Gene Influence in the Effectiveness of Plant Sterols Treatment in Children: Pilot Interventional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Clinical Analyses
2.4. Genetics
2.5. Study Variables
2.6. Statistical Analysis
2.7. Ethical Standards
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Cardiovascular Diseases (CVDs); WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Luirink, I.K.; Hutten, B.A.; Wiegman, A. Optimizing Treatment of Familial Hypercholesterolemia in Children and Adolescents. Curr. Cardiol. Rep. 2015, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- McMahan, C.A.; Gidding, S.S.; Malcom, G.T.; Tracy, R.E.; Strong, J.P.; McGill, H.C. Pathobiological Determinants of Atherosclerosis in Youth Risk Scores Are Associated with Early and Advanced Atherosclerosis. Pediatrics 2006, 118, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Araujo, M.B.; Botto, P.M.; Mazza, C.S. Uso de ezetimibe en el tratamiento de la hipercolesterolemia. An. Pediatr. 2012, 77, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld Olivares, J.A. Plant Sterol-Enriched Milk in Paediatric Children with Hypercholesterolemia. Double Blinded, Randomized Controlled Clinical Trial. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2017. [Google Scholar]
- Abdullah, M.M.H.; Jones, P.J.H.; Eck, P.K. Nutrigenetics of cholesterol metabolism: Observational and dietary intervention studies in the postgenomic era. Nutr. Rev. 2015, 73, 523–543. [Google Scholar] [CrossRef]
- Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegard, L.; Jessuo, W.; Jones, P.J.; Lutjohann, D.; Maerz, W.; Masana, L.; et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014, 232, 346–360. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to plant sterols and plant stanols and maintenance of normal blood cholesterol concentrations, and maintenance of normal prostate size and normal urination pursuant to Article 13(1) of Regu. EFSA J. 2010, 8, 1–22. [Google Scholar]
- Karlezi, R.A.A.; Pariente, N.M.; López, P.M. Control de las hiperlipemias en la práctica clínica. Rev. Esp. Cardiol. Supl. 2006, 6, 24G–35G. [Google Scholar]
- Demonty, I.; Ras, R.T.; van der Knaap, H.C.; Duchateau, G.S.; Meijer, L.; Zock, P.L.; Geleijnse, J.M.; Trautwein, E.A. Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J. Nutr. 2009, 139, 271–284. [Google Scholar] [CrossRef]
- Ras, R.T.; Geleijnse, J.M.; Trautwein, E.A. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A meta-analysis of randomised controlled studies. Br. J. Nutr. 2014, 112, 214–219. [Google Scholar] [CrossRef]
- Chen, K.H.; Chen, L.L.; Li, W.G.; Fang, Y.; Huang, G.Y. Maternal MTHFR C677T polymorphism and congenital heart defect risk in the Chinese Han population: A meta-analysis. Genet. Mol. Res. 2013, 12, 6212–6219. [Google Scholar] [CrossRef]
- Zhang, M.J.; Li, J.C.; Yin, Y.W.; Li, B.H.; Liu, Y.; Liao, S.Q.; Gao, C.Y.; Zhang, L.L. Association of MTHFR C677T polymorphism and risk of cerebrovascular disease in Chinese population: An updated meta-analysis. J. Neurol. 2014, 261, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, P.; Prasad, M.; Sagar, R.; Yadav, A.K.; Pandit, A.K.; Jali, V.P.; Pathak, A. Association of C677T polymorphism in the methylenetetrahydrofolate reductase gene (MTHFR gene) with ischemic stroke: A meta-analysis. Neurol. Res. 2015, 37, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, A.C.; Braund, P.S.; Stylianou, I.M.; Khera, A.V.; Nelson, C.P.; Wolfe, M.L.; DerOhannessian, S.L.; Keating, B.J.; Qu, L.; He, J.; et al. Dense genotyping of candidate gene loci identifies variants associated with high-density lipoprotein cholesterol. Circ. Cardiovasc. Genet. 2011, 4, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Chapman, M.J.; Ray, K.; Boré, J.; Andreotti, F.; Watts, G.F.; Ginsberg, H.; Amarenco, P. Lipoprotein(a) as a cardiovascular risk factor: Current status. Eur. Heart J. 2010, 31, 2844–2853. [Google Scholar] [CrossRef] [PubMed]
- San Mauro-Martin, I.; Sanz Rojo, S.; Garicano-Vilar, E.; Collado-Yurrita, L. Enfoque genómico en la enfermedad cardiovascular. Nutr. Hosp. 2016, 33, 148–155. [Google Scholar]
- Plat, J.; Bragt, M.C.; Mensink, R.P. Common sequence variations in ABCG8 are related to plant sterol metabolism in healthy volunteers. J. Lipid Res. 2005, 46, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Rudkowska, I.; AbuMweis, S.S.; Nicolle, C.; Jones, P.J. Association between non-responsiveness to plant sterol intervention and polymorphisms in cholesterol metabolism genes: A case-control study. Appl. Physiol. Nutr. Metab. 2008, 33, 728–734. [Google Scholar] [CrossRef]
- Zhao, H.L.; Houweling, A.H.; Vanstone, C.A.; Jew, S.; Trautwein, E.A.; Duchateau, G.S.; Jones, P.J. Genetic variation in ABC G5/G8 and NPC1L1 impact cholesterol response to plant sterols in hypercholesterolemic men. Lipids 2008, 43, 1155–1164. [Google Scholar] [CrossRef]
- Gylling, H.; Hallikainen, M.; Raitakari, O.T.; Laakso, M.; Vartiainen, E.; Salo, P.; Korpelainen, V.; Sundvall, J.; Miettinen, T.A. Long-term consumption of plant stanol and sterol esters, vascular function and genetic regulation. Br. J. Nutr. 2009, 101, 1688–1695. [Google Scholar] [CrossRef]
- MacKay, D.S.; Eck, P.K.; Gebauer, S.K.; Baer, D.J.; Jones, P.J. CYP7A1-rs3808607 and APOE isoform associate with LDL cholesterol lowering after plant sterol consumption in a randomized clinical trial. Am. J. Clin. Nutr. 2015, 102, 951–957. [Google Scholar] [CrossRef] [Green Version]
- Rideout, C. Getting personal: Considering variable interindividual responsiveness to dietary lipid-lowering therapies. Curr. Opin. Lipidol. 2011, 22, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Moráis López, A.; Lama More, R.A.; Dalmau Serra, J. Hipercolesterolemia. Abordaje terapéutico. An. Pediatr. 2009, 70, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Avanzini, P.; Musa, R.; Sandei, F.; Aloe, R.; Cervellin, G. Evaluation of sample hemolysis in blood collected by S-monovette® using vacuum or aspiration mode. Biochem. Med. 2013, 23, 64–69. [Google Scholar] [CrossRef]
- Bowen, R.A.R.; Remaley, A.T. Interferences from blood collection tube components on clinical chemistry assays. Biochem. Med. 2014, 24, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Sarstedt Blood Collection with the S-Monovette®. Available online: https://www.sarstedt.com/fileadmin/user_upload/99_Gebrauchsanweisungen/Englisch_US_Code/644_c_PosterA3_AnleitungVenoeseBE_SafetyKanuele_GB_US_0314.pdf (accessed on 8 March 2018).
- Weale, M.E. Quality control for genome-wide association studies. Methods Mol. Biol. 2010, 628, 341–372. [Google Scholar]
- Ziegler, A. Genome-wide association studies: Quality control and population-based measures. Genet. Epidemiol. 2009, 33, S45–S50. [Google Scholar] [CrossRef]
- Ostlund, R.E. Phytosterols and cholesterol metabolism. Curr. Opin. Lipidol. 2004, 15, 37–41. [Google Scholar] [CrossRef]
- Gylling, H.; Simonen, P. Phytosterols, phytostanols, and lipoprotein metabolism. Nutrients 2015, 7, 7965–7977. [Google Scholar] [CrossRef]
- Clifton, P.M.; Noakes, M.; Sullivan, D.; Erichsen, N.; Ross, D.; Annison, G.; Fassoulakis, A.; Cehun, M.; Nestel, P. Cholesterol-lowering effects of plant sterol esters differ in milk, yoghurt, bread and cereal. Eur. J. Clin. Nutr. 2004, 58, 503–509. [Google Scholar] [CrossRef]
- Katan, M.B.; Grundy, S.M.; Jones, P.; Law, M.; Miettinen, T.; Paoletti, R. Efficacy and Safety of Plant Stanols and Sterols in the Management of Blood Cholesterol Levels. Mayo Clin. Proc. 2003, 78, 965–978. [Google Scholar] [CrossRef] [Green Version]
- Abumweis, S.S.; Barake, R.; Jones, P.J.H. Plant sterols/stanols as cholesterol lowering agents: A meta-analysis of randomized controlled trials. Food Nutr. Res. 2008, 52. [Google Scholar] [CrossRef] [PubMed]
- Maász, A.; Kisfali, P.; Szolnoki, Z.; Hadarits, F.; Melegh, B. Apolipoprotein A5 gene C56G variant confers risk for the development of large-vessel associated ischemic stroke. J. Neurol. 2008, 255, 649–654. [Google Scholar] [CrossRef] [PubMed]
- San Mauro Martín, I.; Sanz Rojo, S.; Garicano Vilar, E.; Collado Yurrita, L.; Blumenfeld Olivares, J.A. Modulation of plasma triglycerides concentration by sterol-based treatment in children carrying different genes. Ann. Pediatr. Cardiol. 2019, 12, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xu, L.; Huang, R.S.; Huang, Y.I.; Le, Y.; Jiang, D.; Yang, X.I.; Xu, W.; Huang, X.; Dong, C.; et al. Apolipoprotein A5 gene variants and the risk of coronary heart disease: A case-control study and meta-analysis. Mol. Med. Rep. 2013, 8, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Pi, Y.; Zhang, L.; Yang, Q.; Li, B.; Guo, L.; Fang, C.; Gao, C.; Wang, J.; Xiang, J.; Li, J. Apolipoprotein A5 gene promoter region-1131T/C polymorphism is associated with risk of ischemic stroke and elevated triglyceride levels: A meta-analysis. Cerebrovasc. Dis. 2012, 33, 558–565. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Ordovás, J.M.; Smith, C.E.; Baraza, J.C.; Lee, Y.C.; Garaulet, M. {APOA}5 Gene Variation Interacts with Dietary Fat Intake to Modulate Obesity and Circulating Triglycerides in a Mediterranean Population. J. Nutr. 2011, 141, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gu, W.; Qiao, S.; Zhu, E.; Zhao, Q.; Lv, S. Apolipoprotein E Gene Polymorphism and Risk for Coronary Heart Disease in the Chinese Population: A Meta-Analysis of 61 Studies Including 6634 Cases and 6393 Controls. PLoS ONE 2014, 9, e95463. [Google Scholar] [CrossRef]
- Demirkan, A.; van Duijn, C.M.; Ugocsai, P.; Isaacs, A.; Pramstaller, P.P.; Liebisch, G.; Wilson, J.F.; Johansson, A.; Rudan, I.; Aulchenko, Y.S.; et al. Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations. PLoS Genet. 2012, 8, e1002490. [Google Scholar] [CrossRef]
- Riestra, P.; López-Simón, L.; Ortega, H.; Gorgojo, L.; Martin-Moreno, J.M.; Schoppen, S.; de Oya, M.; Garcés, C. Fat Intake Influences the Effect of the Hepatic Lipase C-514T Polymorphism on HDL-Cholesterol Levels in Children. Exp. Biol. Med. 2009, 234, 744–749. [Google Scholar] [CrossRef]
- Posadas-Sánchez, R.; Ocampo-Arcos, W.A.; López-Uribe, Á.R.; Posadas-Romero, C.; Villarreal-Molina, T.; León, E.Á.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; Cardoso-Saldaña, G.; Medina-Urrutia, A.; et al. Hepatic lipase (LIPC) C-514T gene polymorphism is associated with cardiometabolic parameters and cardiovascular risk factors but not with fatty liver in Mexican population. Exp. Mol. Pathol. 2015, 98, 93–98. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, D.; Ling, J.; Lu, W.; Zhang, S.; Zhu, Y.; Lai, M. Gender specific effect of LIPC C-514T polymorphism on obesity and relationship with plasma lipid levels in Chinese children. J. Cell. Mol. Med. 2015, 19, 2296–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agirbasli, M.; Eren, F.; Agirbasli, D.; White, M.J.; Williams, S.M. Multi-locus candidate gene analyses of lipid levels in a pediatric Turkish cohort: Lessons learned on LPL, CETP, LIPC, ABCA1, and SHBG. OMICS 2013, 17, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Scicchitano, P.; Cameli, M.; Maiello, M.; Modesti, P.A.; Muiesan, M.L.; Novo, S.; Palmiero, P.; Saba, P.S.; Pedrinelli, R.; Ciccone, M.M.; et al. Nutraceuticals and dyslipidaemia: Beyond the common therapeutics. J. Func. Foods 2014, 6, 11–32. [Google Scholar] [CrossRef]
Total (n = 26) | Males (n = 10) | Females (n = 16) | ||||
---|---|---|---|---|---|---|
Mean | SD a | Mean | SD | Mean | SD | |
Age (years) | 8.7 | 2.06 | 8.5 | 2.44 | 8.8 | 1.89 |
Weight (kg) | 33.1 | 13.00 | 30.1 | 10.96 | 35.3 | 14.39 |
Height (m) | 1.3 | 0.12 | 1.3 | 10.13 | 1.3 | 0.12 |
BMI b (Kg/m2) | 18.8 | 4.20 | 17.2 | 3.18 | 20.0 | 4.59 |
Body fat (%) | 25.5 | 9.66 | 20.8 | 6.99 | 29.0 | 10.16 |
Visceral fat (kg) | 3.8 | 4.04 | 2.4 | 2.83 | 5.0 | 4.54 |
Muscle (kg) | 11.5 | 4.46 | 11.1 | 4.1 | 11.9 | 4.86 |
Change from Baseline (%) | ||||||
Total cholesterol | −12.1 | −9.71 | −12.5 | −7.52 | −12.2 | −12.62 |
LDL c-cholesterol | −16.2 | −12.78 | −17.3 | −11.95 | −3.2 | −16.42 |
HDL d-cholesterol | −2.1 | −14.44 | 3.3 | −13.19 | −15.9 | −15.75 |
Non-HDL-cholesterol | −15.9 | −11.66 | −17.3 | −10.90 | −15.6 | −14.47 |
Gene | Haplotype | Frequency (n) | Percentage (%) |
---|---|---|---|
APOA5 C56G Ser19Trp (rs3135506) | CG | 5 | 19.2 |
GG | 21 | 80.8 | |
MTHFR C677T (rs1801133) | CC | 8 | 30.8 |
CT | 15 | 57.7 | |
TT | 3 | 11.5 | |
LIPC C-514T (rs1800588) | CC | 6 | 23.1 |
CT | 13 | 50 | |
TT | 7 | 26.9 | |
LPA I4300M (rs3798220) | TT | 25 | 96.2 |
TC | 1 | 3.8 | |
PPAR-alpha L162V (rs1800206) | CC | 22 | 84.6 |
CG | 4 | 15.4 | |
APOA5 1131T > C (rs662799) | TT | 24 | 92.3 |
TC | 2 | 7.7 | |
APOE Haplotype APOE2/3/4 (rs429358) | TT | 22 | 84.6 |
TC | 4 | 15.4 | |
APOE Haplotype APOE2,3,4 (rs7412) | TC | 5 | 19.2 |
CC | 21 | 80.8 |
Genes | Change from Baseline (%) | ||||
---|---|---|---|---|---|
HDL-c a | Total | LDL-c b | No-HDL-c c | ||
APOA5 C56G | CG | −0.30 | −10.07 | −15.98 | −13.78 |
Ser19Trp | GG | −0.96 | −12.8 | −16.53 | −16.75 |
CC | 9.76 | −10.60 | −17.04 | −17.71 | |
MTHFR C677T | CT | −6.33 | −14.60 | −18.21 | −17.46 |
TT | −3.40 | −5.25 | −6.39 | −1.93 | |
CC | 3.10 | −5.33 * | −4.17 * | −5.58 * | |
LIPC C-514T | CT | −0.03 | −11.45 * | −15.97 * | −15.67 * |
TT | −5.12 | −19.82 | −26.00 | −24.86 | |
LPA I4300M | TT | −0.29 | −12.90 | −17.49 | −17.39 |
TC | −13.73 | 2.92 | 9.18 | 10.00 | |
PPAR-alpha L162V | CC | −1.45 | −13.74 | −18.44 * | −18.23 * |
CG | 3.70 | −4.33 | −1.62 * | −2.36 * | |
APOA5 1131T > C | TT | −0.38 | −11.84 | −16.01 | −15.75 |
TC | −5.99 | −17.67 | −21.08 | −21.77 | |
APOE Haplotype APOE2/3/4 | TT | 0.93 | −11.58 | −15.72 | −15.97 |
TC | −13.70 | −16.22 | −21.58 | −18.23 | |
APOE Haplotype APOE2,3,4 | TC | −12.32 | −16.29 | −21.18 | −18.71 |
CC | 1.36 | −11.34 | −15.51 | −15.76 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
San Mauro Martín, I.; Garicano Vilar, E.; Sanz Rojo, S.; Collado Yurrita, L.; Pérez Arruche, E.; Arce Delgado, E.; Blumenfeld Olivares, J.A. Gene Influence in the Effectiveness of Plant Sterols Treatment in Children: Pilot Interventional Study. Nutrients 2019, 11, 2538. https://doi.org/10.3390/nu11102538
San Mauro Martín I, Garicano Vilar E, Sanz Rojo S, Collado Yurrita L, Pérez Arruche E, Arce Delgado E, Blumenfeld Olivares JA. Gene Influence in the Effectiveness of Plant Sterols Treatment in Children: Pilot Interventional Study. Nutrients. 2019; 11(10):2538. https://doi.org/10.3390/nu11102538
Chicago/Turabian StyleSan Mauro Martín, Ismael, Elena Garicano Vilar, Sara Sanz Rojo, Luis Collado Yurrita, Eva Pérez Arruche, Esperanza Arce Delgado, and Javier Andrés Blumenfeld Olivares. 2019. "Gene Influence in the Effectiveness of Plant Sterols Treatment in Children: Pilot Interventional Study" Nutrients 11, no. 10: 2538. https://doi.org/10.3390/nu11102538
APA StyleSan Mauro Martín, I., Garicano Vilar, E., Sanz Rojo, S., Collado Yurrita, L., Pérez Arruche, E., Arce Delgado, E., & Blumenfeld Olivares, J. A. (2019). Gene Influence in the Effectiveness of Plant Sterols Treatment in Children: Pilot Interventional Study. Nutrients, 11(10), 2538. https://doi.org/10.3390/nu11102538