Dietary Patterns in Relation to Prospective Sleep Duration and Timing among Mexico City Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet
2.2. Sleep Measures
2.3. Covariates (From Baseline Visit)
2.4. Statistical Analysis
3. Results
3.1. Associations with Weekday Sleep Characteristics
3.2. Associations with Weekend Sleep Characteristics
3.3. Weekday–Weekend Differences
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matthews, K.A.; Pantesco, E.J.M. Sleep characteristics and cardiovascular risk in children and adolescents: An enumerative review. Sleep Med. 2016, 18, 36–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cespedes Feliciano, E.M.; Rifas-Shiman, S.L.; Quante, M.; Redline, S.; Oken, E.; Taveras, E.M. Chronotype, Social Jet Lag, and Cardiometabolic Risk Factors in Early Adolescence. JAMA Pediatr. 2019, 173, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Fatima, Y.; Doi, S.A.R.; Mamun, A.A. Longitudinal impact of sleep on overweight and obesity in children and adolescents: A systematic review and bias-adjusted meta-analysis. Obes. Rev. 2015, 16, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.A.; Dahl, R.E.; Owens, J.F.; Lee, L.; Hall, M. Sleep Duration and Insulin Resistance in Healthy Black and White Adolescents. Sleep 2012, 35, 1353–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, S.L.; Behn, C.D.; Cree-Green, M.; Kaar, J.L.; Pyle, L.; Hawkins, S.M.M.; Rahat, H.; Garcia-Reyes, Y.; Wright, K.P.; Nadeau, K.J. Too Late and Not Enough: School Year Sleep Duration, Timing, and Circadian Misalignment Are Associated with Reduced Insulin Sensitivity in Adolescents with Overweight/Obesity. J. Pediatr. 2019, 205, 257–264.e1. [Google Scholar] [CrossRef]
- Jansen, E.C.; Dunietz, G.L.; Matos-Moreno, A.; Solano, M.; Lazcano-Ponce, E.; Sánchez-Zamorano, L.M. Bedtimes and Blood Pressure: A Prospective Cohort Study of Mexican Adolescents. Am. J. Hypertens. 2020, 33, 269–277. [Google Scholar] [CrossRef]
- Matricciani, L.; Paquet, C.; Galland, B.; Short, M.; Olds, T. Children’s sleep and health: A meta-review. Sleep Med. Rev. 2019, 46, 136–150. [Google Scholar] [CrossRef]
- Gradisar, M.; Gardner, G.; Dohnt, H. Recent worldwide sleep patterns and problems during adolescence: A review and meta-analysis of age, region, and sleep. Sleep Med. 2011, 12, 110–118. [Google Scholar] [CrossRef]
- Owens, J.; Adolescent Sleep Working Group, A.S.W.; Committee on Adolescence, C.O. Insufficient sleep in adolescents and young adults: An update on causes and consequences. Pediatrics 2014, 134, e921–e932. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, K.; Tasali, E.; Penev, P.; Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 2004, 141, 846–850. [Google Scholar] [CrossRef]
- Al Khatib, H.K.; Harding, S.V.; Darzi, J.; Pot, G.K. The effects of partial sleep deprivation on energy balance: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2017, 71, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.-P.; Katzmarzyk, P.T.; LeBlanc, A.G.; Tremblay, M.S.; Barreira, T.V.; Broyles, S.T.; Fogelholm, M.; Hu, G.; Kuriyan, R.; Kurpad, A.; et al. Associations between sleep patterns and lifestyle behaviors in children: An international comparison. Int. J. Obes. Suppl. 2015, 5, S59–S65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjeldsen, J.S.; Hjorth, M.F.; Andersen, R.; Michaelsen, K.F.; Tetens, I.; Astrup, A.; Chaput, J.-P.; Sjödin, A. Short sleep duration and large variability in sleep duration are independently associated with dietary risk factors for obesity in Danish school children. Int. J. Obes. Lond. 2014, 38, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Farinós, N.; Villar-Villalba, C.; López Sobaler, A.M.; Dal Re Saavedra, M.Á.; Aparicio, A.; Santos Sanz, S.; Robledo de Dios, T.; Castrodeza-Sanz, J.J.; Ortega Anta, R.M. The relationship between hours of sleep, screen time and frequency of food and drink consumption in Spain in the 2011 and 2013 ALADINO: A cross-sectional study. BMC Public Health 2017, 17, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St-Onge, M.-P.; Mikic, A.; Pietrolungo, C.E. Effects of Diet on Sleep Quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Jansen, E.C.; Conroy, D.A.; Burgess, H.J.; O’Brien, L.M.; Cantoral, A.; Téllez-Rojo, M.M.; Peterson, K.E.; Baylin, A. Plasma DHA Is Related to Sleep Timing and Duration in a Cohort of Mexican Adolescents. J. Nutr. 2020, 150, 592–598. [Google Scholar] [CrossRef]
- Castro-Diehl, C.; Wood, A.C.; Redline, S.; Reid, M.; Johnson, D.A.; Maras, J.E.; Jacobs, D.R.; Shea, S.; Crawford, A.; St-Onge, M.P. Mediterranean diet pattern and sleep duration and insomnia symptoms in the Multi-Ethnic Study of Atherosclerosis. Sleep 2018, 41, zsy158. [Google Scholar] [CrossRef]
- Jansen, E.C.; Stern, D.; Monge, A.; O’Brien, L.M.; Lajous, M.; Peterson, K.E.; López-Ridaura, R. Healthier dietary patterns are associated with better sleep quality among mid-life Mexican women. J. Clin. Sleep Med. 2020. [Google Scholar] [CrossRef]
- Hagenauer, M.H.; Lee, T.M. Adolescent sleep patterns in humans and laboratory animals. Horm. Behav. 2013, 64, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Pereira, N.; Naufel, M.F.; Ribeiro, E.B.; Tufik, S.; Hachul, H. Influence of Dietary Sources of Melatonin on Sleep Quality: A Review. J. Food Sci. 2020, 85, 5–13. [Google Scholar] [CrossRef]
- Perng, W.; Tamayo-Ortiz, M.; Tang, L.; Sánchez, B.N.; Cantoral, A.; Meeker, J.D.; Dolinoy, D.C.; Roberts, E.F.; Martinez-Mier, E.A.; Lamadrid-Figueroa, H.; et al. Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) Project. BMJ Open 2019, 9, e030427. [Google Scholar] [CrossRef] [Green Version]
- Denova-Gutiérrez, E.; Ramírez-Silva, I.; Rodríguez-Ramírez, S.; Jiménez-Aguilar, A.; Shamah-Levy, T.; Rivera-Dommarco, J.A. Validity of a food frequency questionnaire to assess food intake in Mexican adolescent and adult population. Salud Publica Mex. 2016, 58, 617–628. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S, discussion 1229S-1231S. [Google Scholar] [CrossRef] [PubMed]
- Jansen, E.C.; Marcovitch, H.; Wolfson, J.A.; Leighton, M.; Peterson, K.E.; Téllez-Rojo, M.M.; Cantoral, A.; Roberts, E.F.S. Exploring dietary patterns in a Mexican adolescent population: A mixed methods approach. Appetite 2020, 147, 104542. [Google Scholar] [CrossRef] [PubMed]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.U.E.; Goodrich, J.M.; Dolinoy, D.C.; Sánchez, B.N.; Ruiz-Narváez, E.A.; Banker, M.; Cantoral, A.; Mercado-Garcia, A.; Téllez-Rojo, M.M.; Peterson, K.E. Accelerometer-measured Physical Activity, Reproductive Hormones, and DNA Methylation. Med. Sci. Sports Exerc. 2020, 52, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.L.; Brazendale, K.; Beets, M.W.; Mealing, B.A. Classification of physical activity intensities using a wrist-worn accelerometer in 8-12-year-old children. Pediatr. Obes. 2016, 11, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Hernández, B.; Gortmaker, S.L.; Laird, N.M.; Colditz, G.A.; Parra-Cabrera, S.; Peterson, K.E. Validez y reproducibilidad de un cuestionario de actividad e inactividad fisica para escolares de la ciudad de Mexico. Salud Publica Mex. 2000, 42, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thellman, K.E.; Dmitrieva, J.; Miller, A.; Harsh, J.R.; LeBourgeois, M.K. Sleep timing is associated with self-reported dietary patterns in 9- to 15-year-olds. Sleep Heal. 2017, 3, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Harrex, H.A.L.; Skeaff, S.A.; Black, K.E.; Davison, B.K.; Haszard, J.J.; Meredith-Jones, K.; Quigg, R.; Saeedi, P.; Stoner, L.; Wong, J.E.; et al. Sleep timing is associated with diet and physical activity levels in 9–11-year-old children from Dunedin, New Zealand: The PEDALS study. J. Sleep Res. 2018, 27, e12634. [Google Scholar] [CrossRef] [PubMed]
- Auger, R.R.; Burgess, H.J.; Emens, J.S.; Deriy, L.V.; Thomas, S.M.; Sharkey, K.M. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). an update for 2015. J. Clin. Sleep Med. 2015, 11, 1199–1236. [Google Scholar] [PubMed]
- Wirth, M.D.; Jessup, A.; Turner-McGrievy, G.; Shivappa, N.; Hurley, T.G.; Hébert, J.R. Changes in dietary inflammatory potential predict changes in sleep quality metrics, but not sleep duration. Sleep 2020. [Google Scholar] [CrossRef] [PubMed]
- Paredes, S.D.; Barriga, C.; Reiter, R.J.; Rodríguez, A.B. Assessment of the potential role of tryptophan as the precursor of serotonin and melatonin for the aged sleep-wake cycle and immune function: Streptopelia risoria as a model. Int. J. Tryptophan Res. 2009, 2, 23–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwin, J.A.; Leidy, H.J. Breakfast consumption augments appetite, eating behavior, and exploratory markers of sleep quality compared with skipping breakfast in healthy young adults. Curr. Dev. Nutr. 2018, 2, nzy074. [Google Scholar] [CrossRef]
- Bravo, R.; Matito, S.; Cubero, J.; Paredes, S.D.; Franco, L.; Rivero, M.; Rodríguez, A.B.; Barriga, C. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age (Omaha) 2013, 35, 1277–1285. [Google Scholar] [CrossRef] [Green Version]
- Zerón-Rugerio, M.F.; Cambras, T.; Izquierdo-Pulido, M. Social jet lag associates negatively with the adherence to the mediterranean diet and body mass index among young adults. Nutrients 2019, 11, 1756. [Google Scholar] [CrossRef] [Green Version]
- Kohsaka, A.; Laposky, A.D.; Ramsey, K.M.; Estrada, C.; Joshu, C.; Kobayashi, Y.; Turek, F.W.; Bass, J. High-Fat Diet Disrupts Behavioral and Molecular Circadian Rhythms in Mice. Cell Metab. 2007, 6, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Budai, Z.; Balogh, L.; Sarang, Z. Short-term high-fat meal intake alters the expression of circadian clock-, inflammation-, and oxidative stress-related genes in human skeletal muscle. Int. J. Food Sci. Nutr. 2019, 70, 749–758. [Google Scholar] [CrossRef]
- Kim, S.M.; Neuendorff, N.; Chapkin, R.S.; Earnest, D.J. Role of Inflammatory Signaling in the Differential Effects of Saturated and Poly-unsaturated Fatty Acids on Peripheral Circadian Clocks. EBioMedicine 2016, 7, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Lana, A.; Struijk, E.A.; Arias-Fernandez, L.; Graciani, A.; Mesas, A.E.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. Habitual meat consumption and changes in sleep duration and quality in older adults. Aging Dis. 2019, 10, 267–277. [Google Scholar] [CrossRef] [Green Version]
Baseline Sociodemographic and Lifestyle Characteristics | n | Sleep Duration at T2, Minutes ± SD | Change in Sleep Duration T1 to T2 (Min) | Sleep Midpoint at T2, Decimal Hours ± SD | Change in Sleep Midpoint T1 to T2 (H) |
---|---|---|---|---|---|
Sex | |||||
Male | 211 | 504 ± 82 | 0.55 ± 100.3 | 4.4 ± 1.5 | 0.5 ± 1.5 |
Female | 247 | 504 ± 86 | −0.86 ± 102.7 | 4.1 ± 1.3 | 0.4 ± 1.6 |
p-value 2 | 0.38 | 0.87 | 0.05 | 0.43 | |
Age group, years | |||||
9.5 to <12 | 80 | 494 ± 74 | −18.8 ± 76.7 | 3.7 ± 1.3 | 0.4 ± 1.4 |
12 to <14 | 142 | 511 ± 79 | 0.6 ± 95.3 | 4.1 ± 1.5 | 0.5 ± 1.5 |
14 to <16 | 84 | 509 ± 96 | 2.7 ± 106.3 | 4.4 ± 1.3 | 0.6 ± 1.4 |
16 to 18 | 152 | 505 ± 87 | 7.2 ± 114.6 | 4.5 ± 1.4 | 0.2 ± 1.6 |
p-value 2 | 0.19 | 0.28 | 0.0003 | 0.26 | |
School/work status | |||||
Currently enrolled in school | 427 | 506 ± 85 | 2.8 ± 101 | 4.2 ± 1.4 | 0.5 ± 1.5 |
In workforce (not in school) | 8 | 488 ± 80 | −8.3 ± 99 | 4.8 ± 1.4 | 0.2 ± 1.1 |
Neither | 19 | 509 ± 79 | −47 ± 110 | 5.0 ± 1.5 | −0.4 ± 1.6 |
p-value 2 | 0.77 | 0.09 | 0.05 | 0.16 | |
BMI Z score | |||||
<0 | 46 | 508 ± 82 | −20.1 ± 101.2 | 3.9 ± 1.2 | 0.3 ± 1.3 |
0 to <1 | 112 | 516 ± 89 | 1.3 ± 98.0 | 4.6 ± 1.5 | 0.6 ± 1.5 |
1 to <2 | 125 | 503 ± 85 | 4.6 ± 118.6 | 4.2 ± 1.5 | 0.4 ± 1.7 |
≥2 | 173 | 500 ± 80 | 0.8 ± 90.5 | 4.1 ± 1.4 | 0.4 ± 1.5 |
p-value 2 | 0.40 | 0.31 | 0.01 | 0.71 | |
Maternal education, years (y) | |||||
9 y or less | 50 | 521 ± 75 | 15.5 ± 111.9 | 4.4 ± 1.5 | 0.6 ± 1.4 |
10 to <12 y | 183 | 510 ± 84 | 0.8 ± 99.5 | 4.3 ± 1.4 | 0.4 ± 1.6 |
12 y | 152 | 498 ± 86 | −9.6 ± 100.6 | 4.1 ± 1.4 | 0.4 ± 1.5 |
>12 y | 68 | 504 ± 88 | 8.6 ± 102.0 | 4.3 ± 1.6 | 0.3 ± 1.7 |
p-value 2 | 0.35 | 0.54 | 0.62 | 0.50 | |
Socioeconomic status | |||||
A/B, C+ or C | 116 | 514 ± 88 | 13.9 ± 111.4 | 4.3 ± 1.6 | 0.4 ± 1.6 |
C− | 108 | 491 ± 77 | −14.6 ± 86.9 | 4.1 ± 1.2 | 0.3 ± 1.6 |
D+ | 114 | 510 ± 85 | 3.1 ± 94.0 | 4.4 ± 1.4 | 0.6 ± 1.5 |
D or E | 120 | 506 ± 85 | −4.0 ± 109.3 | 4.3 ± 1.5 | 0.4 ± 1.5 |
p-value 2 | 0.20 | 0.25 | 0.44 | 0.54 | |
Moderate/Vigorous Activity (Min/day), quartiles | |||||
Q1, 15.5–59.3 | 114 | 517 ± 92 | 6.3 ± 103.9 | 4.4 ± 1.5 | 0.4 ± 1.6 |
Q2, 59.4–75.3 | 113 | 516 ± 88 | 14.9 ± 111.8 | 4.3 ± 1.5 | 0.4 ± 1.6 |
Q3, 75.6–97.2 | 113 | 495.8 ± 81 | −2.1 ± 100.5 | 4.2 ± 1.4 | 0.4 ± 1.4 |
Q4, 97.6–216.3 | 113 | 494 ± 72 | −20.7 ± 86.9 | 4.1 ± 1.4 | 0.5 ± 1.6 |
p-value 2 | 0.01 | 0.02 | 0.27 | 0.94 | |
Screen time, quartiles | |||||
Q1, 1 to <23 h/week (h/week) | 121 | 503 ± 78 | −7.3 ± 104.2 | 4.0 ± 1.4 | 0.3 ± 1.5 |
Q2, 23 to <33 h/week | 108 | 512 ± 90 | 13.9 ± 101.3 | 4.3 ± 1.5 | 0.7 ± 1.6 |
Q3, 33 to <48.5 h/week | 113 | 500 ± 87 | −2.0 ± 100.8 | 4.2 ± 1.4 | 0.3 ± 1.5 |
Q4, 48.5 to 116 h/week | 116 | 508 ± 82 | −4.1 ± 99.4 | 4.5 ± 1.3 | 0.3 ± 1.5 |
p-value 2 | 0.71 | 0.64 | 0.06 | 0.24 | |
Ever smoked cigarettes | |||||
No | 345 | 506 ± 85 | −1.5 ± 101.9 | 4.1 ± 1.4 | 0.4 ± 1.5 |
Yes | 109 | 507 ± 81 | 6.9 ± 100.2 | 4.7 ± 1.5 | 0.4 ± 1.6 |
p-value 2 | 0.71 | 0.46 | 0.0005 | 0.95 |
Baseline Dietary Patterns | n | Sleep Duration at T2, Minutes ± SD | Change in Sleep Duration T1 to T2 (Min) | Sleep Midpoint at T2, Minutes ± SD | Change in Sleep Midpoint T1 to T2 (H) |
---|---|---|---|---|---|
Plant-based & Lean Proteins | |||||
Q1 | 115 | 504 ± 91 | −7.3 ± 109.3 | 4.5 ± 1.4 | 0.5 ± 1.6 |
Q2 | 114 | 512 ± 87 | 4.7 ± 99.0 | 4.3 ± 1.4 | 0.7 ± 1.5 |
Q3 | 115 | 506 ± 81 | −0.3 ± 98.3 | 4.1 ± 1.4 | 0.3 ± 1.6 |
Q4 | 114 | 501 ± 78 | 2.2 ± 99.8 | 4.0 ± 1.4 | 0.2 ± 1.5 |
p, trend | 0.81 | 0.94 | 0.03 | 0.04 | |
Meat & Starchy | |||||
Q1 | 115 | 503 ± 93 | −9.0 ± 103.6 | 4.2 ± 1.2 | 0.3 ± 1.4 |
Q2 | 114 | 512 ± 79 | −0.5 ± 93.2 | 4.4 ± 1.5 | 0.4 ± 1.6 |
Q3 | 115 | 505 ± 78 | 1.7 ± 103.8 | 4.2 ± 1.5 | 0.5 ± 1.6 |
Q4 | 114 | 502 ± 86 | 7.0 ± 105.5 | 4.2 ± 1.4 | 0.4 ± 1.5 |
p, trend | 0.71 | 0.72 | 0.29 | 0.78 | |
Eggs, Milk & Refined Grain | |||||
Q1 | 115 | 510.6 ± 83 | −3.3 ± 100.5 | 4.5 ± 1.5 | 0.4 ± 1.6 |
Q2 | 114 | 503 ± 84 | 10.3 ± 98.5 | 4.3 ± 1.4 | 0.5 ± 1.5 |
Q3 | 115 | 503 ± 81 | 4.1 ± 100.7 | 4.2 ± 1.5 | 0.6 ± 1.6 |
Q4 | 114 | 506 ± 89 | −11.9 ± 106.1 | 4.0 ± 1.4 | 0.1 ± 1.5 |
p, trend | 0.73 | 0.33 | 0.05 | 0.09 |
Baseline Dietary Patterns | n | Weekday Sleep Duration at T2, Adjusted Difference (Min) 1 | Weekend Sleep Duration at T2, Adjusted Difference (Min) 1 |
---|---|---|---|
Plant-based & Lean Proteins | |||
Q1 | 115 | Reference | Reference |
Q2 | 114 | 6.43 (−16.24, 29.09) | 3.55 (−19.49, 26.59) |
Q3 | 115 | 0.08 (−22.34, 22.50) | −12.03 (−34.93, 10.86) |
Q4 | 114 | −3.58 (−26.34, 19.18) | −29.80 (−53.19, −6.41) |
p, trend | 0.64 | 0.01 | |
Meat & Starchy | |||
Q1 | 115 | Reference | Reference |
Q2 | 114 | 9.38 (−13.12, 31.88) | 6.39 (−16.76, 29.54) |
Q3 | 115 | 1.50 (−20.87, 23.87) | −1.43 (−24.37, 21.52) |
Q4 | 114 | −1.64 (−24.04, 20.76) | 7.31 (−15.67, 30.28) |
p, trend | 0.72 | 0.70 | |
Eggs, Milk & Refined Grain | |||
Q1 | 115 | Reference | Reference |
Q2 | 114 | −6.11 (−28.71, 16.49) | 5.11 (−18.06, 28.28) |
Q3 | 115 | −7.83 (−30.31, 14.64) | 15.73 (−7.50, 38.97) |
Q4 | 114 | −2.58 (−25.17, 20.02) | 7.22 (−15.97, 30.41) |
p, trend | 0.79 | 0.39 |
Baseline Dietary Patterns | n | Weekday Sleep Midpoint at T2, Adjusted Difference (H) 1 | Change in Weekday Sleep Midpoint T1 to T2, Adjusted Difference (H) 1 | Weekend Sleep Midpoint at T2, Adjusted Difference (H) | Change in Weekend Sleep Midpoint T1 to T2, Adjusted Difference (H) 1 |
---|---|---|---|---|---|
Plant-based & Lean Proteins | |||||
Q1 | 115 | Reference | Reference | Reference | Reference |
Q2 | 114 | −0.12 (−0.48, 0.25) | 0.15 (−0.26, 0.55) | −0.15 (−0.50, 0.21) | 0.02 (−0.36,0.40) |
Q3 | 115 | −0.38 (−0.74, −0.03) | −0.27 (−0.67, 0.13) | −0.35 (−0.70, 0.00) | −0.18 (−0.55, 0.20) |
Q4 | 114 | −0.45 (−0.81, −0.08) | −0.39 (−0.80, | −0.39 (−0.75, −0.03) | −0.36 (−0.74, 0.03) |
p, trend | 0.006 | 0.02 | 0.02 | 0.04 | |
Meat & Starchy | |||||
Q1 | 115 | Reference | Reference | Reference | Reference |
Q2 | 114 | 0.23 (−0.13, 0.59) | 0.04 (−0.37, 0.44) | 0.02 (−0.33, 0.38) | −0.08 (−0.47, 0.30) |
Q3 | 115 | −0.07 (−0.43, 0.29) | 0.13 (−0.27, 0.53) | 0.03 (−0.32, 0.39) | 0.14 (−0.23, 0.52) |
Q4 | 114 | −0.01 (−0.37, 0.35) | 0.06 (−0.34, 0.46) | 0.28 (−0.07, 0.63) | 0.22 (−0.16, 0.60) |
p, trend | 0.58 | 0.66 | 0.14 | 0.15 | |
Eggs, Milk & Refined Grain | |||||
Q1 | 115 | Reference | Reference | Reference | Reference |
Q2 | 114 | −0.12 (−0.48, 0.25) | 0.06 (−0.34, 0.47) | −0.18 (−0.53, 0.18) | −0.12 (−0.50, 0.26) |
Q3 | 115 | −0.20 (−0.56, 0.16) | 0.11 (−0.29, 0.51) | −0.17 (−0.53, 0.19) | −0.06 (−0.44, 0.32) |
Q4 | 114 | −0.40 (−0.77, −0.04) | −0.28 (−0.69, 0.12) | −0.50 (−0.85, −0.14) | −0.14 (−0.52, 0.25) |
p, trend | 0.03 | 0.22 | 0.01 | 0.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jansen, E.C.; Baylin, A.; Cantoral, A.; Téllez Rojo, M.M.; Burgess, H.J.; O'Brien, L.M.; Torres Olascoaga, L.; Peterson, K.E. Dietary Patterns in Relation to Prospective Sleep Duration and Timing among Mexico City Adolescents. Nutrients 2020, 12, 2305. https://doi.org/10.3390/nu12082305
Jansen EC, Baylin A, Cantoral A, Téllez Rojo MM, Burgess HJ, O'Brien LM, Torres Olascoaga L, Peterson KE. Dietary Patterns in Relation to Prospective Sleep Duration and Timing among Mexico City Adolescents. Nutrients. 2020; 12(8):2305. https://doi.org/10.3390/nu12082305
Chicago/Turabian StyleJansen, Erica C., Ana Baylin, Alejandra Cantoral, Martha María Téllez Rojo, Helen J. Burgess, Louise M. O'Brien, Libni Torres Olascoaga, and Karen E. Peterson. 2020. "Dietary Patterns in Relation to Prospective Sleep Duration and Timing among Mexico City Adolescents" Nutrients 12, no. 8: 2305. https://doi.org/10.3390/nu12082305
APA StyleJansen, E. C., Baylin, A., Cantoral, A., Téllez Rojo, M. M., Burgess, H. J., O'Brien, L. M., Torres Olascoaga, L., & Peterson, K. E. (2020). Dietary Patterns in Relation to Prospective Sleep Duration and Timing among Mexico City Adolescents. Nutrients, 12(8), 2305. https://doi.org/10.3390/nu12082305