In Vitro Effects of Live and Heat-Inactivated Bifidobacterium animalis Subsp. Lactis, BB-12 and Lactobacillus rhamnosus GG on Caco-2 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Heat-Inactivated and Live L. rhamnosus GG and B. animalis subsp. Lactis, BB-12
2.2. Experiment 1
2.2.1. Culturing of Caco-2 Cells
2.2.2. Stimulation of Caco-2 Cells with Live and Heat-Inactivated B. animalis subsp. lactis, BB-12 and L. rhamnosus GG
2.3. Experiment 2
2.3.1. Culturing of Caco-2 Cells
2.3.2. Effect of Pre-Treatment of Caco-2 Cells with Heat-Inactivated L. rhamnosus GG and B. animalis subsp. Lactis, BB-12 on Caco-2 Cell Response to an Inflammatory Cocktail
2.3.3. TEER Measurement
2.4. Measurement of Inflammatory Mediators
2.5. Statistics
3. Results
3.1. Heat-Inactivation of L. rhamnosus GG and B. animalis subsp. Lactis, BB-12
3.2. Effect of Live and Heat-Inactivated L. rhamnosus GG and B. animalis subsp. lactis, BB-12 on TEER in Caco-2 Cell Monolayers
3.3. Effect of Live and Heat-Inactivated L. rhamnosus GG and B. animalis subsp. Lactis, BB-12 on Inflammatory Mediator Production in Caco-2 Cell Monolayers
3.4. Effect of Pre-Exposure to Heat-Inactivated L. rhamnosus GG and B. animalis subsp. lactis, BB-12 on the Caco-2 Cell TEER Response to an Inflammatory Cocktail
3.5. Effect of Pre-Exposure to Heat-Inactivated L. rhamnosus GG and B. animalis subsp. Lactis, BB-12 on the Production of Inflammatory Mediators by Caco-2 Cells in Response to an Inflammatory Cocktail
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agricultural Organization of the United Nations and World Health Organization. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food; Food and Agricultural Organization of the United Nations: Rome, Italy, 2002; Available online: ftp://ftp.fao.org/es/ esn/food/wgreport2.pdf (accessed on 6 May 2020).
- Derwa, Y.; Gracie, D.J.; Hamlin, P.J.; Ford, A.C. Systematic review with meta-analysis: The efficacy of probiotics in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2017, 46, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Xu, L.; Zhang, D.; Wu, Z. Effect of probiotics on small intestinal bacterial overgrowth in patients with gastric and colorectal cancer. Turk. J. Gastroenterol. 2016, 27, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiyama, K.; Ueno, S.; Sugiyama, M.; Yamamoto, Y.; Mukai, T. Lactobacillus rhamnosus GG SpaC pilin subunit binds to the carbohydrate moieties of intestinal glycoconjugates. Anim. Sci. J. 2016, 87, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.; Beaussart, A.; Alsteens, D.; Dupres, V.; Claes, I.; Von Ossowski, I.; De Vos, W.; Palva, A.; Lebeer, S.; Vanderleyden, J.; et al. Adhesion and nanomechanics of pili from the Probiotic Lactobacillus rhamnosus GG. ACS Nano 2013, 7, 3685–3697. [Google Scholar] [CrossRef] [PubMed]
- Cresci, G.A.M.; Mayor, P.C.; Thompson, S.A. Effect of butyrate and Lactobacillus GG on a butyrate receptor and transporter during Campylobacter jejuni exposure. FEMS Microbiol. Lett. 2017, 364, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asarat, M.; Apostolopoulos, V.; Vasiljevic, T.; Donkor, O. Short-chain fatty acids produced by synbiotic mixtures in skim milk differentially regulate proliferation and cytokine production in peripheral blood mononuclear cells. Int. J. Food Sci. Nutr. 2015, 66, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Rautio, M.; Jousimies-Somer, H.; Kauma, H.; Pietarinen, I.; Saxelin, M.; Tynkkynen, S.; Koskela, M. Liver abscess due to a Lactobacillus rhamnosus strain indistinguisable from L rhamnosus strain GG. Clin. Infect. Dis. 1999, 28, 1159–1160. [Google Scholar] [CrossRef] [Green Version]
- Zein, E.F.; Karaa, S.; Chemaly, A.; Saidi, I.; Daou-Chahine, W.; Rohban, R. Lactobacillus rhamnosus septicemia in a diabetic patient associated with probiotic use: A case report. Annal. Biol. Clin. 2008, 66, 195–198. [Google Scholar]
- Sang, L.X.; Chang, B.; Wang, B.Y.; Liu, W.X.; Jiang, M. Live and heat-killed probiotic: Effects on chronic experimental colitis induced by dextran sulfate sodium (DSS) in rats. Int. J. Clin. Exp. Med. 2015, 8, 20072–20078. [Google Scholar]
- Imaoka, A.; Shima, T.; Kato, K.; Mizuno, S.; Uehara, T.; Matsumoto, S.; Setoyama, H.; Hara, T.; Umesaki, Y. Anti-inflammatory activity of probiotic bifidobacterium: Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells. World J. Gastroenterol. 2008, 14, 2511–2516. [Google Scholar] [CrossRef]
- Choi, C.H.; Il Kim, T.; Lee, S.; Yang, K.; Kim, W. Effect of Lactobacillus GG and conditioned media on IL-1 beta-induced IL-8 production in Caco-2 cells. Scand. J. Gastroenterol. 2008, 43, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, N.; Yamazaki, S. Probiotics and safety. Am. J. Clin. Nutr. 2001, 73 (Suppl. 2), 465S–470S. [Google Scholar] [CrossRef]
- Owen-Jones, E.; Lowe, R.; Lown, M.; Gillespie, D.; Addison, K.; Bayer, T.; Calder, P.C.; Davies, J.; Davoudianfar, M.; Downs, J.; et al. Protocol for a double-blind placebo-controlled trial to evaluate the efficacy of probiotics in reducing antibiotics for infection in care home residents: The Probiotics to Reduce Infections iN CarE home reSidentS (PRINCESS) trial. BMJ Open 2019, 9, e027513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranadheera, C.S.; Evans, C.A.; Adams, M.C.; Baines, S.K. Effect of dairy probiotic combinations on in vitro gastrointestinal tolerance, intestinal epithelial cell adhesion and cytokine secretion. J. Funct. Foods 2014, 8, 18–25. [Google Scholar] [CrossRef]
- Tuomola, E.; Crittenden, R.; Playne, M.; Isolauri, E.; Salminen, S. Quality assurance criteria for probiotic bacteria. Am. J. Clin. Nutr. 2001, 73 (Suppl. 2), 393S–398S. [Google Scholar] [CrossRef]
- Natoli, M.; Leoni, B.D.; D’Agnano, I.; Zucco, F.; Felsani, A. Good Caco-2 cell culture practices. Toxicol. In Vitro 2012, 26, 1243–1246. [Google Scholar] [CrossRef]
- Natoli, M.; Leoni, B.; D’Agnano, I.; D’Onofrio, M.; Brandi, R.; Arisi, I.; Zucco, F.; Felsani, A. Cell growing density affects the structural and functioonal properties of Caco-2 differentiated monolayer. J. Cell. Physiol. 2010, 226, 1531–1543. [Google Scholar] [CrossRef]
- Chong, E.S. A potential role of probiotics in colorectal cancer prevention: Review of possible mechanisms of action. World J. Microbiol. Biotechnol. 2014, 30, 351–374. [Google Scholar] [CrossRef]
- Riviere, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front. Microbiol. 2016, 7, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Delcenserie, V.; Martel, D.; Lamoureux, M.; Amiot, J.; Boutin, Y.; Roy, D. Immunomodulatory effects of probiotics in the intestinal tract. Curr. Issues Mol. Biol. 2008, 10, 37–53. [Google Scholar]
- Ganguli, K.; Walker, W.A. Probiotics in the prevention of necrotizing enterocolitis. J. Clin. Gastroenterol. 2011, 45, S133–S138. [Google Scholar] [CrossRef] [Green Version]
- Shen, T.Y.; Qin, H.L.; Gao, Z.G.; Fan, X.B.; Hang, X.M.; Jiang, Y.Q. Influences of enteral nutrition combined with probiotics on gut microflora and barrier function of rats with abdominal infection. World J. Gastroenterol. 2006, 12, 4352–4358. [Google Scholar] [CrossRef] [PubMed]
- Claes, I.J.; Segers, M.; Verhoeven, T.; Dusselier, M.; Sels, B.; De Keersmaecker, S.; Vanderleyden, J.; Lebeer, S. Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG. Microb. Cell Factories 2012, 11, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clua, P.; Kanmani, P.; Zelaya, H.; Tada, A.; Kober, A.; Salva, S.; Alvarez, S.; Kitazawa, H.; Villena, J. Peptidoglycan from immunobiotic Lactobacillus rhamnosus improves resistance of infant Mice to respiratory syncytial Viral infection and secondary Pneumococcal Pneumonia. Front. Immunol. 2017, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Fiorini, G.; Saracino, I.; Saccomanno, L.; Pavoni, M.; Vaira, B. Bifidobacterium breve and Lactobacillus rhamnosus efficacy as coadjuvants in the Helicobacter pylory erradication in naive patients. Dig. Liver Dis. 2018, 50, E181. [Google Scholar] [CrossRef]
- Guerin, J.; Soligot, C.; Burgain, J.; Huguet, M.; Francius, G.; El-Kirat-Chatel, S.; Gomand, F.; Lebeer, S.; Le Roux, Y.; Borges, F.; et al. Adhesive interactions between milk fat globule membrane and Lactobacillus rhamnosus GG inhibit bacterial attachment to Caco-2 TC7 intestinal cell. Colloid Surf. B Biointerf. 2018, 167, 44–53. [Google Scholar] [CrossRef]
- Liu, B.; Fu, N.; Woo, M.W.; Chen, X.D. Heat stability of Lactobacillus rhamnosus GG and its cellular membrane during droplet drying and heat treatment. Food Res. Int. 2018, 112, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.; Yan, F.; Polk, B.; Rao, R. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am. J. Physiol. Gastrointest Liver Physiol. 2008, 294, G1060–G1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, F.; Cao, H.; Cover, T.L.; Whitehead, R.; Washington, M.K.; Polk, D.B. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 2007, 132, 562–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Russell, W.; Douglas-Escobar, M.; Hauser, N.; Lopez, M.; Neu, J. Live and heat-killed Lactobacillus rhamnosus GG: Effects on proinflammatory and anti-inflammatory cytokines/chemokines in gastrostomy-fed infant rats. Pediatric Res. 2009, 66, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Stadlbauer, V. Immunosuppression and probiotics: Are they effective and safe? Benef. Microbes. 2015, 6, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Zeuthen, L.H.; Fink, L.N.; Frokiaer, H. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology 2008, 123, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Dongarra, M.L.; Rizzello, V.; Muccio, L.; Fries, W.; Cascio, A.; Bonaccorsi, I.; Ferlazzo, G. Mucosal immunology and probiotics. Curr. Allergy Asthma Rep. 2013, 13, 19–26. [Google Scholar] [CrossRef]
- Lee, S.H.; Yoon, J.M.; Kim, Y.H.; Jeong, D.G.; Park, S.; Kang, D.J. Therapeutic effect of tyndallized Lactobacillus rhamnosus IDCC 3201 on atopic dermatitis mediated by down-regulation of immunoglobulin E in NC/Nga mice. Microbiol. Immunol. 2016, 60, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.B.; Shih, H.Y.; Huang, C.H.; Li, L.T.; Chen, C.C.; Fang, H.W. Live and heat-killed Lactobacillus rhamnosus GG upregulate gene expression of pro-inflammatory cytokines in 5-fluorouracil-pretreated Caco-2 cells. Supportive Care Cancer 2014, 22, 1647–1654. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Tolkko, S.; Kulmala, J.; Salminen, S.; Salminen, E. Adhesion of inactivated probiotic strains to intestinal mucus. Lett. Appl. Microbiol. 2000, 31, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.A. The probiotic paradox: Live and dead cells are biological response modifiers. Nutr. Res. Rev. 2010, 23, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugahara, H.; Yao, R.; Odamaki, T.; Xiao, J.Z. Differences between live and heat-killed bifidobacteria in the regulation of immune function and the intestinal environment. Benef. Microb. 2017, 8, 463–472. [Google Scholar] [CrossRef]
- Miyauchi, E.; Morita, H.; Tanabe, S. Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo. J. Dairy Sci. 2009, 92, 2400–2408. [Google Scholar] [CrossRef]
- Celiberto, L.S.; Bedani, R.; Rossi, E.A.; Cavallini, D.C. Probiotics: The scientific evidence in the context of inflammatory bowel disease. Crit. Rev. Food Sci. Nutr. 2017, 57, 1759–1768. [Google Scholar] [CrossRef]
- Vitkus, S.J.; Hanifin, S.A.; McGee, D.W. Factors affecting Caco-2 intestinal epithelial cell interleukin-6 secretion. Vitro Cell Dev. Biol. Anim. 1998, 34, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Shirota, K.; Leduy, L.; Yuan, S.; Jothy, S. Interleukin-6 and its receptor are expressed in human intestinal epithelial-cells. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1990, 58, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.C.; Trejdosiewicz, L.K.; Banks, R.E.; Howdle, P.D.; Axon, A.T.R.; Dixon, M.F.; Whicher, J.T. Expression of interleukin-6 by intestinal enterocytes. J. Clin. Pathol. 1993, 46, 1097–1100. [Google Scholar] [CrossRef]
- Hirano, T. Interleukin 6 in autoimmune and inflammatory diseases: A personal memoir. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 2013, 13, 397–411. [Google Scholar] [CrossRef]
- Sharma, D.; Kanneganti, T.D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J. Cell Biol. 2016, 213, 617–629. [Google Scholar] [CrossRef] [Green Version]
- Thinwa, J.; Segovia, J.A.; Bose, S.; Dube, P.H. Integrin-mediated first signal for inflammasome activation in intestinal epithelial cells. J. Immunol. 2014, 193, 1373–1382. [Google Scholar] [CrossRef] [Green Version]
- Griga, T.; Voigt, E.; Gretzer, B.; Brasch, F.; May, B. Increased production of vascular endothelial growth factor by intestinal mucosa of patients with inflammatory bowel disease. Hepatogastroenterology 1999, 46, 920–923. [Google Scholar]
Strain | Heat-Treatment at 62.3 °C | CFU/mL |
---|---|---|
B. animalis subsp. lactis, BB-12 | 0 min | 9.4 × 108 |
B. animalis subsp. lactis, BB-12 | 2 min | 3.9 × 108 |
B. animalis subsp. lactis, BB-12 | 4 min | 1.2 × 105 |
B. animalis subsp. lactis, BB-12 | 6 min | 0 |
B. animalis subsp. lactis, BB-12 | 8 min | 0 |
L. rhamnosus GG | 0 min | 7.5 × 108 |
L. rhamnosus GG | 2 min | 6.8 × 108 |
L. rhamnosus GG | 4 min | 3.9 × 108 |
L. rhamnosus GG | 6 min | 1.1 × 108 |
L. rhamnosus GG | 8 min | 2.2 × 107 |
Strain | Heat-Treatment at 70 °C | CFU/mL |
L. rhamnosus GG | 0 min | 8.9 × 108 |
L. rhamnosus GG | 1 min | 5.5 × 108 |
L. rhamnosus GG | 3 min | 0 |
L. rhamnosus GG | 5 min | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Herrera, V.M.; Rasmussen, C.; Wellejus, A.; Miles, E.A.; Calder, P.C. In Vitro Effects of Live and Heat-Inactivated Bifidobacterium animalis Subsp. Lactis, BB-12 and Lactobacillus rhamnosus GG on Caco-2 Cells. Nutrients 2020, 12, 1719. https://doi.org/10.3390/nu12061719
Castro-Herrera VM, Rasmussen C, Wellejus A, Miles EA, Calder PC. In Vitro Effects of Live and Heat-Inactivated Bifidobacterium animalis Subsp. Lactis, BB-12 and Lactobacillus rhamnosus GG on Caco-2 Cells. Nutrients. 2020; 12(6):1719. https://doi.org/10.3390/nu12061719
Chicago/Turabian StyleCastro-Herrera, Vivian M., Christine Rasmussen, Anja Wellejus, Elizabeth A. Miles, and Philip C. Calder. 2020. "In Vitro Effects of Live and Heat-Inactivated Bifidobacterium animalis Subsp. Lactis, BB-12 and Lactobacillus rhamnosus GG on Caco-2 Cells" Nutrients 12, no. 6: 1719. https://doi.org/10.3390/nu12061719
APA StyleCastro-Herrera, V. M., Rasmussen, C., Wellejus, A., Miles, E. A., & Calder, P. C. (2020). In Vitro Effects of Live and Heat-Inactivated Bifidobacterium animalis Subsp. Lactis, BB-12 and Lactobacillus rhamnosus GG on Caco-2 Cells. Nutrients, 12(6), 1719. https://doi.org/10.3390/nu12061719