Investigation and Validation of Split-Window Algorithms for Estimating Land Surface Temperature from Landsat 9 TIRS-2 Data
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Split-Window LST Algorithms
2.2. Land Surface Emissivity Estimation
2.3. Simulation Dataset
- 1:
- Global atmospheric profiles and the spectral response functions of TIRS-2 channels were input into the MODTRAN5.2 to obtain three atmospheric parameters (atmospheric upward radiance , downward radiance , and transmittance ) for TIRS-2 channels [40,41]. In previous research, the global atmospheric profile databases such as Thermodynamic Initial Guess Retrieval (TIGR) [42], Global Atmospheric Profiles from Reanalysis Information (GAPRI) [43], SeeBor V5.0 training database of global profiles (SeeBor for simplicity as follows) [44], and Cloudless Land Atmosphere Radiosounding (CLAR) [45] were frequently utilized to compute the SW algorithm coefficients for thermal sensors onboard different satellites [46,47,48,49,50,51,52]. Recently, the comprehensive clear-sky database based on the European Centre for Medium-Range Forecast (ECMWF) version-5 reanalysis (ERA5 for simplicity as follows) [53] was also used to calculate atmospheric parameters [54]. This research utilized the five atmospheric profile databases mentioned above to calculate the SW algorithm coefficients. Additionally, the radiosounding profiles collected from global radiosonde stations [40,55] were used independently for validation purposes.
- 2:
- Emissivity spectra selected from the ASTER/MODIS spectral library were convolved with the spectral response function of TIRS-2 channels to obtain the channel-integrated LSE (). In total, 110 emissivity spectra were selected for simulation, including 19 vegetation types, 39 soil types, 5 snow/water types, 35 rock types, and 12 manmade material types [24].
- 3:
- The top-of-atmosphere radiation observed by TIRS-2 channels () can be calculated from the following radiative transfer equation:
- 4:
- The brightness temperatures of TIRS-2 channels () can be calculated using the inversion of the Plank function [57]:
- 5:
- The SW algorithm coefficients in Table 1 are determined by ordinary least squares linear regression. The candidate SW algorithm coefficients obtained from the SeeBor databases are given in Appendix A. Distribution of the air temperature at the first layer and the total water vapor of the six atmospheric profile databases are given in Appendix B.
2.4. Ground Measurements
3. Results and Analyses
3.1. SW Algorithm Training
3.2. Sensitivity Analysis
3.3. T-Based Validation Results
4. Discussion
5. Conclusions
- (1)
- Any of the five atmospheric profile databases can be used for simulation when the TWV is less than 4.5 g/cm2. However, the GAPRI profile is recommended for simulation when the TWV is greater than 4.5 g/cm2. The SW5 and SW8 algorithms that do not depend on the emissivity difference exhibit the least sensitivity to emissivity uncertainty but with larger uncertainty in LST retrieval than other SW algorithms.
- (2)
- At the SURFRAD sites, the candidate SW algorithms exhibit comparable performance, with overall bias (RMSEs) ranging from 1.44 (3.50) to 1.61 (3.73) K compared to 2.82 K and 4.69 K for the RTE algorithm. As most of the TWVs at the SURFRAD sites were below 3.0 g/cm2, more ground measurements with higher TWVs are needed to characterize the performance of the SW algorithms under different atmospheric conditions.
- (3)
- The consistency of the differences between the MODIS and Landsat LSTs indicates the stability of the SW algorithms over the seasons. The cross-validation results also indicated that the SW algorithms can achieve more accurate Landsat 9 LSTs than the RTE algorithm. This study provides an alternative method for the estimation of Landsat 9 LSTs.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
TWV | Algorithm | C0 | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|---|---|
TWV ≤ 1.5 | SW1 | −1.149 | 1.005 | 0.171 | −0.321 | 3.242 | 9.788 | 3.352 | |
SW2 | −1.206 | 1.005 | 0.171 | −0.318 | 3.168 | 9.973 | 1.656 | 0.017 | |
SW3 | −1.171 | 1.209 | 1.24 | −0.205 | −0.017 | −0.225 | |||
SW4 | 53.516 | 1.015 | 3.4 | −57.882 | −2.328 | −90.52 | |||
SW5 | −1.485 | 1.237 | −0.23 | −216.696 | |||||
SW6 | −4.331 | 1.015 | 1.136 | 57.644 | −87.958 | ||||
SW7 | −4.198 | 1.016 | 1.128 | 48.251 | −80.916 | ||||
SW8 | 63.866 | 1.04 | 0.18 | −74.749 | |||||
SW9 | 52.035 | 1.015 | 1.137 | −56.323 | −83.669 | ||||
SW10 | −4.331 | 1.015 | 1.136 | 57.644 | −59.136 | ||||
SW11 | −4.263 | 1.015 | 1.183 | −0.027 | 58.247 | −60.984 |
TWV | Algorithm | C0 | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|---|---|
1.5 < TWV ≤ 3.0 | SW1 | 2.027 | 0.991 | 0.162 | −0.289 | 4.502 | 4.982 | −0.142 | |
SW2 | 1.559 | 0.993 | 0.159 | −0.277 | 4.081 | 6.371 | −4.287 | 0.045 | |
SW3 | 2.079 | 1.19 | 1.821 | −0.199 | 0.309 | −0.209 | |||
SW4 | 56.517 | 1 | 3.842 | −57.249 | −2.089 | −91.909 | |||
SW5 | −3.718 | 2.272 | −1.259 | −219.879 | |||||
SW6 | −0.739 | 1 | 1.815 | 58.767 | −90.927 | ||||
SW7 | −0.625 | 1 | 1.811 | 49.136 | −83.873 | ||||
SW8 | 77.291 | 1.042 | 1.317 | −89.949 | |||||
SW9 | 56.715 | 1 | 1.815 | −57.416 | −86.403 | ||||
SW10 | −0.739 | 1 | 1.815 | 58.767 | −61.544 | ||||
SW11 | −0.719 | 1 | 1.823 | −0.002 | 58.821 | −61.623 |
TWV | Algorithm | C0 | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|---|---|
3.0 < TWV ≤ 4.5 | SW1 | 7.006 | 0.97 | 0.125 | −0.179 | 5.825 | 5.607 | −6.667 | |
SW2 | 7.033 | 0.971 | 0.121 | −0.17 | 5.427 | 6.546 | −8.647 | 0.029 | |
SW3 | 6.948 | 1.117 | 2.434 | −0.147 | 3.202 | −0.135 | |||
SW4 | 45.468 | 0.976 | 7.065 | −40.462 | −4.666 | −65.858 | |||
SW5 | 4.467 | 3.253 | −2.274 | −227.672 | |||||
SW6 | 4.645 | 0.977 | 2.531 | 50.085 | −65.413 | ||||
SW7 | 4.718 | 0.977 | 2.529 | 42.2 | −60.659 | ||||
SW8 | 73.407 | 1.008 | 2.349 | −77.837 | |||||
SW9 | 53.789 | 0.977 | 2.531 | −49.123 | −62.135 | ||||
SW10 | 4.645 | 0.977 | 2.531 | 50.085 | −40.371 | ||||
SW11 | 4.646 | 0.976 | 2.585 | −0.009 | 50.221 | −40.409 |
TWV | Algorithm | C0 | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|---|---|
4.5 < TWV | SW1 | 16.303 | 0.931 | 0.066 | −0.05 | 7.549 | 7.287 | −12.614 | |
SW2 | 16.673 | 0.93 | 0.064 | −0.047 | 7.284 | 7.655 | −13.198 | 0.015 | |
SW3 | 16.242 | 0.988 | 3.279 | −0.057 | 5.908 | −0.071 | |||
SW4 | 27.655 | 0.934 | 10.517 | −12.201 | −7.256 | −40.622 | |||
SW5 | 21.031 | 4.247 | −3.333 | −235.971 | |||||
SW6 | 14.683 | 0.934 | 3.468 | 37.12 | −40.894 | ||||
SW7 | 14.763 | 0.934 | 3.467 | 31.48 | −38.14 | ||||
SW8 | 67.998 | 0.942 | 3.431 | −55.77 | |||||
SW9 | 51.22 | 0.934 | 3.468 | −36.523 | −38.835 | ||||
SW10 | 14.683 | 0.934 | 3.468 | 37.12 | −22.334 | ||||
SW11 | 14.304 | 0.934 | 3.596 | −0.016 | 37.204 | −22.263 |
TWV | Algorithm | C0 | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|---|---|
0.0 < TWV ≤ 10.0 | SW1 | 5.329 | 0.98 | 0.161 | −0.334 | 5.254 | −8.199 | 12.475 | |
SW2 | −2.056 | 1.009 | 0.158 | −0.196 | 2.47 | −2.851 | −14.001 | 0.243 | |
SW3 | 5.429 | 1.183 | 2.229 | −0.204 | −8.078 | −0.251 | |||
SW4 | 62.613 | 0.988 | −5.971 | −60.013 | 8.151 | −99.067 | |||
SW5 | 7.088 | 2.573 | −1.599 | −196.261 | |||||
SW6 | 2.419 | 0.99 | 1.919 | 54.979 | −103.642 | ||||
SW7 | 2.596 | 0.99 | 1.918 | 45.482 | −95.275 | ||||
SW8 | 95.857 | 1.004 | 1.671 | −97.594 | |||||
SW9 | 55.894 | 0.99 | 1.919 | −53.433 | −98.498 | ||||
SW10 | 2.419 | 0.99 | 1.919 | 54.979 | −76.153 | ||||
SW11 | −3.038 | 1.011 | 0.932 | 0.208 | 50.854 | −48.481 |
Appendix B
References
- Hulley, G.C.; Hughes, C.G.; Hook, S.J. Quantifying uncertainties in land surface temperature and emissivity retrievals from aster and modis thermal infrared data. J. Geophys. Res. Atmos. 2012, 117, D23. [Google Scholar] [CrossRef]
- Göttsche, F.-M.; Olesen, F.-S.; Trigo, I.; Bork-Unkelbach, A.; Martin, M. Long term validation of land surface temperature retrieved from msg/seviri with continuous in-situ measurements in africa. Remote Sens. 2016, 8, 410. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Yang, Y.; Du, Y.; Cao, B.; Bian, Z.; Liu, Q. Evaluation of atmospheric correction methods for the aster temperature and emissivity separation algorithm using ground observation networks in the hiwater experiment. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3001–3014. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Julien, Y.; Jiménez-Muñoz, J.-C.; Skokovic, D.; Sòria, G. Near real-time estimation of sea and land surface temperature for msg seviri sensors. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102096. [Google Scholar] [CrossRef]
- Trigo, I.F.; Ermida, S.L.; Martins, J.P.A.; Gouveia, C.M.; Göttsche, F.-M.; Freitas, S.C. Validation and consistency assessment of land surface temperature from geostationary and polar orbit platforms: Seviri/msg and avhrr/metop. ISPRS J. Photogramm. Remote Sens. 2021, 175, 282–297. [Google Scholar] [CrossRef]
- Valor, E.; Caselles, V. Mapping land surface emissivity from ndvi: Application to european, african, and south american areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Zeng, Q.; Cheng, J.; Yue, W. Estimating hourly all-sky surface longwave upward radiation using the new generation of chinese geostationary weather satellites fengyun-4a/agri. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–12. [Google Scholar] [CrossRef]
- Eon, R.; Gerace, A.; Falcon, L.; Poole, E.; Kleynhans, T.; Raqueño, N.; Bauch, T. Validation of landsat-9 and landsat-8 surface temperature and reflectance during the underfly event. Remote Sens. 2023, 15, 3370. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, J.; Guo, H.; Guo, Y.; Yao, B. Accuracy evaluation of the landsat 9 land surface temperature product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8694–8703. [Google Scholar] [CrossRef]
- Wang, M.; Li, M.; Zhang, Z.; Hu, T.; He, G.; Zhang, Z.; Wang, G.; Li, H.; Tan, J.; Liu, X. Land surface temperature retrieval from landsat 9 tirs-2 data using radiance-based split-window algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1100–1112. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Montanaro, M.; McCorkel, J.; Tveekrem, J.; Stauder, J.; Mentzell, E.; Lunsford, A.; Hair, J.; Reuter, D. Landsat 9 thermal infrared sensor 2 (tirs-2) stray light mitigation and assessment. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–8. [Google Scholar] [CrossRef]
- Xu, H.; Ren, M.; Lin, M. Cross-comparison of landsat-8 and landsat-9 data: A three-level approach based on underfly images. GIScience Remote Sens. 2024, 61, 2318071. [Google Scholar] [CrossRef]
- Niclòs, R.; Perelló, M.; Puchades, J.; Coll, C.; Valor, E. Evaluating landsat-9 tirs-2 calibrations and land surface temperature retrievals against ground measurements using multi-instrument spatial and temporal sampling along transects. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103576. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of land surface temperature for landsat-8 tirs using a split window algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef]
- Caselles, V.; Rubio, E.; Coll, C.; Valor, E. Thermal band selection for the prism instrument 3. Optimal band configurations. J. Geophys. Res. 1998, 103, 17057–17067. [Google Scholar] [CrossRef]
- Ye, X.; Ren, H.; Zhu, J.; Fan, W.; Qin, Q. Split-window algorithm for land surface temperature retrieval from landsat-9 remote sensing images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Ye, X.; Liu, R.; Hui, J.; Zhu, J. Land surface temperature estimation from landsat-9 thermal infrared data using ensemble learning method considering the physical radiance transfer process. Land 2023, 12, 1287. [Google Scholar] [CrossRef]
- Zhou, J.; Liang, S.; Cheng, J.; Wang, Y.; Ma, J. The glass land surface temperature product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 493–507. [Google Scholar] [CrossRef]
- Yu, Y.; Privette, J.L.; Pinheiro, A.C. Evaluation of split-window land surface temperature algorithms for generating climate data records. IEEE Trans. Geosci. Remote Sens. 2008, 46, 179–192. [Google Scholar] [CrossRef]
- Dong, L.; Tang, S.; Wang, F.; Cosh, M.; Li, X.; Min, M. Inversion and validation of fy-4a official land surface temperature product. Remote Sens. 2023, 15, 2437. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, J.; Zhao, S.; Liu, S.; Yao, Y. Estimating land surface temperature from landsat-8 data using the noaa jpss enterprise algorithm. Remote Sens. 2019, 11, 155. [Google Scholar] [CrossRef]
- Meng, X.; Liu, W.; Cheng, J.; Guo, H. An operational split-window algorithm for retrieving land surface temperature from fengyun-4a agri data. Remote Sens. Lett. 2023, 14, 1206–1217. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z.-L. Towards a local split window method over land surfaces. Int. J. Remote Sens. 1990, 11, 369–393. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 modis land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Price, J.C. Land surface temperature measurements from the split window channels of the noaa 7 advanced very high resolution radiometer. J. Geophys. Res. Atmos. 1984, 89, 7231–7237. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Yu, P.; Wang, H. Enterprise Algorithm Theoretical Basis Document for Viirs Land Surface Temperature Production, version 1.0; NOAA: Silver Spring, MD, USA, 2017. [Google Scholar]
- Caselles, V.; Coll, C.; Valor, E. Land surface emissivity and temperature determination in the whole hapex-sahel area from avhrr data. Int. J. Remote Sens. 1997, 18, 1009–1027. [Google Scholar] [CrossRef]
- Ulivieri, C.; Castronuovo, M.; Francioni, R.; Cardillo, A. A split window algorithm for estimating land surface temperature from satellites. Adv. Space Res. 1994, 14, 59–65. [Google Scholar] [CrossRef]
- Vidal, A. Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data. Int. J. Remote Sens. 1991, 12, 2449–2460. [Google Scholar] [CrossRef]
- Ulivieri, C.; Cannizzaro, G. Land surface temperature retrievals from satellite measurements. Acta Astronaut. 1985, 12, 977–985. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Li, Z.-L.; Stoll, M.P.; Becker, F. Improvements in the split-window technique for land surface temperature determination. IEEE Trans. Geosci. Remote Sens. 1994, 32, 243–253. [Google Scholar] [CrossRef]
- Coll, C.; Valor, E.; Schmugge, T.; Caselles, V. A procedure for estimating the land surface emissivity difference in the avhrr channels 4 and 5. Remote Sens. Appl. Valencia. Area 1997. [Google Scholar]
- Sobrino, J.; Li, Z.; Stoll, M.P.; Becker, F. Determination of the surface temperature from atsr data. In Proceedings of the 25th International Symposium on Remote Sensing of Environment, Graz, Austria, 4–8 April 1993; ERIM: Rotterdam, Netherlands, 1993; pp. 4–8. [Google Scholar]
- Emami, H.; Mojaradi, B.; Safari, A. A new approach for land surface emissivity estimation using ldcm data in semi-arid areas: Exploitation of the aster spectral library data set. Int. J. Remote Sens. 2016, 37, 5060–5085. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Verhoef, W.; Shi, L.; Liu, Q. Estimating the hemispherical broadband longwave emissivity of global vegetated surfaces using a radiative transfer model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 905–917. [Google Scholar] [CrossRef]
- Tang, B.H.; Shao, K.; Li, Z.L.; Wu, H.; Tang, R. An improved ndvi-based threshold method for estimating land surface emissivity using modis satellite data. Int. J. Remote Sens. 2015, 36, 4864–4878. [Google Scholar] [CrossRef]
- Meng, X.; Guo, H.; Cheng, J.; Yao, B. Can the era5 reanalysis product improve the atmospheric correction accuracy of landsat series thermal infrared data? IEEE Geosci. Remote Sens. Lett. 2022, 19, 7506805. [Google Scholar] [CrossRef]
- Meng, X.; Liu, W.; Cheng, J.; Guo, H.; Yao, B. Estimating hourly land surface temperature from fy-4a agri using an explicitly emissivity-dependent split-window algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5474–5487. [Google Scholar] [CrossRef]
- Aires, F.; Chédin, A.; Scott, N.A.; Rossow, W.B. A regularized neural net approach for retrieval of atmospheric and surface temperatures with the iasi instrument. J. Appl. Meteorol. Climatol. 2001, 41, 144–159. [Google Scholar] [CrossRef]
- Mattar, C.; Durán-Alarcón, C.; Jiménez-Muñoz, J.C.; Santamaría-Artigas, A.; Olivera-Guerra, L.; Sobrino, J.A. Global atmospheric profiles from reanalysis information (gapri): A new database for earth surface temperature retrieval. Int. J. Remote Sens. 2015, 36, 5045–5060. [Google Scholar] [CrossRef]
- Borbas, E.E.; Seemann, S.W.; Huang, H.L.; Li, J.; Menzel; Paul, W. Global Profile Training Database for Satellite Regression Retrievals with Estimates of Skin Temperature and Emissivity. In Proceedings of the International ATOVS Study Conference-XIV, Beijing, China, 25–31 May 2005; University of Wisconsin—Madison: Madison, WI, USA, 2005; pp. 763–770. [Google Scholar]
- Galve, J.M.; Coll, C.; Caselles, V.; Valor, E. An atmospheric radiosounding database for generating land surface temperature algorithms. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1547–1557. [Google Scholar] [CrossRef]
- Jiang, G.-M.; Zhou, W.; Liu, R. Development of split-window algorithm for land surface temperature estimation from the virr/fy-3a measurements. IEEE Geosci. Remote Sens. Lett. 2013, 10, 952–956. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, J.; Liang, S. Estimating land surface temperature from feng yun-3c/mersi data using a new land surface emissivity scheme. Remote Sens. 2017, 9, 1247. [Google Scholar] [CrossRef]
- Tang, B.-H. Nonlinear split-window algorithms for estimating land and sea surface temperatures from simulated chinese gaofen-5 satellite data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6280–6289. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, J.; Göttsche, F.-M.; Liang, S.; Wang, S.; Li, M. A global long-term (1981–2000) land surface temperature product for noaa avhrr. Earth Syst. Sci. Data 2020, 12, 3247–3268. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Li, R.; Wang, H.; Cao, B.; Bian, Z.; Hu, T.; Du, Y.; Sun, L.; Liu, Q. Comparison of the musyq and modis collection 6 land surface temperature products over barren surfaces in the heihe river basin, china. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8081–8094. [Google Scholar] [CrossRef]
- Niclòs, R.; Galve, J.M.; Valiente, J.A.; Estrela, M.J.; Coll, C. Accuracy assessment of land surface temperature retrievals from msg2-seviri data. Remote Sens. Environ. 2011, 115, 2126–2140. [Google Scholar] [CrossRef]
- Tang, K.; Zhu, H.; Ni, P.; Li, R.; Fan, C. Retrieving land surface temperature from chinese fy-3d mersi-2 data using an operational split window algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6639–6651. [Google Scholar] [CrossRef]
- Ermida, S.L.; Trigo, I.F. A comprehensive clear-sky database for the development of land surface temperature algorithms. Remote Sens. 2022, 14, 2329. [Google Scholar] [CrossRef]
- Zhang, G.; Li, D.; Li, H.; Xu, Z.; Hu, Z.; Zeng, J.; Yang, Y.; Jia, H. Improving hj-1b/irs lst retrieval of the generalized single-channel algorithm with refined era5 atmospheric profile database. Remote Sens. 2023, 15, 5092. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, J. Evaluating eight global reanalysis products for atmospheric correction of thermal infrared sensor—Application to landsat 8 tirs10 data. Remote Sens. 2018, 10, 474. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, J. Estimating land and sea surface temperature from cross-calibrated chinese gaofen-5 thermal infrared data using split-window algorithm. IEEE Geosci. Remote Sens. Lett. 2020, 17, 509–513. [Google Scholar] [CrossRef]
- Meng, Y.; Zhou, J.; Göttsche, F.-M.; Tang, W.; Martins, J.; Perez-Planells, L.; Ma, J.; Wang, Z. Investigation and validation of two all-weather land surface temperature products with in-situ measurements. Geo-Spat. Inf. Sci. 2023, 27, 670–682. [Google Scholar] [CrossRef]
- Sayler, K.; Glynn, T. Landsat 9 Data Users Handbook; Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2022. Available online: https://www.usgs.gov/media/files/landsat-9-data-users-handbook (accessed on 1 June 2024).
- Zhang, Z.; He, G.; Wang, M.; Long, T.; Wang, G.; Zhang, X. Validation of the generalized single-channel algorithm using landsat 8 imagery and surfrad ground measurements. Remote Sens. Lett. 2016, 7, 810–816. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Li, H.; Göttsche, F.-M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of collection 6 modis land surface temperature product using in situ measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef]
- Martin, M.; Ghent, D.; Pires, A.; Göttsche, F.-M.; Cermak, J.; Remedios, J. Comprehensive in situ validation of five satellite land surface temperature data sets over multiple stations and years. Remote Sens. 2019, 11, 479. [Google Scholar] [CrossRef]
- Zeng, Q.; Cheng, J.; Sun, H.; Dong, S. An integrated framework for estimating the hourly all-time cloudy-sky surface long-wave downward radiation for fengyun-4a/agri. Remote Sens. Environ. 2024, 312, 114319. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Biard, J.C.; Hulley, G.C.; Privette, J.L.; Hook, S.J.; Olioso, A.; Göttsche, F.M.; Radocinski, R.; Román, M.O.; Yu, Y.; et al. Validation of land surface temperature products derived from the visible infrared imaging radiometer suite (viirs) using ground-based and heritage satellite measurements. Remote Sens. Environ. 2014, 154, 19–37. [Google Scholar] [CrossRef]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An operational land surface temperature product for landsat thermal data: Methodology and validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, J.; Göttsche, F.-M.; Wang, Z.; Wu, H.; Tang, W.; Li, M.; Liu, S. An atmospheric influence correction method for longwave radiation-based in-situ land surface temperature. Remote Sens. Environ. 2023, 293, 113611. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Yao, Y.; Zhang, X. Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 401–405. [Google Scholar] [CrossRef]
- Barsi, J.A.; Montanaro, M.; Thome, K.; Raqueno, N.G.; Hook, S.; Anderson, C.H.; Micijevic, E. Early Radiometric Performance of Landsat-9 Thermal Infrared Sensor. In Proceedings of the Earth Observing Systems XXVII, San Diego, CA, USA, 21–26 August 2022; SPIE: Washington, DC, USA, 2022; pp. 223–233. [Google Scholar]
- Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A practical split-window algorithm for estimating land surface temperature from landsat 8 data. Remote Sens. 2015, 7, 647–665. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Zhao, W.; Wu, P.; Huang, C.; Han, X.-J.; Gao, M.; Leng, P.; Shang, G. Validation of landsat land surface temperature product in the conterminous united states using in situ measurements from surfrad, arm, and ndbc sites. Int. J. Digit. Earth 2021, 14, 640–660. [Google Scholar] [CrossRef]
- Cheng, J.; Meng, X.; Dong, S.; Liang, S. Generating the 30-m land surface temperature product over continental china and USA from landsat 5/7/8 data. Sci. Remote Sens. 2021, 4, 100032. [Google Scholar] [CrossRef]
Name | Formula | References |
---|---|---|
SW 1 | [7,26] | |
SW 2 | [27] | |
SW 3 | [28] | |
SW 4 | [29] | |
SW 5 | [30] | |
SW 6 | [31] | |
SW 7 | [32] | |
SW 8 | [33] | |
SW 9 | [34] | |
SW 10 | [35] | |
SW 11 | [36] |
Channel | a1 | a2 | a3 | a4 | a5 | a6 | a7 |
---|---|---|---|---|---|---|---|
10 | 0.9766 | −0.1068 | 0.1524 | −0.0398 | −0.0568 | 0.0791 | −0.0712 |
11 | 0.9820 | 0.0265 | −0.0565 | 0.0574 | −0.0663 | 0.0761 | −0.0603 |
Site | Abbreviation | Latitude | Longitude | Land Cover | Path/Row | Landsat Period | Path/Row |
---|---|---|---|---|---|---|---|
Bondville | BND | 40.052 | −88.373 | cropland | 023/032 | 2021/10~2024/05 | 023/032 |
GoodwinCreek | GWN | 34.255 | −89.873 | grassland | 023/036 | 023/036 | |
Penn. State Univ. | PSU | 40.720 | −77.931 | cropland | 016/032 | 016/032 | |
Sioux Falls | SXF | 43.734 | −96.623 | grassland | 029/030 | 029/030 | |
Fort Peck | FPK | 48.308 | −105.102 | grassland | 035/026 | 035/026 | |
TableMountain | TBL | 40.126 | −105.238 | grassland | 033/032 | 033/032 | |
Desert Rock | DRA | 36.623 | −116.020 | shrubland | 040/035 | 040/035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Q.; Meng, X.; Sun, L. Investigation and Validation of Split-Window Algorithms for Estimating Land Surface Temperature from Landsat 9 TIRS-2 Data. Remote Sens. 2024, 16, 3633. https://doi.org/10.3390/rs16193633
Su Q, Meng X, Sun L. Investigation and Validation of Split-Window Algorithms for Estimating Land Surface Temperature from Landsat 9 TIRS-2 Data. Remote Sensing. 2024; 16(19):3633. https://doi.org/10.3390/rs16193633
Chicago/Turabian StyleSu, Qinghua, Xiangchen Meng, and Lin Sun. 2024. "Investigation and Validation of Split-Window Algorithms for Estimating Land Surface Temperature from Landsat 9 TIRS-2 Data" Remote Sensing 16, no. 19: 3633. https://doi.org/10.3390/rs16193633
APA StyleSu, Q., Meng, X., & Sun, L. (2024). Investigation and Validation of Split-Window Algorithms for Estimating Land Surface Temperature from Landsat 9 TIRS-2 Data. Remote Sensing, 16(19), 3633. https://doi.org/10.3390/rs16193633