A Diet High in Processed Foods, Total Carbohydrates and Added Sugars, and Low in Vegetables and Protein Is Characteristic of Youth with Avoidant/Restrictive Food Intake Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Assessment of Food and Nutrient Intake
2.4. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Frequency of Commonly Reported Foods
3.3. Dietary Intake Among Food Groups
3.4. Energy and Macronutrient Intake
3.5. Micronutrient Intake
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
AN | Anorexia nervosa |
ARFID | Avoidant restrictive food intake disorder |
BMI | Body mass index |
CDI CDRS-R DRI | Children’s Depression Inventory Children’s Depression Rating Scale-Revised Dietary Reference Intakes |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, 5th Edition |
EDA-5 | Eating Disorder Assessment-5 |
EDE-Q | Eating Disorder Examination-Questionnaire |
KSADS-PL | Kiddie Schedule for Affective Disorders and Schizophrenia for School Aged Children-Present and Lifetime |
NCC | Nutrition Coordinating Center |
NDS-R | Nutrition Data System for Research |
PARDI SEM | Pica, ARFID, and Rumination Disorder Interview Standard error of mean |
TCRC | Translational Clinical Research Center |
USDA | United States Department of Agriculture |
References
- Thomas, J.J.; Lawson, E.A.; Micali, N.; Misra, M.; Deckersbach, T.; Eddy, K.T. Avoidant/Restrictive Food Intake Disorder: A Three-Dimensional Model of Neurobiology with Implications for Etiology and Treatment. Curr. Psychiatry Rep. 2017, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.J.; Eddy, K.T. Cognitive-Behavioral Therapy for Avoidant/Restrictive Food Intake Disorder: Children, Adolescents, and Adults; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Chandran, J.J.; Anderson, G.; Kennedy, A.; Kohn, M.; Clarke, S. Subacute combined degeneration of the spinal cord in an adolescent male with avoidant/restrictive food intake disorder: A clinical case report. Int. J. Eat. Disord. 2015, 48, 1176–1179. [Google Scholar] [CrossRef] [PubMed]
- Strandjord, S.E.; Sieke, E.H.; Richmond, M.; Rome, E.S. Avoidant/Restrictive Food Intake Disorder: Illness and Hospital Course in Patients Hospitalized for Nutritional Insufficiency. J. Adolesc. Heal. 2015, 57, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Kurz, S.; van Dyck, Z.; Dremmel, D.; Munsch, S.; Hilbert, A. Early-onset restrictive eating disturbances in primary school boys and girls. Eur. Child Adolesc. Psychiatry 2015, 24, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Eddy, K.T.; Thomas, J.J.; Hastings, E.; Edkins, K.; Lamont, E.; Nevins, C.M.; Patterson, R.M.; Murray, H.B.; Bryant-Waugh, R.; Becker, A.E. Prevalence of DSM-5 avoidant/restrictive food intake disorder in a pediatric gastroenterology healthcare network. Int. J. Eat. Disord. 2015, 48, 464–470. [Google Scholar] [CrossRef]
- Hay, P.; Mitchison, D.; Collado, A.E.L.; González-Chica, D.A.; Stocks, N.; Touyz, S. Burden and health-related quality of life of eating disorders, including Avoidant/Restrictive Food Intake Disorder (ARFID), in the Australian population. J. Eat. Disord. 2017, 5, 21. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary References Intakes for Vitamin K, Arsenic, Chromium, Copper, Iodine, Iron, Managanese, Molybdenum, Silicon, Vanadium, and Zinc; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D.; The National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-16394-1. [Google Scholar]
- Haytowitz, D.B.; Pehrsson, P.R. USDA’s National Food and Nutrient Analysis Program (NFNAP) produces high-quality data for USDA food composition databases: Two decades of collaboration. Food Chem. 2016, 238, 134–138. [Google Scholar] [CrossRef]
- McGuire, S. Scientific report of the 2015 dietary guidelines advisory committee. Departments of agriculture and health and human services. Adv. Nutr. 2016, 7, 202–204. [Google Scholar] [CrossRef]
- Bird, J.K.; Murphy, R.A.; Ciappio, E.D.; McBurney, M.I. Risk of deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients 2017, 9, 655. [Google Scholar] [CrossRef]
- Gibney, M.J. Ultra-Processed Foods: Definitions and Policy Issues. Curr. Dev. Nutr. 2019, 3, nzy077. [Google Scholar] [CrossRef]
- Moubarac, J.-C.; Parra, D.C.; Cannon, G.; Monteiro, C.A. Food classification systems based on food processing: Significance and implications for policies and actions: A systematic literature review and assessment. Curr. Obes. Rep. 2014, 3, 256–272. [Google Scholar] [CrossRef]
- Slimani, N.; Deharveng, G.; Southgate, D.A.T.; Biessy, C.; Chajès, V.; van Bakel, M.M.E.; Boutron-Ruault, M.C.; McTaggart, A.; Grioni, S.; Verkaik-Kloosterman, J.; et al. Contribution of highly industrially processed foods to the nutrient intakes and patterns of middle-aged populations in the European Prospective investigation into cancer and nutrition study. Eur. J. Clin. Nutr. 2009, 63, S206–S225. [Google Scholar] [CrossRef]
- Baraldi, L.G.; Martinez Steele, E.; Canella, D.S.; Monteiro, C.A. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open 2018, 8, e020574. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.-M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Moubarac, J.-C.; Levy, R.B.; Canella, D.S.; Louzada, M.L.; da Costa Louzada, M.L.; Cannon, G. Household availability of ultra-processed foods and obesity in nineteen European countries. Publ. Health Nutr. 2018, 21, 18–26. [Google Scholar] [CrossRef]
- Norris, M.L.; Spettigue, W.; Hammond, N.G.; Katzman, D.K.; Zucker, N.; Yelle, K.; Santos, A.; Gray, M.; Obeid, N. Building evidence for the use of descriptive subtypes in youth with avoidant restrictive food intake disorder. Int. J. Eat. Disord. 2018, 51, 170–173. [Google Scholar] [CrossRef]
- Taylor, C.M.; Wernimont, S.M.; Northstone, K.; Emmett, P.M. Picky/fussy eating in children: Review of definitions, assessment, prevalence and dietary intakes. Appetite 2015, 95, 349–359. [Google Scholar] [CrossRef] [Green Version]
- van der Horst, K.; Deming, D.M.; Lesniauskas, R.; Carr, B.T.; Reidy, K.C. Picky eating: Associations with child eating characteristics and food intake. Appetite 2016, 103, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.M.; Galloway, A.T.; Zickgraf, H.F.; Whited, M.C. Picky eating and fruit and vegetable consumption in college students. Eat. Behav. 2018, 30, 5–8. [Google Scholar] [CrossRef]
- Zickgraf, H.F.; Franklin, M.E.; Rozin, P. Adult picky eaters with symptoms of avoidant/restrictive food intake disorder: Comparable distress and comorbidity but different eating behaviors compared to those with disordered eating symptoms. J. Eat. Disord. 2016, 4, 26. [Google Scholar] [CrossRef]
- Sysko, R.; Glasofer, D.R.; Hildebrandt, T.; Klimek, P.; Mitchell, J.E.; Berg, K.C.; Peterson, C.B.; Wonderlich, S.A.; Walsh, B.T. The eating disorder assessment for DSM-5 (EDA-5): Development and validation of a structured interview for feeding and eating disorders. Int. J. Eat. Disord. 2015, 48, 452–463. [Google Scholar] [CrossRef]
- Kaufman, J.; Birmaher, B.; Brent, D.; Rao, U.; Flynn, C.; Moreci, P.; Williamson, D.; Ryan, N. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. J. Am. Acad. Child Adolesc. Psychiatry 1997, 36, 980–988. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Bryant-Waugh, R.; Micali, N.; Cooke, L.; Eddy, K.; Thomas, J. The Pica, ARFID, and Rumination Disorder Interview: Development of a multi-informant, semi-structured interview of feeding disorders across the lifespan. Int. J. Eat. Disord. 2018, 4, 378–387. [Google Scholar]
- Thompson, A.H. Childhood depression revisited: Indicators, normative tests, and clinical course. J. Can. Acad. Child Adolesc. Psychiatry 2012, 21, 5–8. [Google Scholar]
- Mayes, T.L.; Bernstein, I.H.; Haley, C.L.; Kennard, B.D.; Emslie, G.J. Psychometric Properties of the Children’s Depression Rating Scale–Revised in Adolescents. J. Child Adolesc. Psychopharmacol. 2010, 20, 513. [Google Scholar] [CrossRef]
- Kovacs, M.J. The Children’s Depression Inventory (CDI) Manual; Multi-Health Systems: New York, NY, USA, 1992. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Fairburn, C.G.; Beglin, S.J. Assessment of eating disorders: Interview or self-report questionnaire? Int. J. Eat. Disord. 1994, 16, 363–370. [Google Scholar]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC growth charts for the United States: Methods and development. Vital Health Stat. 2002, 246, 1–190. [Google Scholar]
- O’Connor, S.G.; Ke, W.; Dzubur, E.; Schembre, S.; Dunton, G.F. Concordance and predictors of concordance of children’s dietary intake as reported via ecological momentary assessment and 24 h recall. Public Health Nutr. 2018, 21, 1019–1027. [Google Scholar] [CrossRef]
- Frankenfeld, C.L.; Poudrier, J.K.; Waters, N.M.; Gillevet, P.M.; Xu, Y. Dietary Intake Measured from a Self-Administered, Online 24-Hour Recall System Compared with 4-Day Diet Records in an Adult US Population. J. Acad. Nutr. Diet. 2012, 112, 1642–1647. [Google Scholar] [CrossRef]
- Schakel, S.F. Maintaining a Nutrient Database in a Changing Marketplace: Keeping Pace with Changing Food Products—A Research Perspective. J. Food Compos. Anal. 2001, 14, 315–322. [Google Scholar] [CrossRef]
- Schakel, S.F.; Sievert, Y.A.; Buzzard, I.M. Sources of data for developing and maintaining a nutrient database. J. Am. Diet. Assoc. 1988, 88, 1268–1271. [Google Scholar]
- Schakel, S.F.; Buzzard, I.M.; Gebhardt, S.E. Procedures for Estimating Nutrient Values for Food Composition Databases. J. Food Compos. Anal. 1997, 10, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Joseph, M.L.; Carriquiry, A. A Measurement Error Approach to Assess the Association between Dietary Diversity, Nutrient Intake, and Mean Probability of Adequacy. J. Nutr. 2010, 140, 2094S–2101S. [Google Scholar] [CrossRef] [Green Version]
- Rubin, D.B. Evaluations of the Optimal Discovery Procedure for Multiple Testing. Int. J. Biostat. 2016, 12, 21–29. [Google Scholar] [CrossRef]
- Giacalone, M.; Agata, Z.; Cozzucoli, P.C.; Alibrandi, A. Bonferroni-Holm and permutation tests to compare health data: Methodological and applicative issues. BMC Med. Res. Methodol. 2018, 18, 81. [Google Scholar] [CrossRef]
- Harshman, S.G.; Saltzman, E.; Booth, S.L. Vitamin K: Dietary intake and requirements in different clinical conditions. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 531–538. [Google Scholar] [CrossRef]
- Schulte, E.M.; Avena, N.M.; Gearhardt, A.N. Which Foods May Be Addictive? The Roles of Processing, Fat Content, and Glycemic Load. PLoS ONE 2015, 10, e0117959. [Google Scholar] [CrossRef]
- Small, D.M.; DiFeliceantonio, A.G. Processed foods and food reward. Science 2019, 363, 346–347. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN decade of nutrition, the NOVA food classification and the trouble with ultra-processing. Publ. Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef]
- Schulte, E.M.; Smeal, J.K.; Gearhardt, A.N. Foods are differentially associated with subjective effect report questions of abuse liability. PLoS ONE 2017, 12, e0184220. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019, 30, 67–77. [Google Scholar] [CrossRef]
- Costa, C.S.; Del-Ponte, B.; Assunção, M.C.F.; Santos, I.S. Consumption of ultra-processed foods and body fat during childhood and adolescence: A systematic review. Publ. Health Nutr. 2018, 21, 148–159. [Google Scholar] [CrossRef]
- Poti, J.M.; Braga, B.; Qin, B. Ultra-processed food intake and obesity: What really matters for health—Processing or nutrient content? Curr. Obes. Rep. 2017, 6, 420–431. [Google Scholar] [CrossRef]
- Eicher-Miller, H.A.; Fulgoni, V.L.; Keast, D.R.; Keast, D.R. Contributions of processed foods to dietary intake in the US from 2003–2008: A report of the food and nutrition science Solutions joint task force of the academy of nutrition and dietetics, American society for nutrition, institute of food technologists, and international food information council. J. Nutr. 2012, 142, 2065S–2072S. [Google Scholar]
- Martínez Steele, E.; Baraldi, L.G.; da Costa Louzada, M.L.; Moubarac, J.-C.; Mozaffarian, D.; Monteiro, C.A. Ultra-processed foods and added sugars in the US diet: Evidence from a nationally representative cross-sectional study. BMJ Open 2016, 6, e009892. [Google Scholar] [CrossRef]
- Kohn, J.B. What Is ARFID? J. Acad. Nutr. Diet. 2016, 116, 1872. [Google Scholar] [CrossRef]
- Scott, J.M.; Molloy, A.M. The discovery of vitamin B12. Ann. Nutr. Metab. 2012, 61, 239–245. [Google Scholar] [CrossRef]
- Chen, F.; Du, M.; Blumberg, J.B.; Ho Chui, K.K.; Ruan, M.; Rogers, G.; Shan, Z.; Zeng, L.; Zhang, F.F. Association among dietary supplement use, nutrient intake, and mortality among U.S. adults. Ann. Intern. Med. 2019. [Google Scholar] [CrossRef]
- Venkatramanan, S.; Armata, I.E.; Strupp, B.J.; Finkelstein, J.L. Vitamin B-12 and cognition in children. Adv. Nutr. 2016, 7, 879–888. [Google Scholar] [CrossRef]
- Fulgoni, V.L.; Keast, D.R.; Bailey, R.L.; Dwyer, J. Foods, fortificants, and supplements: Where do Americans get their nutrients? J. Nutr. 2011, 141, 1847–1854. [Google Scholar] [CrossRef]
- Harshman, S.G.; Finnan, E.G.; Barger, K.J.; Bailey, R.L.; Haytowitz, D.B.; Gilhooly, C.H.; Booth, S.L. Vegetables and mixed dishes are top contributors to phylloquinone intake in US adults: Data from the 2011–2012 NHANES. J. Nutr. 2017, 147, 1308–1313. [Google Scholar] [CrossRef]
- Floros, J.D.; Newsome, R.; Fisher, W.; Barbosa-Cánovas, G.V.; Chen, H.; Dunne, C.P.; German, J.B.; Hall, R.L.; Heldman, D.R.; Karwe, M.V.; et al. Feeding the world today and tomorrow: The importance of food science and technology. Compr. Rev. Food Sci. Food Saf. 2010, 9, 572–599. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef]
- Puwastien, P. Issues in the development and use of food composition databases. Publ. Health Nutr. 2002, 5, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Shea, M.K.; Booth, S.L.; Kyla Shea, M.; Booth, S.L.; Shea, M.K.; Booth, S.L. Concepts and controversies in evaluating vitamin K status in population-based studies. Nutrients 2016, 8, 8. [Google Scholar] [CrossRef]
- Potischman, N. Biologic and methodologic issues for nutritional biomarkers. J. Nutr. 2003, 133, 875S–880S. [Google Scholar] [CrossRef]
- Blanck, H.M.; Bowman, B.A.; Cooper, G.R.; Myers, G.L.; Miller, D.T. Laboratory issues: Use of nutritional biomarkers. J. Nutr. 2003, 133, 888S–894S. [Google Scholar] [CrossRef]
- Eddy, K.T.; Harshman, S.G.; Becker, K.R.; Bern, E.; Bryant-Waugh, R.; Hilbert, A.; Katzman, D.K.; Lawson, E.A.; Manzo, L.D.; Menzel, J.; et al. Radcliffe ARFID workgroup: Toward operationalization of research diagnostic criteria and directions for the field. Int. J. Eat. Disord. 2019, 52, 361–366. [Google Scholar] [CrossRef]
Full or Subthreshold ARFID | Healthy Controls | ||
---|---|---|---|
n = 52 | n = 52 | p-Value | |
Age (y) a | 14.3 ± 0.4 | 16.9 ± 0.4 | <0.01 * |
Sex (% male) | 61.5 | 38.5 | 0.05 * |
Percent of median BMI (%) a | 103 ± 27.8 | 105 ± 16.6 | 0.54 |
Ethnicity (%(n)) | 0.35 | ||
Hispanic | 10 (5) | 22 (11) | |
Non-Hispanic | 90 (47) | 78 (41) | |
Racial Diversity (%(n)) | 0.85 | ||
Caucasian | 92 (48) | 62 (32) | |
African American | 2 (1) | 10 (5) | |
Asian | 2 (1) | 11 (6) | |
More than one race | 4 (2) | 13 (7) | |
Did not specify | - | 4 (2) |
Reported Foods a | Full or Subthreshold ARFID | Healthy Controls | |
---|---|---|---|
(% (n)) | (% (n)) | p-Value | |
Sugar, syrup, honey, jam, jelly, preserves | 71 (37) | 63 (33) | 0.17 |
Cheese, full fat | 56 (29) | 50 (26) | 0.10 |
Sweetened soft drinks and fruit juice b | 54 (28) | 46 (24) | 0.16 |
Loaf type bread and plain rolls-refined grains | 52 (27) | 40 (21) | 0.01 * |
Cakes, cookies, pies, pastries, Danishes, doughnuts, and cobblers | 48 (25) | 35 (15) | 0.01 * |
Reported Foods a | Healthy Controls | Full or Subthreshold ARFID | |
---|---|---|---|
(% (n)) | (% (n)) | p-Value | |
Sugar, syrup, honey, jam, jelly, preserves | 63 (33) | 71 (37) | 0.17 |
Other vegetables b | 56 (29) | 21 (11) | <0.01 * |
Cheese, full fat | 50 (26) | 56 (29) | 0.10 |
Fruit (excluding citrus fruit) | 46 (24) | 25 (13) | <0.01 * |
Dark-green vegetables | 46 (24) | 17 (8) | <0.01 * |
Mean Intake a | % (n) Not Meeting Dietary Guidelines for Americans Recommendation b | |||||
---|---|---|---|---|---|---|
Full or Subthreshold ARFID | Healthy Controls | Full or Subthreshold ARFID | Healthy Controls | |||
n = 52 | n = 52 | p-Value | n = 52 | n = 52 | p-Value | |
Fruit c (cup equivalents) | 1.3 ± 0.1 | 1.9 ± 0.1 | 0.03 | 72 (37) | 57 (29) | 0.001 * |
Vegetables d (cup equivalents) | 1.4 ± 0.1 | 2.6 ± 0.2 | <0.001 * | 86 (45) | 65 (34) | 0.001 * |
Grains e (ounce equivalents) | 7.9 ± 0.3 | 7.0 ± 0.2 | 0.17 | 33 (17) | 39 (20) | 0.14 |
Protein f (ounce equivalents) | 3.2 ± 0.2 | 5.6 ± 0.3 | <0.001 * | 76 (39) | 50 (26) | 0.001 * |
Dairy g (cup equivalents) | 3.7 ± 0.4 | 2.5 ± 0.2 | 0.09 | 39 (20) | 53 (27) | 0.26 |
Oils h,i (teaspoons) | 2.3 ± 0.21 | 2.4 ± 0.2 | 0.68 | 24 (12) | 25 (13) | 0.82 |
Full or Subthreshold ARFID a | Healthy Controls a | ||
---|---|---|---|
n = 52 | n = 52 | p-Value | |
Total grams (g) | 1970 ± 97 | 2701 ± 357 | 0.10 |
Total Calories (kcal) | 2126 ± 80 | 1967 ± 82 | 0.24 |
Total carbohydrates (g) | 291 ± 111 | 252 ± 11.7 | 0.01 * |
Total sugars (g) | 131 ± 7.9 | 107 ± 6.8 | 0.02 |
Added sugars (g) | 97.0 ± 6.6 | 66.7 ± 5.4 | 0.002 * |
Total fiber (g) | 15.0 ± 0.8 | 19.1 ± 1.2 | 0.03 |
Total protein (g) | 63.9 ± 3.2 | 78.8 ± 3.6 | 0.003 * |
Total fat (g) | 82.0 ± 3.6 | 73.9 ± 3.5 | 0.17 |
Solid fats (g) | 41.7 ± 2.9 | 39.1 ± 3.6 | 0.16 |
Mean Intake a | % (n) Not Meeting Dietary Reference Intakes b | |||||
---|---|---|---|---|---|---|
Full or Subthreshold ARFID | Healthy Controls | Full or Subthreshold ARFID | Healthy Controls | |||
n = 52 | n = 52 | p-Value | n = 52 | n = 52 | p-Value | |
Vitamin A (mcg) c | 699 ± 32.5 | 807 ± 32.3 | 0.16 | 70 (37) | 63 (33) | 0.09 |
Vitamin C (mg) | 348 ± 88.3 | 90.4 ± 4.8 | 0.45 | 62 (32) | 49 (25) | 0.08 |
Vitamin D (mcg) d | 5.4 ± 0.2 | 6.2 ± 0.3 | 0.11 | 93 (48) | 92 (48) | 0.38 |
Vitamin E (mg) | 10.0 ± 0.4 | 9.8 ± 0.4 | 0.65 | 86 (45) | 84 (44) | 0.95 |
Vitamin K (mcg) | 55.8 ± 1.9 | 162 ± 12.3 | 0.01 * | 78 (40) | 55 (28) | <0.001 * |
Vitamin B6 (mg) e | 1.6 ± 0.04 | 1.9 ± 0.04 | 0.09 | 38 (20) | 27 (14) | 0.07 |
Folate (mcg) f | 560 ± 17.2 | 569 ± 14.5 | 0.44 | 41 (21) | 32 (17) | 0.14 |
Vitamin B12 (cobalamin, mcg) | 3.9 ± 0.1 | 4.7 ± 0.2 | 0.01 * | 36 (19) | 32 (17) | 0.12 |
Calcium (mg) | 1096 ± 29.1 | 1037 ± 26.7 | 0.78 | 63 (33) | 72 (37) | 0.75 |
Iron (mg) | 14.5 ± 0.3 | 15.7 ± 0.4 | 0.14 | 45 (24) | 46 (24) | 0.38 |
Magnesium (mg) | 248 ± 4.8 | 299 ± 6.6 | 0.05 | 90 (47) | 76 (39) | 0.002 * |
Zinc (mg) | 9.4 ± 0.2 | 11.0 ± 0.3 | 0.03 | 65 (34) | 52 (27) | 0.01 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harshman, S.G.; Wons, O.; Rogers, M.S.; Izquierdo, A.M.; Holmes, T.M.; Pulumo, R.L.; Asanza, E.; Eddy, K.T.; Misra, M.; Micali, N.; et al. A Diet High in Processed Foods, Total Carbohydrates and Added Sugars, and Low in Vegetables and Protein Is Characteristic of Youth with Avoidant/Restrictive Food Intake Disorder. Nutrients 2019, 11, 2013. https://doi.org/10.3390/nu11092013
Harshman SG, Wons O, Rogers MS, Izquierdo AM, Holmes TM, Pulumo RL, Asanza E, Eddy KT, Misra M, Micali N, et al. A Diet High in Processed Foods, Total Carbohydrates and Added Sugars, and Low in Vegetables and Protein Is Characteristic of Youth with Avoidant/Restrictive Food Intake Disorder. Nutrients. 2019; 11(9):2013. https://doi.org/10.3390/nu11092013
Chicago/Turabian StyleHarshman, Stephanie G., Olivia Wons, Madeline S. Rogers, Alyssa M. Izquierdo, Tara M. Holmes, Reitumetse L. Pulumo, Elisa Asanza, Kamryn T. Eddy, Madhusmita Misra, Nadia Micali, and et al. 2019. "A Diet High in Processed Foods, Total Carbohydrates and Added Sugars, and Low in Vegetables and Protein Is Characteristic of Youth with Avoidant/Restrictive Food Intake Disorder" Nutrients 11, no. 9: 2013. https://doi.org/10.3390/nu11092013
APA StyleHarshman, S. G., Wons, O., Rogers, M. S., Izquierdo, A. M., Holmes, T. M., Pulumo, R. L., Asanza, E., Eddy, K. T., Misra, M., Micali, N., Lawson, E. A., & Thomas, J. J. (2019). A Diet High in Processed Foods, Total Carbohydrates and Added Sugars, and Low in Vegetables and Protein Is Characteristic of Youth with Avoidant/Restrictive Food Intake Disorder. Nutrients, 11(9), 2013. https://doi.org/10.3390/nu11092013