | H | ||||||
Prophylitic zone | Calcite | H | H | L | H | H | H | H | L | ||||||
Chlorite | L | H | H | L | L | H | H | - | L | - | |||||
Illite-hydromica zone | Illite | H | L | L | - | L | L | H | H | ||||||
Montmorillonite | H | H | L | L | L | L | - | L | L | H | H(L) | ||||
Gossan | Geothite | L | H | L | H | H | H | H | L |
Methods | Ratio | Slope | Correlation Absorption | PCA [7] | |
---|---|---|---|---|---|
Minerals | |||||
Quartz | B11*B11/B10/B12 [55] | ||||
Chlorite | B5/B8 | (B5 − B8)/B5 | (B4 − B9)/(B4 − B8) | PCA1.3.4.8 PC4 | |
Orthoclase | B7/B6 B11*B11/B10/B12 B12*B14*B14*B14/B13/B13/B13/BA13 [54,55] | (B4 − B6)/B4 | (B4 − B6)/(B4 − B7) | PCA1.3.4.6 PC4 | |
Muscovite | B4/B6 | (B4 − B6)/B4 | (B4 − B6)/(B4 − B7) | PCA1.3.4.6 PC4 | |
Kaolinite | B4/B6 | (B4 − B6)/B4 | (B4 − B6)/(B4 − B7) | PCA1.3.4.6 PC4 | |
Calcite | (B6 + B7)/(2*B8) B13/B14 [54,55] | (B4 − B8)/B4 | (B4 − B8)/(B4 − B6) | PCA1.3.4.8 PC4 | |
Illite | (B7 + B5)/(B6 + B9) | (B4 − B6)/B4 | (B4 − B9)/(B4 − B6) | PCA1.3.4.9 PC4 | |
Geothite | B3/B6 | ||||
Montmorillonite | (B7 + B5)/(B6 + B9) | (B4 − B6)/B4 | (B4 − B6)/(B4 − B7) | PCA1.3.4.6 PC4 |
Field No. | Longitude | Latitude | Altered Rocks | Alteration |
---|---|---|---|---|
D01 | 83.45036111 | 32.84075 | Propylitic quartz sandstone | Chloritization, Carbonation |
D02 | 83.44861111 | 32.83725 | Potassic quartz porphyry | Potassium, Silicification |
D03 | 83.44538889 | 32.83722222 | Potassic quartz porphyry | Potassium, Silicification |
D04 | 83.34377778 | 32.73613889 | Phyllic quartz sandstone | Muscovitization, Kaolinization |
D05 | 83.34375 | 32.73641667 | Phyllic quartz sandstone | Muscovitization, Kaolinization |
D06 | 83.34116667 | 32.74077778 | Phyllic quartz sandstone | Muscovitization, Kaolinization |
D07 | 83.33833333 | 32.74188889 | Phyllic quartz sandstone | Muscovitization, Kaolinization |
D08 | 83.33583333 | 32.74344444 | Phyllic quartz porphyry | Muscovitization, Kaolinization |
D09 | 83.33947222 | 32.73866667 | Phyllic quartz porphyry | Muscovitization, Kaolinization |
D10 | 83.29894444 | 32.72783333 | Phyllic quartz sandstone | Muscovitization, Kaolinization |
D11 | 83.39752778 | 32.807 | Propylitic quartz sandstone | Chloritization, Carbonation |
D12 | 83.39363889 | 32.812 | Propylitic quartz sandstone | Chloritization, Carbonation |
D13 | 83.39238889 | 32.81647222 | Propylitic quartz sandstone | Chloritization, Carbonation |
D14 | 83.38902778 | 32.82333333 | Propylitic quartz sandstone | Chloritization, Carbonation |
D15 | 83.38833333 | 32.81644444 | Propylitic quartz sandstone | Chloritization, Carbonation |
D16 | 83.40566667 | 32.80652778 | Potassic quartz sandstone | Potassium, Silicification |
D17 | 83.41097222 | 32.81058333 | Propylitic quartz sandstone | Chloritization, Carbonation |
D18 | 83.44463889 | 32.83075 | Propylitic quartz sandstone | Chloritization, Carbonation |
D19 | 83.43777778 | 32.8275 | Propylitic quartz sandstone | Chloritization, Carbonation |
D20 | 83.44347222 | 32.83641667 | Propylitic quartz porphyry | Chloritization, Carbonation |
D21 | 83.70294444 | 32.79388889 | Phyllic schist | Muscovitization, Kaolinization |
D22 | 83.54788889 | 32.78622222 | Propylitic quartz sandstone | Chloritization, Carbonation |
D23 | 83.56686111 | 32.78875 | Phyllic quartz porphyry | Muscovitization, Kaolinization |
D24 | 83.58688889 | 32.82641667 | Potassic quartz porphyry | Potassium, Silicification |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, F.; Xu, X.; Yang, J.; Geng, X. A Remote-Sensing-Based Alteration Zonation Model of the Duolong Porphyry Copper Ore District, Tibet. Remote Sens. 2021, 13, 5073. https://doi.org/10.3390/rs13245073
Yao F, Xu X, Yang J, Geng X. A Remote-Sensing-Based Alteration Zonation Model of the Duolong Porphyry Copper Ore District, Tibet. Remote Sensing. 2021; 13(24):5073. https://doi.org/10.3390/rs13245073
Chicago/Turabian StyleYao, Fojun, Xingwang Xu, Jianmin Yang, and Xinxia Geng. 2021. "A Remote-Sensing-Based Alteration Zonation Model of the Duolong Porphyry Copper Ore District, Tibet" Remote Sensing 13, no. 24: 5073. https://doi.org/10.3390/rs13245073
APA StyleYao, F., Xu, X., Yang, J., & Geng, X. (2021). A Remote-Sensing-Based Alteration Zonation Model of the Duolong Porphyry Copper Ore District, Tibet. Remote Sensing, 13(24), 5073. https://doi.org/10.3390/rs13245073