Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa)
Abstract
:1. Introduction
2. Phenolic Compounds
3. Macro- and Microelements
4. Antioxidant Potential
5. Effect on Enzyme Activity
6. Cytotoxic Activity
7. Antimicrobial and Antifungal Activities
8. Health-Promoting Properties and Application in Medicine
9. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.M.; Sineiro, J.; Dominguez, H. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Cvetkovic, D.; Stanojevic, L.; Zvezdanovic, J.; Savic, S.; Ilic, D.; Karabegovic, I. Aronia leaves at the end of harvest season—Promising source of phenolic compounds, macro- and microelements. Sci. Hortic. 2018, 239, 17–25. [Google Scholar] [CrossRef]
- Ferlemi, A.V.; Lamari, F.N. Berry leaves: An alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants 2016, 5, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Amibigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Randhir, R.; Lin, Y.T.; Shetty, K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem. 2004, 39, 637–646. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C.O.; Robles-Sánchez, M.; Astiazaran-garcia, H.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Phenolic compounds: Their journey after intake. Food Funct. 2014, 5, 189–197. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: www.fao.org/faostat/en/#data (accessed on 24 January 2020).
- Paunović, S.M.; Masković, P.; Nikolić, M.; Miletić, R. Bioactive compounds and antimicrobial activity of black currant (Ribes nigrum L.) berries and leaves extract obtained by different soil management system. Sci. Hortic. 2017, 222, 69–75. [Google Scholar] [CrossRef]
- Patel, A.V.; Rojas-Vera, J.; Dacke, C.G. Therapeutic constituents and actions of Rubus species. Curr. Med. Chem. 2004, 11, 1501–1512. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Tian, Y.; Puganen, A.; Alakomi, H.L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef]
- Buricova, L.; Andjelkovic, M.; Cermakova, A.; Reblova, Z.; Jurcek, O.; Kolehmainen, E.; Verhe, R.; Kvasnicka, F. Antioxidant capacity and antioxidants of strawberry, blackberry and raspberry leaves. Czech J. Food Sci. 2011, 29, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Costea, T.; Lupu, A.R.; Vlase, L.; Nencu, J.; Gird, C.E. Phenolic content and antioxidant activity of a raspberry leaf dry extract. Rom. Biotechnol. Lett. 2016, 21, 11345–11355. [Google Scholar]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouysegu, L. Plant polyphenols: Chemical properties, biological activities and synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Parus, A. Antioxidant and pharmacological properties of phenolic acids. Postępy Fitoter. 2013, 1, 48–53. [Google Scholar]
- Ferreyra, M.L.F.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar]
- Thi, N.D.; Hwang, E.S. Bioactive compound contents and antioxidant activity in Aronia (Aronia melanocarpa) leaves collected at different growth stages. Prev. Nutr. Food Sci. 2014, 19, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Szopa, A.; Kokotkiewicz, A.; Kubica, P.; Banaszczak, P.; Wojtanowska-Krośniak, A.; Krośniak, M.; Marzec-Wróblewska, U.; Badura, A.; Zagrodzki, P.; Bucinski, A. Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. ×prunifolia and their antioxidant activities. Eur. Food Res. Technol. 2017, 243, 1645–1657. [Google Scholar] [CrossRef] [Green Version]
- Pavlovic, A.V.; Papetti, A.; Zagorac, D.C.D.; Gasic, U.M.; Misic, D.M.; Tesic, Z.L.; Natic, M.M. Phenolics composition of leaf extracts of raspberry and blackberry cultivars grown in Serbia. Ind. Crops Prod. 2016, 87, 304–314. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant capacity, phenolic compounds and minerals content of blackcurrant (Ribes nigrum L.) leaves as influenced by harvesting date and extraction method. Ind. Crops Prod. 2014, 53, 133–139. [Google Scholar] [CrossRef]
- Vagiri, M.; Conner, S.; Stewart, D.; Andersson, S.C.; Verrall, S.; Johansson, E.; Rumpunen, K. Phenolic compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem. 2015, 172, 135–142. [Google Scholar] [CrossRef]
- Skupień, K.; Oszmiański, J.; Kostrzewa-Nowak, D.; Tarasiuk, J. In vitro antileukaemic activity of extracts from berry plant leaves against sensitive and multidrug resistant HL60 cells. Cancer Lett. 2006, 236, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Milenkovic-Andjelkovic, A.S.; Andjelkovic, M.Z.; Radovanovic, A.N.; Radovanovic, B.C.; Randjelovic, V. Phenol composition, radical scavenging activity and antimicrobial activity of berry leaf extracts. Bulg. Chem. Commun. 2016, 48, 27–32. [Google Scholar]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant capacity of black currant varies, with organ season and cultivar. J. Agric. Food Chem. 2006, 54, 6271–6276. [Google Scholar] [CrossRef] [PubMed]
- Cvetanović, A.; Zenginb, G.; Zekovića, Z.; Švarc-Gajića, J.; Ražić, S.; Damjanović, A.; Mašković, P.; Mitić, M. Comparative in vitro studies of the biological potential and chemical composition of stems, leaves and berries Aronia melanocarpa’s extracts obtained by subcritical water extraction. Food Chem. Toxicol. 2018, 121, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Wojdyło, A.; Gorzelany, J.; Kapusta, I. Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. J. Agric. Food Chem. 2011, 59, 12830–12835. [Google Scholar] [CrossRef] [PubMed]
- Vagiri, M.; Ekholm, A.; Anderson, S.C.; Johansson, E.; Rumpunen, K. An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant (Ribes nigrum L.). J. Agric. Food Chem. 2012, 60, 10501–10510. [Google Scholar] [CrossRef]
- Ponder, A.; Hallmann, E. Phenolics and carotenoid contents in the leaves of different organic and conventional raspberry (Rubus idaeus L.) cultivars and their in vitro activity. Antioxidants 2019, 8, 458. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Han, H.; Chen, J.; Yao, J.; Liu, Y. Determination of active compounds in raspberry leaf extracts and the effects of extract intake on mice. Food Sci. Technol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Skupień, K.; Kostrzewa-Nowak, D.; Oszmiański, J.; Tarasiuk, J. In vitro antileukaemic activity of extracts from chokeberry (Aronia melanocarpa [Michx] Elliot) and mulberry (Morus alba L.) leaves against sensitive and multidrug resistant HL60 cells. Phytother. Res. 2008, 22, 689–694. [Google Scholar] [CrossRef]
- Materska, M.; Perucka, I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J. Agric. Food Chem. 2005, 53, 1750–1756. [Google Scholar] [CrossRef]
- Stern, B.R.; Solioz, M.; Krewski, D.; Aggett, P.; Aw, T.C.; Baker, S.; Crump, K.; Durson, M.; Haber, L.; Hertzberg, R. Copper and human health: Biochemistry, genetics, and strategies for modelling dose-response relationships. J. Toxicol. Environ. Health Part B 2007, 10, 157–222. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Virtanen, M.J.; Mars, M.; Männisto, S.J.; Pietinen, P.; Albanes, D.; Virtamo, J. Magnesium, calcium, potassium and sodium intakes and risk of stroke in male smokers. Arch. Int. Med. 2008, 168, 459–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janz, T.G.; Johnson, R.L.; Rubenstein, S.D. Anemia in the emergency department: Evaluation and treatment. Emerg. Med. Pract. 2013, 15, 1–15. [Google Scholar] [PubMed]
- Pavlovic, A.N.; Brcanovic, J.M.; Veljkovic, J.N.; Mitic, S.S.; Tošic, S.B.; Kalicanin, B.M.; Kostic, D.A.; Ðordevic, M.S.; Velimirovic, D.S. Characterization of commercially available products of aronia according to their metal content. Fruits 2015, 70, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration. Vitamins and Minerals. Available online: http://www.fda.gov/nutritioneducation (accessed on 24 January 2020).
- Niskanen, R. Nutritional status in commercial currant fields. Agric. Food Sci. 2002, 11, 301–310. [Google Scholar] [CrossRef]
- Karaklajić-Stajić, Z.; Glišić, I.S.; Ružić, D.; Vujović, T.; Pešaković, M. Microelements content in leaves of raspberry cv. Willamette as affected by foliar nutrition and substrates. Hortic. Sci. 2012, 39, 67–73. [Google Scholar]
- Biel, W.; Jaroszewska, A. The nutritional value of leaves of selected berry species. Sci. Agric. 2017, 74, 405–410. [Google Scholar] [CrossRef]
- Panic, M.; Radić-Stojkovic, M.; Kraljić, K.; Skevin, D.; Radojcic-Redovnikovic, I.; Srcek, V.G.; Radosevic, K. Ready-to-use green polyphenolic extracts from food by-products. Food Chem. 2019, 283, 628–636. [Google Scholar] [CrossRef]
- Veljković, B.; Đorđević, N.; Dolićanin, Z.; Ličina, B.; Topuzović, M.; Stanković, M.; Zlatić, N.; Dajić-Stevanović, Z. Antioxidant and anticancer properties of leaf and fruit extracts of the wild raspberry (Rubus idaeus L.). Not. Bot. Horti Agrobot. 2019, 47, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Tabart, J.; Franck, T.; Kevers, C.; Pincemail, J.; Serteyn, D.; Defraigne, J.O.; Dommes, J. Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem. 2012, 131, 1116–1122. [Google Scholar] [CrossRef]
- Luzak, B.; Boncler, M.; Rywaniak, J.; Dudzińska, D.; Rozalski, M.; Krajewska, U.; Balcerczak, J.; Podsedek, A.; Redzynia, M.; Watala, C. Extracts from Ribes nigrum leaves in vitro activates nitric oxide synthase (eNOS) and increases CD39 expression in human endothelial cells. J. Physiol. Biochem. 2014, 70, 1007–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durgo, K.; Belscak-Cvitanovic, A.; Stancic, A.; Franekic, J.; Komes, D. The bioactive potential of red raspberry (Rubus idaeus L.) leaves in exhibiting cytotoxic and cytoprotective activity on human laryngeal carcinoma and colon adenocarcinoma. J. Med. Food 2012, 15, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp, P.; Koskar, J.; Anton, D.; Meremae, K.; Kapp, K.; Laurson, P.; Bleive, U.; Kaldmae, H.; Roasto, M.; Pussa, T. Antibacterial and antioxidative properties of different parts of garden rhubarb, blackcurrant, chokeberry and blue honeysuckle. J. Sci. Food Agric. 2018, 99, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef]
- Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Alves, M.J.; Ferreira, I.C.F.R.; Froufe, H.J.C.; Abre, R.M.V.; Martins, A.; Pintado, M. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J. Appl. Microbiol. 2013, 115, 346–357. [Google Scholar] [CrossRef]
- Declume, C. Anti-inflammatory evaluation of a hydroalcoholic extract of black currant leaves (Ribes nigrum). J. Ethnopharmacol. 1989, 27, 91–98. [Google Scholar] [CrossRef]
- Tripoli, E.; Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Choi, J.S.; Yokozawa, T.; Oura, H. Antihyperlipidemic effect of flavonoids from Prunus davidiana. J. Nat. Prod. 1991, 54, 218–224. [Google Scholar] [CrossRef]
- Jung, U.J.; Lee, M.K.; Jeong, K.S.; Choi, M.S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J. Nutr. 2004, 134, 2499–2503. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, R.; Puchchakayala, G. Hypoglycemic and antidiabetic activity of flavonoids: Boswellic acid, ellagic acid, quercetin, rutin on streptozotocinnicotinamide induced type 2 diabetic rats. Int. J. Pharm. Pharm. Sci. 2012, 4, 251–256. [Google Scholar]
- Pilar Nicasio-Torres, M.; Meckes-Fische, M.; Aguilar-Santamaría, L.; Garduno-Ramírez, M.; Chávez-Ávila, V.; Cruz-Sosa, F. Production of chlorogenic acid and isoorientin hypoglycemic compounds in Cecropia obtusifolia calli and in cell suspension cultures with nitrate deficiency. Acta Physiol. Plant. 2012, 34, 307–316. [Google Scholar] [CrossRef]
- Folador, P.; Cazarolli, L.; Gazola, A.; Reginatto, F.; Schenkel, E.; Silva, F. Potential insulin secretagogue effects of isovitexin and swertisin isolated from Wilbrandia ebracteata roots in non-diabetic rats. Fitoterapia 2010, 81, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Brahmachari, G. Bio-flavonoids with promising antidiabetic potentials: A critical survey. In Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry; Res Signpost: Kerala, India, 2011; pp. 187–221. [Google Scholar]
- Garbacki, N.; Tits, M.; Angenot, N.; Damas, J. Inhibitory effects of proanthocyanidins from Ribes nigrum leaves on carrageenan acute inflammatory reactions induced in rats. BMC Pharmacol. 2004, 4, 1471–2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, N.; Gu, Y.; Ye, C.; Cao, Y.; Liu, Z.; Yin, J. Antithrombotic activity of fractions and components obtained from raspberry leaves (Rubus chingii). Food Chem. 2011, 132, 181–185. [Google Scholar] [CrossRef]
- Kruczek, M.; Kostecka-Gugała, A.; Augustynowicz, J.; Ledwożyw-Smoleń, I.; Orzeł, A.; Król-Dyrek, K.; Kaszycki, P. Raspberry and blackberry leaves as a raw material for pharmaceutical industry. Przem. Chem. 2015, 94, 1431–1436. [Google Scholar]
- Rojas-Vera, J.; Patel, A.V.; Dacke, C.G. Relaxant activity of raspberry (Rubus idaeus) leaf extract in guinea-pig ileum in vitro. Phytother. Res. 2002, 16, 665–668. [Google Scholar] [CrossRef]
- Pirvu, L.; Panteli, M.; Rasit, I.; Grigore, A.; Bubueanu, C. The leaves of Aronia melanocarpa L. and Hippophae rhamnoides L. as source of active ingredients for biopharmaceutical engineering. Agric. Agric. Sci. Procedia. 2015, 6, 593–600. [Google Scholar] [CrossRef]
- Cuvorova, I.N.; Davydov, V.V.; Prozorovskiĭ, V.N.; Shvets, V.N. Peculiarity of the antioxidant action of the extract from Aronia melanocarpa leaves antioxidant on the brain. Biomeditsinskaia Khimiia 2005, 51, 66–71. [Google Scholar]
- Kokotkiewicz, A.; Jaremicz, Z.; Luczkiewicz, M. Aronia plants: A review of traditional use, biological activities and perspectives for modern medicine. J. Med. Food 2010, 13, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Maslov, D.L.; Ipatova, O.M.; Abakumova, O.; Tsvetkova, T.A.; Prozorovskiĭ, V.N. Hypoglycemic effect of an extract from Aronia melanocarpa leaves. Vopr. Meditsinskoi khimii 2002, 48, 271–277. [Google Scholar]
- Stefanescu, B.E.; Szabo, K.; Mocan, A.; Crisan, G. Phenolic compounds from five Ericaceae species leaves and their related bioavailability and health benefits. Molecules 2019, 24, 2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calinoiu, L.F.; Vodnar, D.C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Black Currant | Raspberry | Aronia | |||
---|---|---|---|---|---|---|
Leaves | Extract | Leaves | Extract | Leaves | Extract | |
Caffeic acid | 9 [20] | 0.3–77 [13,19,22,28] | 27 [23] | 52 [30] | ||
Chlorogenic acid | 1–10 [20,21] | 21 [23] | 2.9–23 [13,28,29] | 39 [23] | 64–706 [18,30] | 3 [25] |
Neochlorogenic acid | 14 [21] | 13–17 [19] | 41–483 [18,30] | |||
Ferulic acid | 2 [20] | 17.6–19 [19] | 5 [25] | |||
Gallic acid | 20 [20] | 18 [23] | 2.3–31 [19,22] | 27 [23] | ||
p-Coumaric acid | 29 [20] | 0.9–67 [19,22,28] | 4 [30] | 9 [25] | ||
Salicylic acid | 24 [20] | 41 [28] | ||||
Sinapic acid | 1 [20] | 55 [25] | ||||
Rosmarinic acid | 1–3 [13] | 23–155 [18] | 16 [25] | |||
Ellagic acid | 415 [23] | 19–281 [19,22,28,29] | 438 [23] | |||
Apigenin | 21 [25] | |||||
Luteolin | 49 [28] | 33 [25] | ||||
Quercetin | 5–136 [20,24] | 352 [23] | 2–62 [19,22,28] | 301 [23] | 29–316 [18,30] | 11 [25] |
Quercetin 3-O-rutinoside | 16–210 [20,21,24] | 584 [23] | 5–59 [13,19,28,29] | 478 [23] | 62–103 [18] | 69 [25] |
Quercetin 3-O-galactoside | 7 [21] | 3–72 [13] | ||||
Quercetin 3-O-glucoside | 5–132 [21,24] | 714 [23] | 83 [28] | 811 [23] | ||
Quercetin 3-O-malonylglucoside | 301 [21] | |||||
Kaempferol | 1 [24] | 0.5–37 [19,22] | 7 [25] | |||
Kaempferol 3-O-rutinoside | 2 [21] | 3 [29] | ||||
Kaempferol 3-O-glucoside | 2–75 [21,24] | 410 [23] | 27–126 [13] | 278 [23] | ||
Myricetin | 8–83 [20,24] | 23 [28] | ||||
Myricetin 3-O-malonylglucoside | 5 [21] | |||||
Catechin | 92 [23] | 169–191 [19] | 247 [23] | |||
Epicatechin | 127 [23] | 0.4–13 [19,29] | 378 [23] | |||
Epigallocatechin | 1 [21] | 46 [23] | 0.5–1.5 [19] | |||
Procyanidin B2 | 278 [23] |
Element | Black | Raspberry | Aronia |
---|---|---|---|
Currant | |||
N | 24 [37] | 22 [39] | 18.5 [39] |
Ca | 17–21 [20,37] | 8 [39] | 3.6–9.2 [2,35,39] |
Mg | 5–6 [20,37] | 5.4 [39] | 0.8–4.7 [2,35,39] |
K | 11–17 [20,37] | 17 [39] | 0.76–15.8 [2,35,39] |
B | 0.034–0.06 [20,37] | 0.098 [38] | 0.005 [35] |
Fe | 0.28–0.43 [20] | 0.064–0.183 [38,39] | 0.017–0.023 [2,35,39] |
Mn | 0.041–0.077 [20] | 0.064 [39] | 0.006–0.151 [2,35,39] |
P | 6 [37] | 4 [39] | 1–3.3 [2,35,39] |
Na | 0.013–0.063 [20] | 4 [39] | 0.018–0.35 [2,35,39] |
Mo | 0.004–0.021 [38,39] | 0.0008–0.025 [35,39] | |
Cu | 0.004–0.007 [20] | 0.004–0.029 [38,39] | 0.001–0.02 [2,35,39] |
Zn | 0.03 [39] | 0.008–0.025 [2,35,39] | |
Al | 0.1–0.19 [20] | 0.011 [35] | |
Cr | 0.003–0.004 [20] | 0.001 [39] | 0.0005–0.001 [35,39] |
Ni | 0.005 [39] | 0.00014–0.004 [35,39] | |
Cd | 0.003 [39] | 0.00002–0.003 [35,39] | |
Pb | 0.006 [39] | 0.0001–0.009 [35,39] | |
Co | 0.0004 [39] | 0.0005 [39] |
Biological Activity | Black Currant | Raspberry | Aronia |
---|---|---|---|
Enzymes inhibition Enzymes enhance | Myeloperoxidase (MPO) [42] Nitric oxide synthase (eNOS) [43] | Acetylocholinoesterase [25] Elastase [25] | |
Cytotoxic effects | HCT-116 [41] HEp2 [44] HL60 [22] SW 480 [44] | A-549 [25] HeLa [25] HL60 [18,30] L1210 [18] LS-174T [25] SK-Hep1 [17] | |
Antibacterial activity | Aspergillus niger [8] Bacillus cereu [45] Campylobacter jejuni [45] Candida albicans [8] Listeria monocytogenes [23,45] Proteus vulgaris [8] Sarcina lutea [23] Staphyloccus aureus [23] Yersinia ruckeri [45] | Listeria monocytogenes [11,23] Sarcina lutea [23] Staphyloccus aureus [11,23] Salmonella enterica [11] | Listeria monocytogenes [11] Proteus mirabilis [25] Proteus vulgaris [25] Staphyloccus aureus [11] Salmonella enterica [11] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staszowska-Karkut, M.; Materska, M. Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. https://doi.org/10.3390/nu12020463
Staszowska-Karkut M, Materska M. Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients. 2020; 12(2):463. https://doi.org/10.3390/nu12020463
Chicago/Turabian StyleStaszowska-Karkut, Monika, and Małgorzata Materska. 2020. "Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa)" Nutrients 12, no. 2: 463. https://doi.org/10.3390/nu12020463
APA StyleStaszowska-Karkut, M., & Materska, M. (2020). Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients, 12(2), 463. https://doi.org/10.3390/nu12020463