Supplementation of Re-Esterified Docosahexaenoic and Eicosapentaenoic Acids Reduce Inflammatory and Muscle Damage Markers after Exercise in Endurance Athletes: A Randomized, Controlled Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Procedures
2.4. Blood Collection, Handling, Storage and analysis
2.5. Supplementation Protocol
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Magee, P.; Pearson, S.; Whittingham-Dowd, J.; Allen, J. PPARγ as a molecular target of EPA anti-inflammatory activity during TNF-α-impaired skeletal muscle cell differentiation. J. Nutr. Biochem. 2012, 23, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Kubota, H.; Matsumoto, H.; Higashida, M.; Murakami, H.; Nakashima, H.; Oka, Y.; Okumura, H.; Yamamura, M.; Nakamura, M.; Hirai, T. Eicosapentaenoic acid modifies cytokine activity and inhibits cell proliferation in an oesophageal cancer cell line. Anticancer Res. 2013, 33, 4319–4324. [Google Scholar]
- Jeromson, S.; Gallagher, I.J.; Galloway, S.D.R.; Hamilton, D.L. Omega-3 fatty acids and skeletal muscle health. Mar. Drugs 2015, 13, 6977–7004. [Google Scholar] [CrossRef]
- Yang, B.; Fritsche, K.L.; Beversdorf, D.Q.; Gu, Z.; Lee, J.C.; Folk, W.R.; Greenlief, C.M.; Sun, G.Y. Yin-yang mechanisms regulating lipid peroxidation of docosahexaenoic acid and arachidonic acid in the central nervous system. Front. Neurol. 2019, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.Y.; Simonyi, A.; Fritsche, K.L.; Chuang, D.Y.; Hannink, M.; Gu, Z.; Greenlief, C.M.; Yao, J.K.; Lee, J.C.; Beversdorf, D.Q. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Ochi, E.; Tsuchiya, Y. Eicosahexanoic acid (EPA) and docosahexanoic acid (DHA) in muscle damage and function. Nutrients 2018, 10, 552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschos, G.K.; Magkos, F.; Panagiotakos, D.B.; Votteas, V.; Zampelas, A. Dietary supplementation with flaxseed oil lowers blood pressure in dyslipidaemic patients. Eur. J. Clin. Nutr. 2007, 61, 1201–1206. [Google Scholar] [CrossRef] [Green Version]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Jiao, J.; Li, Q.; Chu, J.; Zeng, W.; Yang, M.; Zhu, S. Effect of n-3 PUFA supplementation on cognitive function throughout the life span from infancy to old age: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2014, 100, 1422–1436. [Google Scholar] [CrossRef] [Green Version]
- Su, K.P.; Huang, S.Y.; Chiu, T.H.; Huang, K.C.; Huang, C.L.; Chang, H.C.; Pariante, C.M. Omega-3 fatty acids for major depressive disorder during pregnancy: Results from a randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry 2008, 69, 644–651. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Ramos-Campo, D.J.; Fernández-Lobato, B.; Rubio-Arias, J.A.; Alacid, F.; Aguayo, E. Biochemical, physiological, and performance response of a functional watermelon juice enriched in L-citrulline during a half-marathon race. Food Nutr. Res. 2017, 61, 1330098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cribb, P.J.; Hayes, A. Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med. Sci. Sports Exerc. 2006, 38, 1918–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żebrowska, A.; Mizia-Stec, K.; Mizia, M.; Gąsior, Z.; Poprzęcki, S. Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes. Eur. J. Sport Sci. 2015, 15, 305–314. [Google Scholar] [CrossRef] [PubMed]
- MacArtney, M.J.; Hingley, L.; Brown, M.A.; Peoples, G.E.; McLennan, P.L. Intrinsic heart rate recovery after dynamic exercise is improved with an increased omega-3 index in healthy males. Br. J. Nutr. 2014, 112, 1984–1992. [Google Scholar] [CrossRef]
- DiLorenzo, F.M.; Drager, C.J.; Rankin, J.W. Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise. J. Strength Cond. Res. 2014, 28, 2768–2774. [Google Scholar] [CrossRef]
- Olson, M.V.; Liu, Y.C.; Dangi, B.; Paul Zimmer, J.; Salem, N.; Nauroth, J.M. Docosahexaenoic acid reduces inflammation and joint destruction in mice with collagen-induced arthritis. Inflamm. Res. 2013, 62, 1003–1013. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Yanagimoto, K.; Nakazato, K.; Hayamizu, K.; Ochi, E. Eicosapentaenoic and docosahexaenoic acids-rich fish oil supplementation attenuates strength loss and limited joint range of motion after eccentric contractions: A randomized, double-blind, placebo-controlled, parallel-group trial. Eur. J. Appl. Physiol. 2016, 116, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Ochi, E.; Tsuchiya, Y.; Yanagimoto, K. Effect of eicosapentaenoic acids-rich fish oil supplementation on motor nerve function after eccentric contractions. J. Int. Soc. Sports Nutr. 2017, 12, 23. [Google Scholar] [CrossRef]
- Phillips, T.; Childs, A.C.; Dreon, D.M.; Phinney, S.; Leeuwenburgh, C. A Dietary Supplement Attenuates IL-6 and CRP after Eccentric Exercise in Untrained Males. Med. Sci. Sports Exerc. 2003, 35, 2032–2037. [Google Scholar] [CrossRef]
- Lenn, J.; Uhl, T.; Mattacola, C.; Boissonneault, G.; Yates, J.; Ibrahim, W.; Bruckner, G. The effects of fish oil and isoflavones on delayed onset muscle soreness. Med. Sci. Sports Exerc. 2002, 34, 1605–1613. [Google Scholar] [CrossRef]
- Gray, P.; Chappell, A.; Jenkinson, A.M.E.; Thies, F.; Gray, S.R. Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Pallarés, J.; Sánchez-Medina, L.; Carrasco, L.; Díaz, A.; Izquierdo, M. Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle. Eur. J. Appl. Physiol. 2009, 106, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Campo, D.J.; Martínez Sánchez, F.; Esteban García, P.; Rubio Arias, J.Á.; Bores Cerezal, A.; Clemente-Suarez, V.J.; Jiménez Díaz, J.F. Body Composition Features in Different Playing Position of Professional Team Indoor Players: Basketball, Handball and Futsal. Int. J. Morphol. 2014, 32, 1316–1324. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Campo, D.J.; Rubio-Arias, J.A.; Dufour, S.; Chung, L.; Ávila-Gandía, V.; Alcaraz, P.E. Biochemical responses and physical performance during high-intensity resistance circuit training in hypoxia and normoxia. Eur. J. Appl. Physiol. 2017, 117, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Campo, D.J.; Martínez-Guardado, I.; Olcina, G.; Marín-Pagán, C.; Martínez-Noguera, F.J.; Carlos-Vivas, J.; Alcaraz, P.E.; Rubio, J. Effect of high-intensity resistance circuit-based training in hypoxia on aerobic performance and repeat sprint ability. Scand. J. Med. Sci. Sport. 2018, 28, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Ochi, E.; Tsuchiya, Y.; Nosaka, K. Differences in post-exercise T2 relaxation time changes between eccentric and concentric contractions of the elbow flexors. Eur. J. Appl. Physiol. 2016, 116, 2145–2154. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef]
- Peake, J.M.; Neubauer, O.; Gatta, P.A.D.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef]
- Kouzaki, K.; Nosaka, K.; Ochi, E.; Nakazato, K. Increases in M-wave latency of biceps brachii after elbow flexor eccentric contractions in women. Eur. J. Appl. Physiol. 2016, 116, 939–946. [Google Scholar] [CrossRef]
- Peake, J.; Nosaka, K.; Suzuki, K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc. Immunol. Rev. 2005, 11, 64–85. [Google Scholar]
- Artrong, R.B.; Warren, G.L.; Warren, J.A. Mechanisms of Exercise-Induced Muscle Fibre Injury. Sport. Med. 1991, 12, 184–207. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, P.; Domingo, J.C. Docosahexaenoic acid improves endogen antioxidant defense in ARPE-19 cells. ARVO 2008, 49, 5932. [Google Scholar]
- Lee, J.; Clarkson, P.M. Plasma creatine kinase activity and glutathione after eccentric exercise. Med. Sci. Sports Exerc. 2003, 35, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Lembke, P.; Capodice, J.; Hebert, K.; Swenson, T. Influence of omega-3 (N3) index on performance and wellbeing in young adults after heavy eccentric exercise. J. Sport. Sci. Med. 2014, 13, 151–156. [Google Scholar]
- Tinsley, G.M.; Gann, J.J.; Huber, S.R.; Andre, T.L.; La Bounty, P.M.; Bowden, R.G.; Gordon, P.M.; Grandjean, P.W. Effects of Fish Oil Supplementation on Postresistance Exercise Muscle Soreness. J. Diet. Suppl. 2017, 14, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Vincent, H.K.; Vincent, K.R. The effect of training status on the serum creatine kinase response, soreness and muscle function following resistance exercise. Int. J. Sports Med. 1997, 18, 431–437. [Google Scholar] [CrossRef]
- Brockett, C.L.; Morgan, D.L.; Proske, U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med. Sci. Sports Exerc. 2001, 33, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Corder, K.E.; Newsham, K.R.; McDaniel, J.L.; Ezekiel, U.R.; Weiss, E.P. Effects of short-term docosahexaenoic acid supplementation on markers of inflammation after eccentric strength exercise in women. J. Sport. Sci. Med. 2016, 15, 176–183. [Google Scholar]
- Jouris, K.B.; McDaniel, J.L.; Weiss, E.P. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. J. Sport. Sci. Med. 2011, 10, 432–438. [Google Scholar]
- Black, K.E.; Witard, O.C.; Baker, D.; Healey, P.; Lewis, V.; Tavares, F.; Christensen, S.; Pease, T.; Smith, B. Adding omega-3 fatty acids to a protein-based supplement during pre-season training results in reduced muscle soreness and the better maintenance of explosive power in professional Rugby Union players. Eur. J. Sport Sci. 2018, 18, 1357–1367. [Google Scholar] [CrossRef]
- Jakeman, J.R.; Lambrick, D.M.; Wooley, B.; Babraj, J.A.; Faulkner, J.A. Effect of an acute dose of omega-3 fish oil following exercise-induced muscle damage. Eur. J. Appl. Physiol. 2017, 117, 575–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancera, P.; Wappenhans, B.; Cordobilla, B.; Virgili, N.; Pugliese, M.; Rueda, F.; Espinosa-Parrilla, J.F.; Domingo, J.C. Natural docosahexaenoic acid in the triglyceride form attenuates in vitro microglial activation and ameliorates autoimmune encephalomyelitis in mice. Nutrients 2017, 30, 681. [Google Scholar] [CrossRef]
- Dyerberg, J.; Madsen, P.; Møller, J.M.; Aardestrup, I.; Schmidt, E.B. Bioavailability of marine n-3 fatty acid formulations. Prostaglandins Leukot. Essent. Fat. Acids 2010, 83, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, J.P.; Hahn, A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 1–8. [Google Scholar] [CrossRef] [PubMed]
Outcome | Testing Session | Baseline | Post-exercise | post 24 h | post 48 h | ANOVA (supplement × test ×time) | Post-hoc | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | F | p | Comparison | p | ||
IL1β (pg/ml) | Pre-DHA + EPA | 2.18 | 1.29 | 2.80 | 1.21 | 2.78 | 1.49 | 2.64 | 1.59 | 4.247 | 0.011 | DHA + EPA test 1 vs. DHA + EPA test 2 (post-exerc) | 0.036 |
Post-DHA + EPA | 2.22 | 1.44 | 2.49 | 1.42 | 2.48 | 1.48 | 2.24 | 1.40 | DHA + EPA test 1 vs. DHA + EPA test 2 (24 h) | 0.002 | |||
Pre-Placebo | 2.17 | 1.12 | 2.73 | 1.12 | 2.73 | 1.29 | 2.54 | 1.36 | DHA + EPA test 1 vs. DHA + EPA test 2 (48 h) | 0.004 | |||
Post-Placebo | 1.94 | 1.17 | 2.90 | 1.78 | 2.86 | 1.50 | 2.35 | 1.28 | |||||
IL6 (pg/ml) | Pre-DHA + EPA | 2.55 | 1.29 | 3.53 | 1.45 | 3.12 | 1.50 | 2.74 | 1.55 | 5.909 | 0.009 | DHA + EPA test 1 vs. DHA + EPA test 2 (post-exerc) | 0.062 |
Post-DHA + EPA | 2.75 | 1.70 | 3.07 | 1.77 | 2.80 | 1.76 | 2.98 | 2.00 | DHA + EPA test 1 vs. DHA + EPA test 2 (24 h) | 0.067 | |||
Pre-Placebo | 3.02 | 1.71 | 3.95 | 1.89 | 3.64 | 1.97 | 3.07 | 1.66 | |||||
Post-Placebo | 2.66 | 1.71 | 3.89 | 2.32 | 3.51 | 2.18 | 3.16 | 1.94 | |||||
IL8 (pg/ml) | Pre-DHA + EPA | 4.04 | 0.81 | 5.12 | 1.03 | 4.40 | 1.06 | 4.40 | 1.25 | 1.728 | 0.197 | ||
Post-DHA + EPA | 4.09 | 1.01 | 4.70 | 1.00 | 4.41 | 1.08 | 4.15 | 1.10 | |||||
Pre-Placebo | 3.86 | 1.00 | 4.80 | 1.12 | 4.30 | 1.31 | 4.14 | 1.40 | |||||
Post-Placebo | 4.01 | 1.33 | 5.25 | 1.43 | 4.76 | 1.56 | 4.29 | 1.46 | |||||
C-RP (mg/dl) | Pre-DHA + EPA | 0.97 | 0.89 | 0.95 | 0.78 | 1.12 | 1.17 | 1.08 | 1.13 | 0.041 | 0.920 | ||
Post-DHA + EPA | 1.20 | 0.89 | 1.14 | 0.84 | 1.13 | 0.75 | 0.77 | 0.59 | |||||
Pre-Placebo | 0.80 | 0.80 | 0.72 | 0.79 | 1.01 | 1.39 | 0.94 | 1.37 | |||||
Post-Placebo | 1.23 | 1.35 | 1.18 | 1.36 | 1.28 | 1.62 | 0.99 | 1.25 | |||||
TNFα (pg/ml) | Pre-DHA + EPA | 7.77 | 1.02 | 9.18 | 1.24 | 9.10 | 1.22 | 8.65 | 1.79 | 1.228 | 0.290 | ||
Post-DHA + EPA | 8.36 | 1.38 | 9.16 | 1.56 | 9.05 | 1.81 | 8.95 | 2.12 | |||||
Pre-Placebo | 8.22 | 1.53 | 9.36 | 2.35 | 9.36 | 1.80 | 8.69 | 2.06 | |||||
Post-Placebo | 7.77 | 1.06 | 9.11 | 1.11 | 9.46 | 2.16 | 8.52 | 1.47 |
Outcome | Testing Session | Baseline | Post-exercise | post 24 h | post 48 h | ANOVA (supplement × test × time) | Post-hoc (Bonferroni) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | F | p | Comparison | p | ||
CPK (UI/l) | Pre-DHA + EPA | 94.54 | 55.24 | 140.23 | 103.17 | 230.62 | 126.18 | 124.92 | 59.78 | 6.251 | 0.014 | DHA + EPA test 1 vs. DHA + EPA test 2 (24 h) | 0.001 |
Post-DHA + EPA | 83.15 | 60.32 | 109.77 | 62.53 | 142.69 | 84.51 | 120.31 | 59.08 | |||||
Pre-Placebo | 100.38 | 62.34 | 146.23 | 108.29 | 195.54 | 101.65 | 127.77 | 70.22 | |||||
Post-Placebo | 88.23 | 44.79 | 119.23 | 61.39 | 187.00 | 84.14 | 135.00 | 74.17 | |||||
LDH-1 (UI/l) | Pre-DHA + EPA | 26.99 | 4.83 | 25.33 | 4.25 | 27.46 | 4.96 | 28.28 | 5.05 | 1.251 | 0.307 | ||
Post-DHA + EPA | 27.17 | 5.45 | 27.26 | 5.53 | 27.60 | 4.60 | 28.89 | 3.95 | |||||
Pre-Placebo | 29.61 | 4.87 | 27.20 | 5.96 | 28.56 | 4.87 | 30.64 | 3.86 | |||||
Post-Placebo | 26.83 | 3.63 | 25.01 | 2.91 | 28.53 | 2.65 | 29.10 | 3.71 | |||||
LDH-2 (UI/l) | Pre-DHA + EPA | 33.98 | 2.63 | 30.18 | 3.53 | 32.03 | 3.07 | 33.61 | 4.30 | 1.483 | 0.252 | ||
Post-DHA + EPA | 31.78 | 3.99 | 31.18 | 3.87 | 30.33 | 3.49 | 31.24 | 3.03 | |||||
Pre-Placebo | 33.62 | 2.82 | 31.93 | 3.36 | 32.78 | 2.75 | 35.54 | 2.84 | |||||
Post-Placebo | 30.43 | 4.15 | 28.86 | 2.97 | 30.91 | 2.40 | 31.50 | 2.57 | |||||
LDH-3 (UI/l) | Pre-DHA + EPA | 19.44 | 2.53 | 18.15 | 2.35 | 18.61 | 1.98 | 17.55 | 1.63 | 1.410 | 0.260 | ||
Post-DHA + EPA | 19.55 | 2.08 | 19.13 | 2.54 | 18.89 | 1.71 | 18.70 | 2.05 | |||||
Pre-Placebo | 18.33 | 3.80 | 18.41 | 3.31 | 18.80 | 3.02 | 17.79 | 2.21 | |||||
Post-Placebo | 19.62 | 1.85 | 18.82 | 1.84 | 18.66 | 1.48 | 17.92 | 2.47 | |||||
LDH-4 (UI/l) | Pre-DHA | 8.21 | 1.69 | 9.59 | 2.37 | 8.27 | 2.18 | 7.28 | 2.17 | 0.733 | 0.540 | ||
Post-DHA | 8.08 | 2.27 | 8.53 | 2.00 | 8.80 | 2.04 | 8.18 | 1.43 | |||||
Pre-Placebo | 7.97 | 2.40 | 8.81 | 2.90 | 7.84 | 2.44 | 5.80 | 1.79 | |||||
Post-Placebo | 9.03 | 2.02 | 9.60 | 1.38 | 8.79 | 1.05 | 7.81 | 1.44 | |||||
LDH-5 (UI/l) | Pre-DHA + EPA | 11.15 | 1.62 | 16.73 | 2.37 | 16.42 | 4.01 | 15.00 | 5.72 | 2.713 | 0.05 | DHA + EPA test 1 vs. DHA + EPA test 2 (post-exerc) | 0.001 |
Post-DHA + EPA | 11.11 | 4.03 | 12.06 | 4.62 | 11.93 | 4.28 | 11.00 | 3.37 | DHA + EPA test 1 vs. DHA + EPA test 2 (24 h) | <0.001 | |||
Pre-Placebo | 10.13 | 2.58 | 16.27 | 4.24 | 15.94 | 3.53 | 14.23 | 3.26 | DHA + EPA test 1 vs. DHA + EPA test 2 (48 h) | 0.015 | |||
Post-Placebo | 11.03 | 2.51 | 17.23 | 5.76 | 16.09 | 4.32 | 15.21 | 3.89 |
Outcome | Testing Session | Baseline | Post-exercise | post 24 h | post 48 h | ANOVA (supplement × test × time) | Post-hoc (Bonferroni) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | F | p | Comparison | p | ||
VAS (cm) | Pre-DHA + EPA | 3.67 | 1.45 | 5.33 | 1.54 | 4.73 | 2.05 | 3.358 | 0.049 | DHA + EPA test 1 vs. DHA + EPA test 2 (24 h) | 0.001 | ||
Post-DHA + EPA | 3.47 | 2.03 | 3.20 | 1.61 | 3.27 | 1.71 | DHA + EPA test 1 vs. DHA + EPA test 2 (48 h) | 0.023 | |||||
Pre-Placebo | 4.33 | 2.44 | 5.20 | 1.82 | 4.80 | 2.31 | |||||||
Post-Placebo | 4.53 | 1.51 | 5.33 | 1.84 | 4.80 | 1.70 | |||||||
RPE (AU) | Pre-DHA + EPA | 17.57 | 2.06 | 0.741 | 0.638 | ||||||||
Post-DHA + EPA | 17.79 | 1.63 | |||||||||||
Pre-Placebo | 17.57 | 1.65 | |||||||||||
Post-Placebo | 17.71 | 2.09 | |||||||||||
Peak Torque Flexion (N·m2) | Pre-DHA + EPA | 95.59 | 12.02 | 90.01 | 15.46 | 93.64 | 16.83 | 94.64 | 14.86 | 0.050 | 0.985 | ||
Post-DHA + EPA | 94.84 | 14.50 | 89.76 | 18.48 | 89.61 | 16.81 | 88.44 | 17.45 | |||||
Pre-Placebo | 97.93 | 17.66 | 91.11 | 15.37 | 93.06 | 16.15 | 91.81 | 16.16 | |||||
Post-Placebo | 93.36 | 14.77 | 87.65 | 13.81 | 86.24 | 15.60 | 83.22 | 15.16 | |||||
Peak Torque Extension (N·m2) | Pre-DHA + EPA | 173.93 | 23.04 | 156.44 | 23.93 | 162.79 | 28.18 | 166.50 | 27.29 | 0.364 | 0.780 | ||
Post-DHA + EPA | 176.67 | 25.53 | 159.25 | 28.35 | 161.47 | 27.28 | 160.45 | 28.87 | |||||
Pre-Placebo | 175.68 | 28.04 | 158.27 | 24.04 | 163.81 | 23.26 | 166.63 | 26.58 | |||||
Post-Placebo | 176.25 | 20.15 | 151.84 | 24.16 | 158.94 | 27.48 | 156.16 | 29.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Campo, D.J.; Ávila-Gandía, V.; López-Román, F.J.; Miñarro, J.; Contreras, C.; Soto-Méndez, F.; Domingo Pedrol, J.C.; Luque-Rubia, A.J. Supplementation of Re-Esterified Docosahexaenoic and Eicosapentaenoic Acids Reduce Inflammatory and Muscle Damage Markers after Exercise in Endurance Athletes: A Randomized, Controlled Crossover Trial. Nutrients 2020, 12, 719. https://doi.org/10.3390/nu12030719
Ramos-Campo DJ, Ávila-Gandía V, López-Román FJ, Miñarro J, Contreras C, Soto-Méndez F, Domingo Pedrol JC, Luque-Rubia AJ. Supplementation of Re-Esterified Docosahexaenoic and Eicosapentaenoic Acids Reduce Inflammatory and Muscle Damage Markers after Exercise in Endurance Athletes: A Randomized, Controlled Crossover Trial. Nutrients. 2020; 12(3):719. https://doi.org/10.3390/nu12030719
Chicago/Turabian StyleRamos-Campo, Domingo J., Vicente Ávila-Gandía, Fco Javier López-Román, José Miñarro, Carlos Contreras, Fulgencio Soto-Méndez, Joan C. Domingo Pedrol, and Antonio J. Luque-Rubia. 2020. "Supplementation of Re-Esterified Docosahexaenoic and Eicosapentaenoic Acids Reduce Inflammatory and Muscle Damage Markers after Exercise in Endurance Athletes: A Randomized, Controlled Crossover Trial" Nutrients 12, no. 3: 719. https://doi.org/10.3390/nu12030719
APA StyleRamos-Campo, D. J., Ávila-Gandía, V., López-Román, F. J., Miñarro, J., Contreras, C., Soto-Méndez, F., Domingo Pedrol, J. C., & Luque-Rubia, A. J. (2020). Supplementation of Re-Esterified Docosahexaenoic and Eicosapentaenoic Acids Reduce Inflammatory and Muscle Damage Markers after Exercise in Endurance Athletes: A Randomized, Controlled Crossover Trial. Nutrients, 12(3), 719. https://doi.org/10.3390/nu12030719