Zhu, Y.; Wang, J.; Meng, B.; Ji, H.; Wang, S.; Zhi, G.; Liu, J.; Shi, C.
Quantifying Spatiotemporal Heterogeneities in PM2.5-Related Health and Associated Determinants Using Geospatial Big Data: A Case Study in Beijing. Remote Sens. 2022, 14, 4012.
https://doi.org/10.3390/rs14164012
AMA Style
Zhu Y, Wang J, Meng B, Ji H, Wang S, Zhi G, Liu J, Shi C.
Quantifying Spatiotemporal Heterogeneities in PM2.5-Related Health and Associated Determinants Using Geospatial Big Data: A Case Study in Beijing. Remote Sensing. 2022; 14(16):4012.
https://doi.org/10.3390/rs14164012
Chicago/Turabian Style
Zhu, Yanrong, Juan Wang, Bin Meng, Huimin Ji, Shaohua Wang, Guoqing Zhi, Jian Liu, and Changsheng Shi.
2022. "Quantifying Spatiotemporal Heterogeneities in PM2.5-Related Health and Associated Determinants Using Geospatial Big Data: A Case Study in Beijing" Remote Sensing 14, no. 16: 4012.
https://doi.org/10.3390/rs14164012
APA Style
Zhu, Y., Wang, J., Meng, B., Ji, H., Wang, S., Zhi, G., Liu, J., & Shi, C.
(2022). Quantifying Spatiotemporal Heterogeneities in PM2.5-Related Health and Associated Determinants Using Geospatial Big Data: A Case Study in Beijing. Remote Sensing, 14(16), 4012.
https://doi.org/10.3390/rs14164012