Evaluating the Impact of Different Hypercaloric Diets on Weight Gain, Insulin Resistance, Glucose Intolerance, and its Comorbidities in Rats
Abstract
:1. Introduction
2. Methods
2.1. Diets and Animal Care
2.2. Insulin Tolerance Test
2.3. Oral Glucose Tolerance Test
2.4. Quantification of Biomarkers: Plasma Insulin, C-Peptide, Lipid Profile, and Catecholamines
2.5. Blood Pressure Evaluation
2.6. Lipid Deposition in the Liver
2.7. Western Blot Analysis
2.8. Evaluation of Autonomous Nervous System
2.9. Statistical Analysis
3. Results
3.1. Weight Gain, Fat Mass Depots, and Lipid Profile in Animal Models of Type 2 Diabetes and Obesity
3.2. Effect of Hypercaloric Diets and Genetic Deletion of Leptin Receptors on Glucose Metabolism in Animal Models of Obesity and Type 2 Diabetes
3.3. Comorbidities in the Distinct Models of Obesity and Type 2 Diabetes
3.4. Autonomic Function in Obesity and Type 2 Diabetes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Akt | protein kinase B |
AUC | area under the curve |
GLUT4 | glucose transporter type 4 |
HDL | high-density lipoprotein |
HF | high-fat |
HSu | high-sucrose |
IR | insulin receptor |
ITT | insulin tolerance test |
KITT | constant rate for glucose disappearance |
LDL | low-density lipoprotein |
MAP | mean arterial pressure |
OGTT | oral glucose tolerance test |
PNS | parasympathetic nervous system |
SNS | sympathetic nervous system |
T2D | type 2 diabetes |
ZDF | Zucker diabetic fatty |
References
- Sah, S.P.; Singh, B.; Choudhary, S.; Kumar, A. Animal models of insulin resistance: A review. Pharmacol. Rep. 2016, 68, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- AHA (American Heart Association). 2018. Available online: https://www.goredforwomen.org/about-heart disease/ heart_disease_research-subcategory/obesity-manage-treat-like-a disease/ (accessed on 10 October 2018).
- Obesity and Overweight Fact Sheets. 2018. Available online: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 October 2018).
- Goossens, G.H. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol. Behav. 2008, 94, 206–218. [Google Scholar] [CrossRef]
- Lai, M.; Chandrasekera, P.C.; Barnard, N.D. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr. Diabetes 2014, 4, e135. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Hernández, A.I.; Catalán, V.; Gómez-Ambrosi, J.; Rodríguez, A.; Frühbeck, G. Mechanisms linking excess adiposity and carcinogenesis promotion. Front. Endocrinol. 2014, 5, 65. [Google Scholar]
- IDF Diabetes Atlas Eighth Edition 2017. 2018. Available online: https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html (accessed on 10 October 2018).
- Gutiérrez-Rodelo, C.; Roura-Guiberna, A.; Olivares-Reyes, J.A. Molecular Mechanisms of Insulin Resistance: An Update. Gaceta Med. Mex. 2017, 153, 214–228. [Google Scholar]
- Moreira, G.C.; Cipullo, J.P.; Ciorlia, L.A.S.; Cesarino, C.B.; Vilela-Martin, J.F. Prevalence of Metabolic Syndrome: Association with Risk Factors and Cardiovascular Complications in an Urban Population. PLoS ONE 2014, 9, e105056. [Google Scholar] [CrossRef] [PubMed]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 5, 48. [Google Scholar] [CrossRef]
- Triggiani, A.I.; Valenzano, A.; Ciliberti, M.A.; Moscatelli, F.; Villani, S.; Monda, M.; Messina, G.; Federici, A.; Babiloni, C.; Cibelli, G. Heart rate variability is reduced in underweight and overweight healthy adult women. Clin. Physiol. Funct. Imaging 2017, 37, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Lambert, E.; Straznicky, N.; Schlaich, M.; Esler, M.; Dawood, T.; Hotchkin, E.; Lambert, G. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension 2007, 50, 862–868. [Google Scholar] [CrossRef]
- Straznicky, N.E.; Lambert, G.W.; Lambert, E.A. Neuroadrenergic dysfunction in obesity: An overview of the effects of weight loss. Curr. Opin. Lipidol. 2010, 21, 21–30. [Google Scholar] [CrossRef]
- Lambert, E.A.; Straznicky, N.E.; Dixon, J.B.; Lambert, G.W. Should the sympathetic nervous system be a target to improve cardiometabolic risk in obesity? Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H244–H258. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G.W.; Straznicky, N.E.; Lambert, E.A.; Dixon, J.B.; Schlaich, M.P. Sympathetic nervous activation in obesity and the metabolic syndrome--causes, consequences and therapeutic implications. Pharmacol. Ther. 2010, 126, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Ndumathy, J.; Pal, G.K.; Pal, P.; Ananthanarayanan, P.H.; Parija, S.C.; Balachander, J.; Dutta, T.K. Association of sympathovagal imbalance with obesity indices, and abnormal metabolic biomarkers and cardiovascular parameters. Obes. Res. Clin. Pract. 2015, 9, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhao, X.; Zeng, P.; Zhu, J.; Yang, S.; Liu, A.; Song, Y. Study on autonomic dysfunction and metabolic syndrome in Chinese patients. J. Diabetes Investig. 2016, 7, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Liu, Y.; Dai, M.; Li, M.; Yang, Z.; Xu, M.; Xu, Y.; Lu, J.; Chen, Y.; Liu, J.; et al. Accessing Autonomic Function Can Early Screen Metabolic Syndrome. PLoS ONE 2012, 7, e43449. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Rosini, T.C.; DaSilva, A.S.R.; de Moraes, C. Diet-induced obesity: Rodent model for the study of obesity-related disorders. Rev. Assoc. Bras. 2012, 58, 383–387. [Google Scholar]
- Burchfield, J.G. High dietary fat and sucrose results in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. J. Biol. Chem. 2018, 293, 5731–5745. [Google Scholar] [CrossRef]
- Rasool, S.; Geetha, T.; Broderick, T.L.; Babu, J.R. High Fat with High Sucrose Diet Leads to Obesity and Induces Myodegeneration. Front. Physiol. 2018, 9, 1054. [Google Scholar] [CrossRef]
- Gheibia, S.; Kashfic, K.; Ghasemia, A. A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomed. Pharmacother. 2017, 95, 605–613. [Google Scholar] [CrossRef]
- Conde, S.V.; da Silva, T.N.; Gonzalez, C.; Mota Carmo, M.; Monteiro, E.C.; Guarino, M.P. Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats. Br. J. Nutr. 2012, 107, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Sacramento, J.F.; Ribeiro, M.J.; Rodrigues, T.; Olea, E.; Melo, B.F.; Guarino, M.P.; Fonseca-Pinto, R.; Ferreira, C.R.; Coelho, J.; Obeso, A.; et al. Functional abolition of carotid body activity restores insulin action and glucose homeostasis in rats: Key roles for visceral adipose tissue and the liver. Diabetologia 2017, 60, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Davis, E.M.; O’Donnell, C.P. Rodent Models of sleep apnea. Respir. Physiol. Neurobiol. 2013, 188, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, I.S.; Wangensteen, T.; Collins, S.; Kimber, W.; Matarese, G.; Keogh, J.M.; Lank, E.; Bottomley, B.; Lopez-Fernandez, J.; Ferraz-Amaro, I.; et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N. Engl. J. Med. 2007, 356, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Thorp, A.A.; Schlaich, M.P. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome. J. Diabetes Res. 2015, 2015, 341583. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Z.; Xin, L.L.; Xia, J.H.; Yang, S.L.; Chen, Y.X.; Li, K. Long-term High-fat High-sucrose Diet Promotes Enlarged Islets and β-Cell Damage by Oxidative Stress in Bama Minipigs. Pancreas 2015, 44, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, A.M.; Brown, J.L.; Santiago, C.A.; Aad, P.Y.; Spicer, L.J.; Spicer, M.T. High-fat diets promote insulin resistance through cytokine gene expression in growing female rats. J. Nutr. Biochem. 2008, 19, 505–513. [Google Scholar] [CrossRef]
- Fraulob, J.C.; Ogg-Diamantino, R.; Fernandes-Santos, C.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. A Mouse Model of Metabolic Syndrome: Insulin Resistance, Fatty Liver and Non-Alcoholic Fatty Pancreas Disease (NAFPD) in C57BL/6 Mice Fed a High Fat Diet. J. Clin. Biochem. Nutr. 2010, 46, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Soejima, Y.; Fukusato, T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 2012, 18, 2300–2308. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, X.-Y.; Li, J.; Xu, Z.-G.; Chen, L. The Characterization of High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model. Exp. Diabetes Res. 2008, 2008, 704045. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.J.; Meszaros, K.; Entes, L.J.; Claypool, M.D.; Pinkett, J.G.; Gadbois, T.M.; Reaven, G.M. A new rat model of type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metabolism 2000, 49, 1390–1394. [Google Scholar] [CrossRef] [PubMed]
- Shanik, M.H.; Xu, Y.; Škrha, J.; Dankner, R.; Zick, Y.; Roth, J. Insulin resistance and hyperinsulinemia: Is hyperinsulinemia the cart or the horse? Diabetes Care 2008, 31 (Suppl. 2), S262–S268. [Google Scholar] [CrossRef] [PubMed]
- Gavin, J.R., III; Roth, J.; Neville, D.M., Jr.; De Meyts, P.; Buell, D.N. Insulin-dependent regulation of insulin receptor concentrations: A direct demonstration in cell culture. Proc. Natl. Acad. Sci. USA 1974, 71, 84–88. [Google Scholar] [CrossRef]
- Le Marchand, Y.; Loten, E.G.; Assimacopoulos-Jeannet, F.; Forgue, M.E.; Freychet, P.; Jeanrenaud, B. Effect of fasting and streptozotocin in the obese-hyperglycemic (ob/ob) mouse: Apparent lack of a direct relationship between insulin binding and insulin effects. Diabetes 1977, 26, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Rizza, R.A.; Mandarino, L.J.; Genest, J.; Baker, B.A.; Gerich, J.E. Production of insulin resistance by hyperinsulinemia in man. Diabetologia 1985, 28, 70–75. [Google Scholar] [PubMed]
- Catalano, K.J.; Maddux, B.A.; Szary, J.; Youngren, J.F.; Goldfine, I.D.; Schaufele, F. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain. PLoS ONE 2014, 9, e108693. [Google Scholar] [CrossRef]
Total Fat (g/kg Body Weight) | Perienteric Fat (g/kg Body Weight) | Epidydymal Fat (g/kg Body Weight) | Perinephric Fat (g/kg Body Weight) | Cholesterol (mmol/L) | HDL-Cholesterol (mmol/L) | LDL-Cholesterol (mmol/L) | Triglycerides (mmol/L) | ||
---|---|---|---|---|---|---|---|---|---|
HF 3 weeks | age-matched control | 48.72 ± 2.21 | 9.56 ± 0.43 | 19.81 ± 2.06 | 17.80 ± 1.72 | 1.77 ± 0.09 | 0.72 ± 0.03 | 0.13 ± 0.01 | 0.35 ± 0.04 |
disease model | 70.05 ± 3.62 *** | 13.82 ± 0.79 *** | 38.47 ± 0.97 ** | 30.18 ± 1.97 ** | 1.83 ± 0.08 | 0.53 ± 0.03 *** | 0.11 ± 0.02 | 0.51 ± 0.04 ** | |
HF 19 weeks | age-matched control | 91.23 ± 7.63 | 13.76 ± 1.60 | 29.66 ± 1.98 | 29.01 ± 2.04 | 1.69 ± 0.08 | 0.80 ± 0.05 | 0.12 ± 0.01 | 1.14 ± 0.09 |
disease model | 223.37 ± 2.58 ****,#### | 32.12 ± 2.23 ****,#### | 61.58 ± 2.08 ****,##,ΔΔΔΔ | 75.21 ± 2.17 ****,####,ΔΔΔΔΔ | 2.48 ± 0.15 ***,### | 0.55 ± 0.03 **,### | 0.23 ± 0.01 ****,### | 1.66 ± 0.27 *,### | |
HF+ STZ | age-matched control | 54.23 ± 2.81 | 11.00 ± 0.88 | 18.66 ± 1.15 | 25.27 ± 1.42 | - | - | - | - |
disease model | 61.37 ± 2.50 ηηηη | 13.21 ± 0.62 ηηηη | 21.83 ± 0.88 *,####,ηηηη | 26.33 ± 1.89 ηηηη | - | - | - | - | |
HSu 4 weeks | age-matched control | 48.72 ± 2.21 | 9.56 ± 0.43 | 19.81 ± 2.06 | 17.80 ± 1.72 | 1.77 ± 0.09 | 0.72 ± 0.03 | 0.13 ± 0.01 | 0.35 ± 0.04 |
disease model | 52.46 ± 2.28 ###,ηηηη,ϕϕ | 10.17 ± 0.52 ##,ηηηη,ϕϕ | 20.62 ± 2.34 | 23.37 ± 0.95 * | 2.13 ± 0.11 *,# | 0.69 ± 0.05 ## | 0.14 ± 0.02 ηη | 0.61 ± 0.07 **,###,ηη | |
HSu 16 weeks | age-matched control | 59.83 ± 1.74 | 13.58 ± 0.31 | 25.98 ± 1.35 | 20.27 ± 2.11 | 1.80 ± 0.10 | 0.79 ± 0.04 | 0.10 ± 0.01 | 0.48 ± 0.06 |
disease model | 80.44 ± 2.34 ****,ηηηη,ΔΔΔΔ | 17.93 ± 0.75 ***,ηηη,ΔΔΔΔ | 31.43 ± 2.40 ηηηη,ϕϕϕ,Δ | 31.08 ± 2.66 *,ηηηη | 1.98 ± 0.11 η | 0.60 ± 0.04 **,#### | 0.12 ± 0.01 ηηη | 0.79 ± 0.05 **,ηη | |
HFHSu 25 weeks | age-matched control | 66.44 ± 3.93 | 15.58 ± 0.82 | 25.08 ± 1.52 | 25.78 ± 1.75 | 1.90 ± 0.25 | 0.63 ± 0.04 | 0.24 ± 0.03 | 0.90 ± 0.14 |
disease model | 113.91 ± 9.72 ***,###,ηηηη,Γ | 24.44 ± 2.84 **,###,ϕϕϕ,ΔΔΔ | 36.90 ± 2.83 **,ηηηη,ϕϕϕ,ΔΔ | 52.57 ± 4.45 ****,#,ηη,ΓΓ | 2.26 ± 0.16 | 0.59 ± 0.04 η | 0.37 ± 0.05 ###,ΔΔ,ΓΓΓΓ | 1.53 ± 0.13 **,#### | |
Zucker 17 weeks | age-matched control | 42.83 ± 4.15 | 6.55 ± 0.65 | 8.82 ± 0.71 | 11.37 ± 0.92 | 2.27 ± 0.07 | 1.64 ± 0.13 | 0.10 ± 0.02 | 1.16 ± 0.21 |
disease model | 151.77 ± 7.58 ****,####,ηηηη,ΓΓΓΓ,θ | 15.11 ± 1.25 ***,ηηη,ΔΔ | 22.75 ± 3.15 **,#,ηηηη,θθ | 35.05 ± 1.80 ****,ηηηη,ΔΔΔΔ | 4.51 ± 0.29 ***,θθθθ, ηηη,ΔΔΔΔ | 0.87 ± 0.03 ***,#### | 0.70 ± 0.07 ****,#### | 8.72 ± 1.21 ***,####,ΓΓΓΓ,θθθθ | |
Zucker 23 weeks | age-matched control | 30.44 ± 0.00 | 3.19 ± 0.00 | 7.45 ± 0.00 | 6.33 ± 0.00 | - | - | - | - |
disease model | 168.3 ± 34.94 | 12.27 ± 2.47 | 26.33 ± 4.21 | 45.64 ± 6.59 | - | - | - | - |
Plasma NE + Epi (pmol/mL) | Adrenal Medulla NE+Epi (pmol/mg Tissue) | ||
---|---|---|---|
HF 3 weeks | age-matched control | 52.01 ± 6.54 | 36038.33 ± 2300.22 |
disease model | 107.45 ± 8.17 **** | 50954.94 ± 4604.37 ** | |
HF 19 weeks | age-matched control | 80.50 ± 13.75 | 39048.39 ± 3164.09 |
disease model | 161.10 ± 36.80 * | 51395.94 ± 2612.16 ** | |
HSu 4 weeks | age-matched control | 52.01 ± 6.54 | 36038.33 ± 2300.22 |
disease model | 142.48 ± 18.21 **** | 57081.27 ± 5877.55 ** | |
HSu 16 weeks | age-matched control | 130.40 ± 29.74 | - |
disease model | 159.88 ± 51.57 | - |
Obesity | Increased Fasting Glycemia | Insulin Resistance | Glucose Intolerance | Hyperinsulinemia | Hyper Cholesterolemia | Hyper Triglyceridemia | Lipid Deposition in the Liver | Alterations in Insulin Signaling, in White Adipose Tissue | Increased Catecholamine Levels/SNS Activity | |
---|---|---|---|---|---|---|---|---|---|---|
HF 3 weeks | x | ✓ | ✓ | x | ✓ | x | ✓ | ✓ | ✓ | ✓ |
HF 19 weeks | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | ✓ |
HF + STZ | ✓ | ✓ | x | ✓ | x | - | - | ✓ | - | - |
HSu 4 weeks | ✓ | ✓ | ✓ | x | x | ✓ | ✓ | x | ✓ | ✓ |
HSu 16 weeks | x | x | ✓ | x | x | x | ✓ | - | ✓ | - |
HFHSu 25 weeks | x | ✓ | ✓ | ✓ | ✓ | x | ✓ | ✓ | - | ✓ |
Zucker 17 weeks | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - |
Zucker 23 weeks | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | ✓ | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, B.F.; Sacramento, J.F.; Ribeiro, M.J.; Prego, C.S.; Correia, M.C.; Coelho, J.C.; Cunha-Guimaraes, J.P.; Rodrigues, T.; Martins, I.B.; Guarino, M.P.; et al. Evaluating the Impact of Different Hypercaloric Diets on Weight Gain, Insulin Resistance, Glucose Intolerance, and its Comorbidities in Rats. Nutrients 2019, 11, 1197. https://doi.org/10.3390/nu11061197
Melo BF, Sacramento JF, Ribeiro MJ, Prego CS, Correia MC, Coelho JC, Cunha-Guimaraes JP, Rodrigues T, Martins IB, Guarino MP, et al. Evaluating the Impact of Different Hypercaloric Diets on Weight Gain, Insulin Resistance, Glucose Intolerance, and its Comorbidities in Rats. Nutrients. 2019; 11(6):1197. https://doi.org/10.3390/nu11061197
Chicago/Turabian StyleMelo, Bernardete F., Joana F. Sacramento, Maria J. Ribeiro, Claudia S. Prego, Miguel C. Correia, Joana C. Coelho, Joao P. Cunha-Guimaraes, Tiago Rodrigues, Ines B. Martins, Maria P. Guarino, and et al. 2019. "Evaluating the Impact of Different Hypercaloric Diets on Weight Gain, Insulin Resistance, Glucose Intolerance, and its Comorbidities in Rats" Nutrients 11, no. 6: 1197. https://doi.org/10.3390/nu11061197
APA StyleMelo, B. F., Sacramento, J. F., Ribeiro, M. J., Prego, C. S., Correia, M. C., Coelho, J. C., Cunha-Guimaraes, J. P., Rodrigues, T., Martins, I. B., Guarino, M. P., Seiça, R. M., Matafome, P., & Conde, S. V. (2019). Evaluating the Impact of Different Hypercaloric Diets on Weight Gain, Insulin Resistance, Glucose Intolerance, and its Comorbidities in Rats. Nutrients, 11(6), 1197. https://doi.org/10.3390/nu11061197