Bone Mineral Density Changes during Weight Regain following Weight Loss with and without Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Subjects
2.3. Procedures
2.3.1. Body Composition and BMD
2.3.2. Cardiorespiratory Fitness
2.4. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Intervention Effects
3.3. Baseline Predicators of BMD Changes during Weight Regain
3.4. Weight Loss and Regain Predictors of BMD Changes during Weight Regain
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Adult Obesity Facts 2021. Available online: https://www.cdc.gov/obesity/data/adult.html (accessed on 18 July 2021).
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef]
- Jiang, B.C.; Villareal, D.T. Weight Loss-Induced Reduction of Bone Mineral Density in Older Adults with Obesity. J. Nutr. Gerontol. Geriatr. 2019, 38, 100–114. [Google Scholar] [CrossRef]
- Hall, K.D.; Kahan, S. Maintenance of Lost Weight and Long-Term Management of Obesity. Med. Clin. 2018, 102, 183–197. [Google Scholar] [CrossRef]
- Hinton, P.S.; Rector, R.S.; Linden, M.A.; Warner, S.O.; Dellsperger, K.C.; Chockalingam, A.; Whaley-Connell, A.T.; Liu, Y.; Thomas, T.R. Weight-loss-associated changes in bone mineral density and bone turnover after partial weight regain with or without aerobic exercise in obese women. Eur. J. Clin. Nutr. 2012, 66, 606–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villalon, K.L.; Gozansky, W.S.; Van Pelt, R.E.; Wolfe, P.; Jankowski, C.M.; Schwartz, R.S.; Kohrt, W.M. A losing battle: Weight regain does not restore weight loss-induced bone loss in postmenopausal women. Obesity 2011, 19, 2345–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avenell, A.; Richmond, P.R.; Lean, M.E.; Reid, D.M. Bone loss associated with a high fibre weight reduction diet in postmenopausal women. Eur. J. Clin. Nutr. 1994, 48, 561–566. [Google Scholar] [PubMed]
- Park, S.W.; Goodpaster, B.H.; Strotmeyer, E.S.; Kuller, L.H.; Broudeau, R.; Kammerer, C.; de Rekeneire, N.; Harris, T.B.; Schwartz, A.V.; Tylavsky, F.A.; et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: The health, aging, and body composition study. Diabetes Care 2007, 30, 1507–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, D.L.; Ward, A.L.; Villareal, D.T. Weight loss in obese adults 65years and older: A review of the controversy. Exp. Gerontol. 2013, 48, 1054–1061. [Google Scholar] [CrossRef] [Green Version]
- Von Thun, N.L.; Sukumar, D.; Heymsfield, S.B.; Shapses, S.A. Does bone loss begin after weight loss ends? Results 2 years after weight loss or regain in postmenopausal women. Menopause 2014, 21, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Kammire, D.E.; Walkup, M.P.; Ambrosius, W.T.; Lenchik, L.; Shapses, S.A.; Nicklas, B.J.; Houston, D.K.; Marsh, A.P.; Rejeski, W.J.; Beavers, K.M. Effect of Weight Change Following Intentional Weight Loss on Bone Health in Older Adults with Obesity. Obesity 2019, 27, 1839–1845. [Google Scholar] [CrossRef]
- Martyn-St James, M.; Carroll, S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone 2008, 43, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.C.; Blumenthal, J.B.; Ryan, A.S. Impact of Weight Loss and Aerobic Exercise on Nutrition and Bone Mineral Density in African American and Caucasian Postmenopausal Women. J. Aging Res. Clin. Pract. 2013, 2, 11–16. [Google Scholar]
- Ryan, A.S.; Nicklas, B.J.; Dennis, K.E. Aerobic exercise maintains regional bone mineral density during weight loss in postmenopausal women. J. Appl. Physiol. 1998, 84, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Armamento-Villareal, R.; Parimi, N.; Chode, S.; Sinacore, D.R.; Hilton, T.N.; Napoli, N.; Qualls, C.; Villareal, D.T. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J. Bone Min. Res. 2011, 26, 2851–2859. [Google Scholar] [CrossRef] [Green Version]
- Villareal, D.T.; Fontana, L.; Weiss, E.P.; Racette, S.B.; Steger-May, K.; Schechtman, K.B.; Klein, S.; Holloszy, J.O. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: A randomized controlled trial. Arch. Int. Med. 2006, 166, 2502–2510. [Google Scholar] [CrossRef] [PubMed]
- Hosny, I.A.; Elghawabi, H.S.; Younan, W.B.; Sabbour, A.A.; Gobrial, M.A.M. Beneficial impact of aerobic exercises on bone mineral density in obese premenopausal women under caloric restriction. Skelet. Radiol. 2012, 41, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Villareal, D.T.; Chode, S.; Parimi, N.; Hilton, T.; Armamento-Villareal, R.; Napoli, N.; Qualls, C.; Qualls, K. Weight loss, exercise, or both and physical function in obese older adults. N. Engl. J. Med. 2011, 364, 1218–1229. [Google Scholar] [CrossRef] [Green Version]
- Villareal, D.T.; Shah, K.; Banks, M.R.; Sinacore, D.R.; Klein, S. Effect of Weight Loss and Exercise Therapy on Bone Metabolism and Mass in Obese Older Adults: A One-Year Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2008, 93, 2181–2187. [Google Scholar] [CrossRef]
- Svendsen, O.L.; Hassager, C.; Christiansen, C. Effect of an energy-restrictive diet, with or without exercise, on lean tissue mass, resting metabolic rate, cardiovascular risk factors, and bone in overweight postmenopausal women. Am. J. Med. 1993, 95, 131–140. [Google Scholar] [CrossRef]
- Beavers, D.P.; Beavers, K.M.; Loeser, R.F.; Walton, N.R.; Lyles, M.F.; Nicklas, B.J.; Shapses, S.A.; Newman, J.J.; Messier, S.P. The independent and combined effects of intensive weight loss and exercise training on bone mineral density in overweight and obese older adults with osteoarthritis. Osteoarthr. Cartilag. 2014, 22, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Ryan, A.S.; Serra, M.C.; Goldberg, A.P. Metabolic Benefits of Prior Weight Loss with and without Exercise on Subsequent 6-Month Weight Regain. Obesity 2018, 26, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.S.; Ortmeyer, H.K.; Sorkin, J.D. Exercise with calorie restriction improves insulin sensitivity and glycogen synthase activity in obese postmenopausal women with impaired glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E145–E152. [Google Scholar] [CrossRef] [Green Version]
- Fogelholm, G.M.; Sievanen, H.T.; Kukkonen-Harjula, T.K.; Pasanen, M.E. Bone mineral density during reduction, maintenance and regain of body weight in premenopausal, obese women. Osteoporos. Int. 2001, 12, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Min. Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salamat, M.R.; Salamat, A.H.; Janghorbani, M. Association between Obesity and Bone Mineral Density by Gender and Menopausal Status. Endocrinol. Metab. 2016, 31, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.J.; Liu, Y.J.; Liu, P.Y.; Hamilton, J.; Recker, R.R.; Deng, H.-W. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef] [Green Version]
- Cariati, I.; Bonanni, R.; Onorato, F.; Mastrogregori, A.; Rossi, D.; Iundusi, R.; Gasbarra, E.; Tancredi, V.; Tarantino, U. Role of Physical Activity in Bone-Muscle Crosstalk: Biological Aspects and Clinical Implications. J. Funct. Morphol. Kinesiol. 2021, 6, 55. [Google Scholar] [CrossRef]
- Beavers, K.M.; Serra, M.C.; Weaver, A.A. Chapter 35—Bone, muscle, and sarcopenia. In Marcus and Feldman’s Osteoporosis, 5th ed.; Dempster, D.W., Cauley, J.A., Bouxsein, M.L., Cosman, F., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 847–873. [Google Scholar]
- Nordstrom, P.; Pettersson, U.; Lorentzon, R. Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. J. Bone Miner. Res. 1998, 13, 1141–1148. [Google Scholar] [CrossRef]
- Pocock, N.A.; Eisman, J.A.; Yeates, M.G.; Sambrook, P.N.; Eberl, S. Physical fitness is a major determinant of femoral neck and lumbar spine bone mineral density. J. Clin. Investig. 1986, 78, 618–621. [Google Scholar] [CrossRef] [Green Version]
- Chow, R.K.; Harrison, J.E.; Brown, C.F.; Hajek, V. Physical fitness effect on bone mass in postmenopausal women. Arch. Phys. Med. Rehabil. 1986, 67, 231–234. [Google Scholar]
- Bevier, W.C.; Wiswell, R.A.; Pyka, G.; Kozak, K.C.; Newhall, K.M.; Marcus, P. Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J. Bone Miner. Res. 1989, 4, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, C.; Colangelo, L.; Santori, R.; Renella, M.; Mastrantonio, M.; Minisola, S.; Pepe, J. The Interplay between Bone and Glucose Metabolism. Front. Endocrinol. 2020, 11, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, D.L.; Vawter, R.; Qualls, C.; Chode, S.; Armamento-Villareal, R.; Villareal, D.T. Long-term maintenance of weight loss after lifestyle intervention in frail, obese older adults. J. Nutr. Health Aging 2013, 17, 3–7. [Google Scholar] [CrossRef]
- Sirola, J.; Kroger, H. Similarities in acquired factors related to postmenopausal osteoporosis and sarcopenia. J. Osteoporos. 2011, 2011, 536735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis-2020 Update. Endocr. Pract. 2020, 26 (Suppl. 1), 1–46. [Google Scholar] [CrossRef]
- Benedetti, M.G.; Furlini, G.; Zati, A. The Effectiveness of Physical Exercise on Bone Density in Osteoporotic Patients. BioMed Res. Int. 2018, 2018, 4840531. [Google Scholar] [CrossRef]
- Beavers, K.M.; Walkup, M.P.; Weaver, A.A.; Lenchik, L.; Kritchevsky, S.B.; Nicklas, B.J.; Ambrosius, W.T.; Stitzel, J.D.; Register, T.C.; Shapses, S.A.; et al. Effect of Exercise Modality During Weight Loss on Bone Health in Older Adults with Obesity and Cardiovascular Disease or Metabolic Syndrome: A Randomized Controlled Trial. J. Bone Miner. Res. 2018, 33, 2140–2149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, J.A.; Lu, Y. A generalized least significant change for individuals measured on different DXA systems. J. Clin. Densitom. 2007, 10, 249–258. [Google Scholar] [CrossRef]
Baseline | 6 Months | 12 Months | Time | Group | G × T | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WL: N = 26 and AEX + WL: N = 28 | Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | p-Value | p-Value | p-Value | |
Age (yrs) | WL | 62.71 | ± | 7.63 | - | - | - | - | - | ||||
AEX + WL | 58.00 | ± | 6.73 | - | - | ||||||||
Body Weight (kg) | WL | 87.65 | ± | 16.90 | 80.31 | ± | 16.03 | 81.76 | ± | 16.84 | <0.01 | 0.33 | 0.77 |
AEX + WL | 83.87 | ± | 14.17 | 75.79 | ± | 14.28 | 77.38 | ± | 15.38 | ||||
Body Mass Index (kg/m2) | WL | 32.91 | ± | 5.86 | 30.13 | ± | 5.52 | 30.71 | ± | 6.01 | <0.01 | 0.58 | 0.68 |
AEX + WL | 32.20 | ± | 5.68 | 29.05 | ± | 5.79 | 29.74 | ± | 6.32 | ||||
Appendicular Lean Mass (kg) | WL | 20.11 | ± | 2.73 | 19.18 | ± | 2.32 | 18.50 | ± | 3.62 | 0.02 | 0.09 | 0.11 |
AEX + WL | 18.02 | ± | 3.05 | 17.62 | ± | 2.92 | 17.81 | ± | 3.08 | ||||
VO2max (L/min) | WL | 1.575 | ± | 0.392 | 1.426 | ± | 0.255 | 1.419 | ± | 0.263 | 0.08 | 0.07 | 0.03 |
AEX + WL | 1.804 | ± | 0.433 | 1.945 | ± | 0.615 | 1.649 | ± | 0.347 | ||||
Total Body BMD (g/cm2) | WL | 1.183 | ± | 0.130 | 1.169 | ± | 0.128 | 1.165 | ± | 0.128 | <0.01 | 0.97 | 0.99 |
AEX + WL | 1.182 | ± | 0.097 | 1.168 | ± | 0.091 | 1.165 | ± | 0.094 | ||||
Femoral Neck BMD (g/cm2) | WL | 0.928 | ± | 0.130 | 0.925 | ± | 0.131 | 0.921 | ± | 0.140 | 0.17 | 0.71 | 0.56 |
AEX + WL | 0.913 | ± | 0.108 | 0.918 | ± | 0.119 | 0.906 | ± | 0.120 | ||||
Total Femur BMD (g/cm2) | WL | 1.003 | ± | 0.113 | 0.991 | ± | 0.111 | 0.984 | ± | 0.111 | 0.03 | 0.43 | 0.70 |
AEX + WL | 0.975 | ± | 0.112 | 0.961 | ± | 0.113 | 0.964 | ± | 0.127 | ||||
Ward’s Triangle BMD (g/cm2) | WL | 0.754 | ± | 0.139 | 0.738 | ± | 0.148 | 0.736 | ± | 0.162 | 0.09 | 0.84 | 0.30 |
AEX + WL | 0.756 | ± | 0.141 | 0.764 | ± | 0.199 | 0.735 | ± | 0.137 | ||||
Greater Trochanter BMD (g/cm2) | WL | 0.811 | ± | 0.136 | 0.801 | ± | 0.137 | 0.806 | ± | 0.137 | 0.28 | 0.39 | 0.97 |
AEX + WL | 0.786 | ± | 0.101 | 0.771 | ± | 0.094 | 0.779 | ± | 0.100 | ||||
Lumbar Spine (L1-L4) BMD (g/cm2) | WL | 1.174 | ± | 0.122 | 1.189 | ± | 0.129 | 1.169 | ± | 0.132 | 0.07 | 0.53 | 0.07 |
AEX + WL | 1.228 | ± | 0.197 | 1.211 | ± | 0.200 | 1.205 | ± | 0.209 |
Total Body BMD (g/cm2) | Femoral Neck (g/cm2) | Total Femur (g/cm2) | Ward’s Triangle (g/cm2) | Greater Trochanter (g/cm2) | Lumbar Spine (g/cm2) | ||
---|---|---|---|---|---|---|---|
Change (6–12 Months) | Change (6–12 Months) | Change (6–12 Months) | Change (6–12 Months) | Change (6–12 Months) | Change (6–12 Months) | ||
r | r | r | r | r | r | ||
Body Weight (kg) | Baseline | 0.18 | 0.27 * | 0.07 | 0.07 | 0.03 | 0.20 |
Change (0–6 months) | 0.26 | −0.14 | 0.10 | −0.06 | 0.04 | −0.32 * | |
Change (6–12 months) | 0.24 | 0.04 | −0.09 | 0.09 | 0.00 | −0.08 | |
Appendicular Lean Mass (kg) | Baseline | 0.16 | 0.35 * | −0.03 | 0.17 | −0.04 | 0.08 |
Change (0–6 months) | 0.18 | 0.08 | 0.27 | 0.32 * | 0.31* | 0.06 | |
Change (6–12 months) | 0.12 | 0.17 | 0.04 | −0.07 | 0.03 | 0.04 | |
VO2max (L/min) | Baseline | −0.03 | 0.10 | 0.09 | −0.02 | 0.08 | 0.29 |
Change (0–6 months) | 0.39 ** | 0.04 | 0.43 ** | 0.41 ** | 0.44 ** | 0.13 | |
Change (6–12 months) | −0.39 | 0.12 | −0.04 | −0.11 | −0.05 | −0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra, M.C.; Ryan, A.S. Bone Mineral Density Changes during Weight Regain following Weight Loss with and without Exercise. Nutrients 2021, 13, 2848. https://doi.org/10.3390/nu13082848
Serra MC, Ryan AS. Bone Mineral Density Changes during Weight Regain following Weight Loss with and without Exercise. Nutrients. 2021; 13(8):2848. https://doi.org/10.3390/nu13082848
Chicago/Turabian StyleSerra, Monica C., and Alice S. Ryan. 2021. "Bone Mineral Density Changes during Weight Regain following Weight Loss with and without Exercise" Nutrients 13, no. 8: 2848. https://doi.org/10.3390/nu13082848
APA StyleSerra, M. C., & Ryan, A. S. (2021). Bone Mineral Density Changes during Weight Regain following Weight Loss with and without Exercise. Nutrients, 13(8), 2848. https://doi.org/10.3390/nu13082848