Use of SSU/MSU Satellite Observations to Validate Upper Atmospheric Temperature Trends in CMIP5 Simulations
Abstract
:1. Introduction
2. Data and Methodology
2.1. SSU/MSU Data Sets
2.2. CMIP5 Simulations
IPCC I.D. | Pressure Level (hPa) | Center and Location | Forcing |
---|---|---|---|
CanESM2 CanCM4 | 1–1000 | Canadian Centre for Climate Modelling and Analysis | GHG, SA, Oz, BC, OC, LU, Sl, Vl |
HadGEM2-CC HadGEM2-AO HadGEM2-ES HadCM3 | 0.4–1000 10–1000 | Met Office Hadley Centre | GHG, SA, Oz, BC, OC, LU, Sl, Vl |
CESM1-WACCM CESM1-BGC CESM1-CAM5 CESM1-FASTCHEM CCSM4 | 0.4–1000 10–1000 | NSF/DOE NCAR (National Center for Atmospheric Research) Boulder, CO, USA | Sl, GHG, Vl, SS, Ds, SD, BC, MD, OC, Oz, AA ,LU |
MIROC-ESM-CHEM | 0.03–1000 | Japan Agency for Marine-Earth Science and Technology | GHG, SA, Oz, BC, OC, LU, Sl, Vl, MD |
MIROC5 | 10–1000 | Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan National Institute for Environmental Studies, Ibaraki, Japan Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan | GHG, SA, Oz, LU, Sl, Vl, SS, Ds, BC, MD, OC |
CMCC-CESM | 0.01–1000 | CMCC-Centro Euro-Mediterraneo peri Cambiamenti Climatici, Bologna, Italy | Nat, Ant, GHG, SA, Oz, Sl |
MPI-ESM-LR MPI ESM-MR MPI-ESM-P | 10–1000 | Max Planck Institute for Meteorology | GHG, SD, Oz, LU, Sl, Vl |
MRI-CGCM3 MRI-ESM1 | 0.4–1000 | MRI (Meteorological Research Institute, Tsukuba, Japan) | GHG, SA, Oz, BC, OC, LU, Sl, Vl, |
ACCESS1-0 ACCESS1-3 | 10–1000 | Commonwealth Scientific and Industrial Research Organisation, Bureau of Meteorology, Australia | GHG, Oz, SA, Sl, Vl, BC, OC |
BNU-ESM | 10–1000 | GCESS, BNU, Beijing, China | Nat, Ant |
GISS-E2-H-CC GISS-E2-HGISS-E2-R-CC GISS-E2-R | 10–1000 | NASA Goddard Institute for Space Studies | GHG, LU, Sl, Vl, BC, OC, SA, Oz |
IPSL-CM5A-LR IPSL-CM5B-LR IPSL-CM5B-MR | 10–1000 | Institut Pierre Simon Laplace, Paris, France | Nat, Ant, GHG, SA, Oz, LU, SS, Ds, BC, MD, OC, AA |
NorESM1-M NorESM1-ME | 10–1000 | Norwegian Climate Centre | GHG, SA, Oz, Sl, Vl, BC, OC |
inmcm4 | 10–1000 | Institute for Numerical Mathematics, Moscow, Russia | N/A |
CSIRO-Mk3-6-0 | 5–1000 | Australian Commonwealth Scientific and Industrial Research Organization, Marine and Atmospheric Research, Queensland Climate Change Centre of Excellence | Ant, Nat (all forcings) |
CNRM-CM5 | 10–1000 | Centre National de Recherches Meteorologiques Centre Europeen de Recherches et de Formation Avancee en Calcul Scientifique | GHG, SA, Sl, Vl, BC, OC |
FGOALS-g2 | 10–1000 | Institute of Atmospheric Physics, Chinese Academy of Sciences, Tsinghua University | GHG, Oz, SA, BC, Ds, OC, SS, Sl, Vl |
2.3. Methodology
3. Temporal Characteristics of Global Mean Temperature
3.1. Global Mean Temperature
3.2. Consistencies between Simulations and Observations
3.3. Uncertainty Analysis in Model Simulations
Layer | SSU3 | SSU2 | SSU1 | MSU4 | MSU3 | MSU2 |
---|---|---|---|---|---|---|
S/N | 57.98 | 28.31 | 5.26 | 3.53 | 0.48 | 1.36 |
3.4. Trend Changes with Vertical Level
4. Spatial Pattern of Temperature Trends
4.1. Trend Changes with Latitude
4.2. Distribution of Longitude-Latitude Trend Spread
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eichelberger, S.J.; Hartmann, D.L. Changes in the strength of the brewer–dobson circulation in a simple AGCM. Geophys. Res. Lett. 2005, 32, L15807. [Google Scholar] [CrossRef]
- Cordero, E.C.; Forster, P.M. Stratospheric variability and trends in models used for the IPCC AR4. Atmos. Chem. Phys. 2006, 6, 5369–5380. [Google Scholar] [CrossRef]
- Seidel, D.J.; Angell, J.K.; Christy, J.; Free, M.; Klein, S.A.; Lanzante, J.R.; Mears, C.; Parker, D.; Schabel, M.; Spencer, R.; et al. Uncertainty in signals of large-scale climate variations in radiosonde and satellite upper-air temperature datasets. J. Clim. 2004, 17, 2225–2240. [Google Scholar] [CrossRef]
- Seidel, D.J.; Gillett, N.P.; Lanzante, J.R.; Shine, K.P.; Thorne, P.W. Stratospheric temperature trends: Our evolving understanding. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 592–616. [Google Scholar] [CrossRef]
- Young, P.J.; Thompson, D.W.J.; Rosenlof, K.H.; Solomon, S.; Lamarque, J. The seasonal cycle and interannual variability in stratospheric temperatures and links to the brewer–dobson circulation: An analysis of MSU and SSU Data. J. Clim. 2011, 24, 6243–6258. [Google Scholar] [CrossRef]
- Xu, J.; Powell, A. Ensemble spread and its implication for the evaluation of temperature trends from multiple radiosondes and reanalyses products. Geophys. Res. Lett. 2010, 37, L17704. [Google Scholar] [CrossRef]
- Xu, J.; Powell, A. Uncertainty estimation of the global temperature trends for multiple radiosondes, reanalyses, and CMIP3/IPCC climate model simulations. Theor. Appl. Climatol. 2012, 108, 505–518. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, W.; Xu, J.; Li, L. Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J. Clim. 2015, 28, 8603–8619. [Google Scholar] [CrossRef]
- Cai, J.; Xu, J.; Powell, A.; Guan, Z.; Li, L. Intercomparison of the temperature contrast between the arctic and equator in the pre- and post periods of the 1976/1977 regime shift. Theor. Appl. Climatol. 2015. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Charlton-Perez, A.J.; Baldwin, M.P.; Birner, T. On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 2494–2505. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.J.; Seidel, D.J.; Randel, W.J.; Zou, C.Z.; Butler, A.H.; Mears, C.; Osso, A.; Long, C.; Lin, R. The mystery of recent stratospheric temperature trends. Nature 2012, 491, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Santer, B.D.; Painter, J.F.; Bonfils, C.; Mears, C.A. Identifying human influences on atmospheric temperature. Proc. Natl. Acad. Sci. USA 2012, 110, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Santer, B.D.; Painter, J.F.; Bonfils, C.; Mears, C.A. Human and natural influences on the changing thermal structure of the atmosphere. Proc. Natl Acad. Sci. USA 2013, 110, 17235–17240. [Google Scholar] [CrossRef] [PubMed]
- Christy, J.R.; Spencer, R.W.; Braswell, W.D. MSU tropospheric temperatures: Dataset construction and radiosonde comparisons. J. Atmos. Oceanic Technol. 2000, 17, 1153–1170. [Google Scholar] [CrossRef]
- Mears, C.A.; Schabel, M.C.; Wentz, F.J. A reanalysis of the MSU channel 2 tropospheric temperature record. J. Clim. 2003, 16, 3650–3664. [Google Scholar] [CrossRef]
- Zou, C.; Goldberg, M.; Cheng, Z.; Grody, N.; Sullivan, J.; Cao, C.; Tarpley, D. Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res. 2006, 111, D19114. [Google Scholar] [CrossRef]
- Zou, C.Z.; Qian, H.F.; Wang, W.H. Recalibration and merging of SSU observations for stratospheric temperature trend studies. J. Geophys. Res.: Atmos. 2014, 119, JD021603. [Google Scholar] [CrossRef]
- Wang, W.H.; Zou, C.Z. AMSU-A-Only atmospheric temperature data records from the lower troposphere to the top of the stratosphere. J. Atmos. Oceanic Technol. 2014, 31, 808–825. [Google Scholar] [CrossRef]
- Santer, B.D.; Hnilo, J.J.; Wigley, T.M.L.; Boyle, J.S.; Doutriaux, C.; Fiorino, M.; Parker, D.E.; Taylor, K.E. Uncertainties in observationally based estimates of temperature change in the free atmosphere. J. Geophys. Res. 1999, 104, 6305–6333. [Google Scholar] [CrossRef]
- Wang, L.; Zou, C.Z.; Qian, H. Construction of stratospheric temperature data records from stratospheric sounding units. J. Clim. 2012, 25, 2931–2946. [Google Scholar] [CrossRef]
- Keckhut, P.; Randel, W.J.; Claud, C.; Leblanc, T.; Steinbrecht, W.; Funatsu, B.M. Tidal effects on stratospheric temperature series derived from successive advanced microwave sounding units. Q. J. R. Meteorol. Soc. 2014, 141, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, J.; Forrester, G.F. Long-term monitoring of stratospheric temperature trends using radiance measurements obtained by the TIROS-N series of NOAA spacecraft. Adv. Sp. Res. 1986, 6, 37–44. [Google Scholar] [CrossRef]
- Shine, K.P.; Barnett, J.J.; Randel, W.J. Temperature trends derived from stratospheric sounding unit radiances: The effect of increasing CO2 on the weighting function. Geophys. Res. Lett. 2008, 35, L02710. [Google Scholar] [CrossRef]
- Detail Information about CMIP5 Model. Available online: http: //cmip -pcmdi. llnl. gov/cmip5 (accessed on 21 December 2015).
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Cagnazzo, C.; Manzini, E. Impact of the Stratosphere on the winter tropopospheric teleconnections between ENSO and the North-Atlantic European region. J. Clim. 2009, 22, 1223–1238. [Google Scholar] [CrossRef]
- Hardiman, S.C.; Butchart, N.; Hinton, T.J.; Osprey, S.M.; Gray, L.J. The effect of a well-resolved stratosphere on surface climate: Differences between CMIP5 simulations with high and low top versions of the met office climate model. J. Clim. 2012, 25, 7083–7099. [Google Scholar] [CrossRef]
- Shaw, T.A.; Perlwitz, J. The impact of stratospheric model configuration on planetary scale waves in northern hemisphere winter. J. Clim. 2010, 22, 3369–3389. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, R. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Clim. 2006, 19, 5843–5858. [Google Scholar] [CrossRef]
- Gillett, N.P.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Eyring, V.; Garcia, R.R.; Karpechko, A.Y. Attribution of observed changes in stratospheric ozone and temperature. Atmos. Chem. Phys. 2011, 11, 599–609. [Google Scholar] [CrossRef] [Green Version]
- McLandress, C.; Jonsson, A.I.; Plummer, D.A.; Reader, M.C.; Scinocca, J.F.; Shepherd, T.G. Separating the effects of climate change and ozone depletion. Part 1: Southern Hemisphere stratosphere. J. Clim. 2010, 23, 5002–5020. [Google Scholar] [CrossRef]
- Guo, D.; Su, Y.; Shi, C.; Xu, J.; Powell, A.M. Double core of ozone valley over the Tibetan plateau and its possible mechanisms. J. Atmos. Sol. Terr. Phys. 2015, 130, 127–131. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Matthes, K.; Sassi, F.; Loon, H. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 2009. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Xu, J.; Powell, A.M.; Jiang, Z.; Wang, D. Use of SSU/MSU Satellite Observations to Validate Upper Atmospheric Temperature Trends in CMIP5 Simulations. Remote Sens. 2016, 8, 13. https://doi.org/10.3390/rs8010013
Zhao L, Xu J, Powell AM, Jiang Z, Wang D. Use of SSU/MSU Satellite Observations to Validate Upper Atmospheric Temperature Trends in CMIP5 Simulations. Remote Sensing. 2016; 8(1):13. https://doi.org/10.3390/rs8010013
Chicago/Turabian StyleZhao, Lilong, Jianjun Xu, Alfred M. Powell, Zhihong Jiang, and Donghai Wang. 2016. "Use of SSU/MSU Satellite Observations to Validate Upper Atmospheric Temperature Trends in CMIP5 Simulations" Remote Sensing 8, no. 1: 13. https://doi.org/10.3390/rs8010013
APA StyleZhao, L., Xu, J., Powell, A. M., Jiang, Z., & Wang, D. (2016). Use of SSU/MSU Satellite Observations to Validate Upper Atmospheric Temperature Trends in CMIP5 Simulations. Remote Sensing, 8(1), 13. https://doi.org/10.3390/rs8010013