Minimizing the Residual Topography Effect on Interferograms to Improve DInSAR Results: Estimating Land Subsidence in Port-Said City, Egypt
Abstract
:1. Introduction
1.1. SAR Interferometry
1.2. Land Subsidence in the Nile Delta
2. Materials and Methods
2.1. Study Area and Geological Setting
2.2. Field Work
2.3. DEM Generation from ALOS/PRISM Data
2.4. ALOS/PALSAR Data Processing
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: Berlin, Germany, 2001; p. 307. [Google Scholar]
- Aly, M. Radar Interferometry for Monitoring Land Subsidence and Coastal Change in the Nile Delta, Egypt; Texas A&M University: College Station, TX, USA, 2006. [Google Scholar]
- Graham, L.C. Synthetic Interferometer Radar for Topographic Mapping. Proc. IEEE 1974, 62, 763–768. [Google Scholar] [CrossRef]
- Li, F.; Goldstein, R. Studies of multi-baseline spaceborne interferometric synthetic aperture radars. IEEE Trans. Geosci. Remote Sens. 1987, 28, 88–97. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Henderson, F.M.; Lewis, A.J. Principles and Applications of Imaging Radar. Manual of Remote Sensing; John Wiley and Sons: Hoboken, NJ, USA, 1998; Volume 2. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Peltzer, G.; Hudnut, K.W.; Feigl, K.L. Analysis of coseismic surface displacement gradients using radar interferometry: New insights into the Landers earthquake. J. Geophys. Res. Solid Earth 1994, 99, 21971–21981. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.; Rossi, M.; Adragna, F. Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature 1996, 369, 227–230. [Google Scholar] [CrossRef]
- Smith, L.C. Emerging applications of interferometric synthetic aperture radar (InSAR) in geomorphology and hydrology. Ann. Assoc. Am. Geogr. 2002, 92, 385–398. [Google Scholar] [CrossRef]
- Chang, H.-C.; Ge, L.; Rizos, C. DInSAR for mine subsidence monitoring using multi-source satellite SAR images. In Proceedings of the International Geoscience and Remote Sensing Symposium, Seoul, Korea, 29 July 2005; p. 1742. [Google Scholar]
- Poscolieri, M.; Parcharidis, I.; Foumelis, M.; Rafanelli, C. Ground deformation monitoring in the greater Cairo metropolitan region (Egypt) by SAR interferometry. J. Environ. Semeiot. 2011, 4, 17–45. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Li, X.; Abidin, H.Z.; Andreas, H.; Zhang, K. Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 232–242. [Google Scholar] [CrossRef]
- Yhokha, A.; Chang, C.-P.; Goswami, P.K.; Yen, J.-Y.; Lee, S.-I. Surface deformation in the Himalaya and adjoining piedmont zone of the Ganga Plain, Uttarakhand, India: Determined by different radar interferometric techniques. J. Asian Earth Sci. 2015, 106, 119–129. [Google Scholar] [CrossRef]
- Stanley, J.D.; Warne, A.G. Nile Delta in its destruction phase. J. Coast. Res. 1998, 1, 795–825. [Google Scholar]
- Becker, R.H.; Sultan, M. Land subsidence in the Nile Delta: Inferences from radar interferometry. Holocene 2009, 19, 949–954. [Google Scholar] [CrossRef]
- El-Nahry, A.H.; Doluschitz, R. Climate change and its impacts on the coastal zone of the Nile Delta, Egypt. Environ. Earth Sci. 2010, 59, 1497–1506. [Google Scholar] [CrossRef]
- El-Asmar, H.M.; Hereher, M.E.; El-Kafrawy, S.B. Threats facing lagoons along the north coast of the Nile Delta, Egypt. Int. J. Remote Sens. Appl. 2012, 2, 24–29. [Google Scholar]
- Hereher, M.E. Vulnerability of the Nile Delta to sea level rise: An assessment using remote sensing. Geomat. Nat. Hazard. Risk 2010, 1, 315–321. [Google Scholar] [CrossRef]
- Stanley, J.D.; Corwin, K.A. Measuring strata thicknesses in cores to assess recent sediment compaction and subsidence of Egypt’s Nile delta coastal margin. J. Coast. Res. 2012, 29, 657–670. [Google Scholar] [CrossRef]
- Shaltout, M.; Tonbol, K.; Omstedt, A. Sea-level change and projected future flooding along the Egyptian Mediterranean coast. Oceanologia 2015, 57, 293–307. [Google Scholar] [CrossRef]
- Nicholls, R.; Hoozemans, F. The Mediterranean: Vulnerability to coastal implications of climate change. Ocean Coast. Manag. 1996, 31, 105–132. [Google Scholar] [CrossRef]
- Stanley, J.D.; Clemente, P.L. Increased Land Subsidence and Sea-Level Rise are Submerging Egypt’s Nile Delta Coastal Margin. GSA Today 2017, 27, 4–11. [Google Scholar] [CrossRef]
- El-Raey, M. Vulnerability assessment of the coastal zone of the Nile delta of Egypt, to the impacts of sea level rise. Ocean Coast. Manag. 1997, 37, 29–40. [Google Scholar] [CrossRef]
- Stanley, J.D.; Warne, A.G. Nile Delta: Recent geological evolution and human impact. Science 1993, 260, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J.D.; Toscano, M.A. Ancient archaeological sites buried and submerged along Egypt’s Nile delta coast: Gauges of Holocene delta margin subsidence. J. Coast. Res. 2009, 25, 158–170. [Google Scholar] [CrossRef]
- Marriner, N.; Flaux, C.; Morhange, C.; Kaniewski, D. Nile Delta’s sinking past: Quantifiable links with Holocene compaction and climate-driven changes in sediment supply? Geology 2012, 40, 1083–1086. [Google Scholar] [CrossRef]
- Flaux, C.; El-Assal, M.; Marriner, N.; Morhange, C.; Rouchy, J.-M.; Soulié-Märsche, I.; Torab, M. Environmental changes in the Maryut lagoon (northwestern Nile delta) during the last ∼2000 years. J. Archaeol. Sci. 2012, 39, 3493–3504. [Google Scholar] [CrossRef]
- Hoda, M.; Bahaa, S.; Magdy, H.; Gomaa, D. High-Precision GPS Monitoring of the Land Subsidence in the Nile Delta: Status and Preliminary Results. In Proceedings of the Regional Conference on Surveying & Development, Sharm El-Sheikh, Egypt, 2–6 October 2015; pp. 1–11. [Google Scholar]
- Frihy, O.E. Nile Delta shoreline changes: Aerial photographic study of a 28-year period. J. Coast. Res. 1988, 4, 597–606. [Google Scholar]
- Aly, M.; Zebker, H.; Giardino, J.; Klein, A. Permanent Scatterer investigation of land subsidence in Greater Cairo, Egypt. Geophys. J. Int. 2009, 178, 1238–1245. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Aly, M.; Klein, A.G.; Zebker, H.A.; Giardino, J.R. Land subsidence in the Nile Delta of Egypt observed by persistent scatterer interferometry. Remote Sens. Lett. 2012, 3, 621–630. [Google Scholar] [CrossRef]
- Klein, I.; Gessner, U.; Kuenzer, C. Regional land cover mapping and change detection in Central Asia using MODIS time-series. Appl. Geogr. 2012, 35, 219–234. [Google Scholar] [CrossRef]
- Bouali, E.H.Y. Utilizing Persistent Scatterer Interferometry to Investigate the Nature and Factors Controlling Nile Delta Subsidence. Master’s Thesis, University of Western Michigan, Kalamazoo, MI, USA, 2013; p. 425. [Google Scholar]
- Fugate, J.M. Measurements of Land Subsidence Rates on the North-Western Portion of the Nile Delta Using Radar Interferometry Techniques. Master’s Thesis, University of Toledo, Toledo, OH, USA, 2014; p. 76. [Google Scholar]
- Zaid, S.; Momoun, M.; Al-Mobark, N. Vulnerability assessment of the impact of sea level rise and land subsidence on north Nile Delta region. World Appl. Sci. J. 2014, 32, 325–342. [Google Scholar]
- Stanley, J.D. Nile delta: Extreme case of sediment entrapment on a delta plain and consequent coastal land loss. Mar. Geol. 1996, 129, 189–195. [Google Scholar] [CrossRef]
- Mosconi, A.; Rebora, A.; Venturino, G.; Bocc, P.; Khalil, M.H. Egypt—Nile Delta and North Sinai Cenozoic tectonic evolutionary model. In Proceedings of the 13th Egyptian General Petroleum Corporation Exploration and Production Conference, Cairo, Egypt, 21–24 October 1996; Volume 1. [Google Scholar]
- Gaber, A.; Darwish, N.; Sultan, Y.; Arafat, S.; Koch, M. Monitoring Building Stability in Port-Said City, Egypt Using Differential SAR Interferometry. Int. J. Environ. Sustain. 2014, 3, 14–22. [Google Scholar] [CrossRef]
- Port-Said Governorate Website. 2017. Available online: http://www.portsaid.gov.eg/mapsnew/sokan.aspx (accessed on 19 July 2017).
- Aly Ismail, A.; Abdel Kader Boukhary, M.; Ibrahim AbdelNaby, A. Subsurface stratigraphy and micropaleontology of the Neogene rocks, Nile Delta, Egypt. Geol. Croat. 2010, 63, 1–26. [Google Scholar] [CrossRef]
- Said, R. Introduction. In The Geological Evolution of the River Nile; Springer: Cham, Switzerland, 1981; pp. 1–11. [Google Scholar]
- Stanley, J.D.; Warne, A.G.; Schnepp, G. Geoarchaeological interpretation of the Canopic, largest of the relict Nile Delta distributaries, Egypt. J. Coast. Res. 2004, 20, 920–930. [Google Scholar] [CrossRef]
- Burgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- ENVI. DEM Extraction Module; Harris Geospatial Solutions: Broomfield, CO, USA, 2017; Available online: https://www.harrisgeospatial.com/docs/IntroductionToDEMExtraction.html (accessed on 19 July 2017).
- Bignone, F.; Umakawa, H. Assessment of ALOS PRISM digital elevation model extraction over Japan, The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2008, 37, 1135–1138. [Google Scholar]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Rodriguez, E.; Martin, J. Theory and design of interferometric synthetic aperture radars. IEE Proc. F Radar Signal Process. 1992, 139, 147–159. [Google Scholar] [CrossRef]
- Gatelli, F.; Guamieri, A.M.; Parizzi, F.; Pasquali, P.; Prati, C.; Rocca, F. The wavenumber shift in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 1994, 32, 855–865. [Google Scholar] [CrossRef]
- SBAS Tutorial; Version 2; Sarmap SA: Purasca, Switzerland, 2013; p. 92.
- Zebker, H.A.; Goldstein, R.M. Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 1986, 91, 4993–4999. [Google Scholar] [CrossRef]
- Rao, X.; Tang, Y. Small baseline subsets approach of DInSAR for investigating land surface deformation along the high-speed railway in SPIE Asia Pacific Remote Sensing. Int. Soc. Opt. Photonics 2014, 92601–92608. [Google Scholar] [CrossRef]
- Bekaert, D.; Walters, R.; Wright, T.; Hooper, A.; Parker, D. Statistical comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef]
- JPL. SRTM Mission Statistics. 2017. Available online: https://www2.jpl.nasa.gov/srtm/statistics.html (accessed on 19 July 2017).
- Sharaf El Din, S. Effect of the Aswan High Dam on the Nile flood and on the estuarine and coastal circulation pattern along the Mediterranean Egyptian coast. Limnol. Oceanogr. 1977, 22, 194–207. [Google Scholar] [CrossRef]
- Abu-Zeid, M.; El-Shibini, F. Egypt’s high Aswan dam. Int. J. Water Resour. Dev. 1997, 13, 209–218. [Google Scholar] [CrossRef]
Year | Date Day/Month | Perpendicular Baseline (m) | Critical Baseline (m) | Temporal Baseline (Days) |
---|---|---|---|---|
2007 | 12 November 28 December | 501.919 | 13,066.59 | 46 |
2008 | 14 November 30 December | 631.823 | 13,059.13 | 46 |
2009 | 28 May 17 November | 828.926 | 13,054.03 | 184 |
2010 | 2 January 4 April | 620.006 | 13,071.28 | 92 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaber, A.; Darwish, N.; Koch, M. Minimizing the Residual Topography Effect on Interferograms to Improve DInSAR Results: Estimating Land Subsidence in Port-Said City, Egypt. Remote Sens. 2017, 9, 752. https://doi.org/10.3390/rs9070752
Gaber A, Darwish N, Koch M. Minimizing the Residual Topography Effect on Interferograms to Improve DInSAR Results: Estimating Land Subsidence in Port-Said City, Egypt. Remote Sensing. 2017; 9(7):752. https://doi.org/10.3390/rs9070752
Chicago/Turabian StyleGaber, Ahmed, Noura Darwish, and Magaly Koch. 2017. "Minimizing the Residual Topography Effect on Interferograms to Improve DInSAR Results: Estimating Land Subsidence in Port-Said City, Egypt" Remote Sensing 9, no. 7: 752. https://doi.org/10.3390/rs9070752
APA StyleGaber, A., Darwish, N., & Koch, M. (2017). Minimizing the Residual Topography Effect on Interferograms to Improve DInSAR Results: Estimating Land Subsidence in Port-Said City, Egypt. Remote Sensing, 9(7), 752. https://doi.org/10.3390/rs9070752