Effect of Dietary Supplementation with Eufortyn® Colesterolo Plus on Serum Lipids, Endothelial Reactivity, Indexes of Non-Alcoholic Fatty Liver Disease and Systemic Inflammation in Healthy Subjects with Polygenic Hypercholesterolemia: The ANEMONE Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design andParticipants
2.2. Treatment
2.3. Assessments
2.3.1. Clinical Data and Anthropometric Measurements
2.3.2. Laboratory Analyses
2.3.3. Blood Pressure Measurements
2.3.4. Endothelial Reactivity
2.3.5. Assessment of Safety and Tolerability
2.4. Statistical Analysis
3. Results
3.1. Efficacy Analysis
3.2. Safety Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tangney, C.C.; Rasmussen, H.E. Polyphenols, inflammation, and cardiovascular disease. Curr. Atheroscler. Rep. 2013, 15, 324. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and human health: The role of bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, M.Á.; Ramos, S. Impact of dietary flavanols on microbiota, immunity and inflammation in metabolic diseases. Nutrients 2021, 13, 850. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A.; Bajraktari, G.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; Katsiki, N.; Langlois, M.; Latkovskis, G.; et al. Lipid lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel. Nutr. Res. Rev. 2020, 33, 155–179. [Google Scholar] [CrossRef] [PubMed]
- Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis 2019, 290, 140–205. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.G.; Caliceti, C.; Fogacci, F.; Giovannini, M.; Calabria, D.; Colletti, A.; Veronesi, M.; Roda, A.; Borghi, C. Effect of apple polyphenols on vascular oxidative stress and endothelium function: A translational study. Mol. Nutr. Food Res. 2017, 61, 1700373. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Bove, M.; Giovannini, M.; Borghi, C. Impact of a short-term synbiotic supplementation on metabolic syndrome and systemic inflammation in elderly patients: A randomized placebo-controlled clinical trial. Eur. J. Nutr. 2021, 60, 655–663. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular fltration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Bedogni, G.; Kahn, H.S.; Bellentani, S.; Tiribelli, C. A simple index of lipid overaccumulation is a good marker of liver steatosis. BMC Gastroenterol. 2010, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Gitto, S.; Fogacci, F.; Rosticci, M.; Giovannini, M.; D’Addato, S.; Andreone, P.; Borghi, C.; Brisighella Heart Study Group Medical and Surgical Sciences Department, University of Bologna. Fatty liver index is associated to pulse wave velocity in healthy subjects: Data from the Brisighella Heart Study. Eur. J. Intern. Med. 2018, 53, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; AgabitiRosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. Authors/Task Force Members. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018, 36, 1953–2041. [Google Scholar] [CrossRef] [Green Version]
- Thijssen, D.H.J.; Bruno, R.M.; van Mil, A.C.C.M.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T.; et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019, 40, 2534–2547. [Google Scholar] [CrossRef] [PubMed]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the ultrasound assessment of endothelial—dependent flow—mediated vasodilation of the brachial artery: A report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef] [Green Version]
- McGreevy, C.; Barry, M.; Bennett, K.; Williams, D. Repeatability of the measurement of aortic pulse wave velocity (aPWV) in the clinical assessment of arterial stiffness in community-dwelling older patients using the Vicorder(®) device. Scand. J. Clin. Lab. Investig. 2013, 73, 269–273. [Google Scholar] [CrossRef]
- Day, L.M.; Maki-Petaja, K.M.; Wilkinson, I.B.; McEniery, C.M. Assessment of brachial artery reactivity using the endocheck: Repeatability, reproducibility and preliminary comparison with ultrasound. Artery Res. 2013, 7, 119–120. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Veronesi, M.; Strocchi, E.; Grandi, E.; Rizzoli, E.; Poli, A.; Marangoni, F.; Borghi, C. A randomized placebo-controlled clinical trial to evaluate the medium-term effects of oat fibers on human health: The beta-glucan effects on lipid profile, glycemia and intestinal health (BELT) study. Nutrients 2020, 12, 686. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.G.; Fogacci, F.; Colletti, A. Food and plant bioactives for reducing cardiometabolic disease risk: An evidence based approach. Food Funct. 2017, 8, 2076–2088. [Google Scholar] [CrossRef]
- Feldman, F.; Koudoufio, M.; Desjardins, Y.; Spahis, S.; Delvin, E.; Levy, E. Efficacy of polyphenols in the management of dyslipidemia: A focus on clinical studies. Nutrients 2021, 13, 672. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Bove, M.; Giovannini, M.; Borghi, C. Three-arm, placebo-controlled, randomized clinical trial evaluating the metabolic effect of a combined nutraceutical containing a bergamot standardized flavonoid extract in dyslipidemic overweight subjects. Phytother. Res. 2019, 33, 2094–2101. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Bove, M.; Giovannini, M.; Veronesi, M.; Borghi, C. Short-term effects of dry extracts of artichoke and berberis in hypercholesterolemic patients without cardiovascular disease. Am. J. Cardiol. 2019, 123, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Gliozzi, M.; Walker, R.; Mollace, V. Bergamot polyphenols: Pleiotropic players in the treatment of metabolic syndrome. J. Metab. Syndr. 2014, 3, 143. [Google Scholar]
- Santos, H.O.; Bueno, A.A.; Mota, J.F. The effect of artichoke on lipid profile: A review of possible mechanisms of action. Pharmacol. Res. 2018, 137, 170–178. [Google Scholar] [CrossRef]
- Gebhardt, R. Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J. Pharmacol. Exp. Ther. 1998, 286, 1122–1128. [Google Scholar]
- Sahebkar, A.; Pirro, M.; Banach, M.; Mikhailidis, D.P.; Atkin, S.L.; Cicero, A.F.G. Lipid-lowering activity of artichoke extracts: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2018, 58, 2549–2556. [Google Scholar] [CrossRef]
- Tousoulis, D.; Kampoli, A.M.; Tentolouris, C.; Papageorgiou, N.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Kwon, T.G.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prognostic value of flow-mediated vasodilation in brachial artery and fingertip artery for cardiovascular events: A systematic review and meta-analysis. J. Am. Heart Assoc. 2015, 4, e002270. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xia, N.; Brausch, I.; Yao, Y.; Förstermann, U. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells. J. Pharmacol. Exp. Ther. 2004, 310, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.J.; Huang, Y.C.; Chen, S.J.; Lin, P.T. Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition 2012, 28, 250–255. [Google Scholar] [CrossRef]
- Vázquez-Lorente, H.; Molina-López, J.; Herrera-Quintana, L.; Gamarra-Morales, Y.; Quintero-Osso, B.; López-González, B.; Planells, E. Erythrocyte Zn concentration and antioxidant response after supplementation with Zn in a postmenopausal population. A double-blind randomized trial. Exp. Gerontol. 2022, 162, 111766. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Keech, A.; Kearney, P.M.; Blackwell, L.; Buck, G.; Pollicino, C.; Kirby, A.; Sourjina, T.; Peto, R.; Collins, R.; et al. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366, 1267–1278. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA ANS Panel (EFSA Panel Food Additives and Nutrient Sources added to Food); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipi, C.M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Scientific opinion on the safety of monacolins in red yeast rice. EFSA J. 2018, 16, 5368. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.G.; Fogacci, F.; Stoian, A.P.; Vrablik, M.; Al Rasadi, K.; Banach, M.; Toth, P.P.; Rizzo, M. Nutraceuticals in the management of dyslipidemia: Which, when, and for whom? Could nutraceuticals help low-risk individuals with non-optimal lipid levels? Curr. Atheroscler. Rep. 2021, 23, 57. [Google Scholar] [CrossRef] [PubMed]
- Ballistreri, G.; Amenta, M.; Fabroni, S.; Consoli, V.; Grosso, S.; Vanella, L.; Sorrenti, V.; Rapisarda, P. Evaluation of lipid and cholesterol-lowering effect of bioflavonoids from bergamot extract. Nat. Prod. Res. 2020, 35, 5378–5383. [Google Scholar] [CrossRef]
- Cicero, A.F.; Colletti, A. Role of phytochemicals in the management of metabolic syndrome. Phytomedicine 2016, 23, 1134–1144. [Google Scholar] [CrossRef]
- Cicero, A.F.; Colletti, A.; Bellentani, S. Nutraceutical approach to non-alcoholic fatty liver disease (NAFLD): The available clinical evidence. Nutrients 2018, 10, 1153. [Google Scholar] [CrossRef] [Green Version]
- Lamiquiz-Moneo, I.; Giné-González, J.; Alisente, S.; Bea, A.M.; Pérez-Calahorra, S.; Marco-Benedí, V.; Baila-Rueda, L.; Jarauta, E.; Cenarro, A.; Civeira, F.; et al. Effect of bergamot on lipid profile in humans: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3133–3143. [Google Scholar] [CrossRef] [Green Version]
- Riva, A.; Petrangolini, G.; Allegrini, P.; Perna, S.; Giacosa, A.; Peroni, G.; Faliva, M.A.; Naso, M.; Rondanelli, M. Artichoke and bergamot phytosome alliance: A randomized double blind clinical trial in mild hypercholesterolemia. Nutrients 2021, 14, 108. [Google Scholar] [CrossRef]
- Domínguez-Fernández, M.; Ludwig, I.A.; De Peña, M.P.; Cid, C. Bioaccessibility of Tudela artichoke (Cynara scolymus cv. Blanca de Tudela) (poly)phenols: The effects of heat treatment, simulated gastrointestinal digestion and human colonic microbiota. Food Funct. 2021, 12, 1996–2011. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Quantity per Tablet |
---|---|
Vazguard® (Phytosome Bergamot Polyphenolic fraction) | 1000 mg |
Pycrinil® artichoke d.e. (Cynara cardunculus L.) | 100 mg |
Artichoke d.e. (Cynara scolymus L.) | 20 mg |
Ubiqsome® (Coenzyme Q10 phytosome) | 25 mg |
equivalent to Coenzyme Q10 | 5 mg |
Zinc | 5 mg |
Parameters | Placebo (n. 28) | Eufortyn® Colesterolo Plus (n. 28) | ||
---|---|---|---|---|
Baseline | Week 8 | Baseline | Week 8 | |
Total energy (Kcal/day) | 1629 ± 110 | 1611 ± 105 | 1591 ± 99 | 1586 ± 116 |
Carbohydrates (% of total energy) | 54.4 ± 2.3 | 53.2 ± 2.5 | 54.5 ± 2.1 | 54.4 ± 2.4 |
Proteins (% of total energy) | 18.2 ± 1.4 | 18.4 ± 1.6 | 17.8 ± 1.5 | 18.1 ± 1.3 |
Animal protein (% of total energy) | 10.5 ± 0.9 | 9.9 ± 0.9 | 10.6 ± 0.7 | 10.9 ± 0.8 |
Vegetal protein (% of total energy) | 7.3 ± 0.6 | 7.5 ± 0.8 | 6.7 ± 0.6 | 6.8 ± 0.7 |
Total fats (% of total energy) | 27.7 ± 2.0 | 27.5 ± 2.3 | 27.2 ± 1.7 | 28.0 ± 2.1 |
Saturated fatty acids (% of total energy) | 8.0 ± 0.8 | 8.2 ± 0.7 | 8.3 ± 0.7 | 7.8 ± 0.9 |
MUFA (% of total energy) | 12.6 ± 1.1 | 12.2 ± 1.0 | 12.8 ± 1.0 | 12.3 ± 1.1 |
PUFA (% of total energy) | 6.7 ± 0.6 | 6.2 ± 0.7 | 6.5 ± 0.5 | 6.7 ± 0.6 |
Total dietary fibers (g/day) | 18.9 ± 2.5 | 19.1 ± 2.8 | 19.3 ± 2.5 | 18.7 ± 2.4 |
Cholesterol (mg/day) | 191.2 ± 13.3 | 187.2 ± 12.3 | 192.8 ± 11.5 | 194.8 ± 10.7 |
Parameters | Placebo (n. 28) | Eufortyn® Colesterolo Plus (n. 28) | ||
---|---|---|---|---|
Baseline | Week 8 | Baseline | Week 8 | |
Age (years) | 54 ± 3 | - | 54 ± 4 | - |
Body Mass Index (Kg/m2) | 24.3 ± 3.9 | 24.4 ± 3.7 | 23.9 ± 2.9 | 23.7 ± 2.7 |
Waist Circumference (cm) | 87.1 ± 14.0 | 87.1 ± 13.8 | 85.8 ± 12.4 | 84.8 ± 11.4 § |
SBP (mmHg) | 135.4 ± 16.1 | 131.6 ± 17.7 | 133.8 ± 16.5 | 130.9 ± 17.9 |
DBP (mmHg) | 73.5 ± 12.5 | 72.8 ± 10.3 | 73.8 ± 10.7 | 75.7 ± 12.8 |
Heart Rate (bpm) | 65.5 ± 11.2 | 69.1 ± 12.3 | 73.3 ± 13.3 § | 71.0 ± 13.0 |
Total Cholesterol (mg/dL) | 223.7 ± 24.7 | 227.7 ± 22.3 | 229.2 ± 20.8 | 214.5 ± 22.9 §,* |
LDL-C (mg/dL) | 141.9 ± 20.1 | 144.9 ± 20.2 | 143.3 ± 17.3 | 131.2 ± 19.8 §,* |
HDL-C (mg/dL) | 57.4 ± 17.6 | 56.5 ± 14.9 | 64.9 ± 18.9 § | 61.8 ± 18.0 |
Non-HDL-C (mg/dL) | 166.4 ± 23.6 | 159.5 ± 29.0 | 165.3 ± 20.1 | 158.7 ± 23.1 * |
LDL-C/HDL-C | 2.7 ± 0.8 | 2.7 ± 0.8 | 2.5 ± 0.8 | 2.4 ± 0.8 § |
Triglycerides (mg/dL) | 117.3 ± 70.2 | 126.3 ± 59.5 | 109.7 ± 54.3 | 112.9 ± 47.3 § |
Apolipoprotein B-100 (mg/dL) | 122.0 ± 16.2 | 126.2 ± 17.6 | 118.0 ± 14.6 | 121.4 ± 16.9 |
Apolipoprotein AI (mg/dL) | 154.2 ± 26.3 | 154.4 ± 24.2 | 160.4 ± 27.9 | 155.9 ± 28.8 |
FPG (mg/dL) | 90.1 ± 8.5 | 91.4 ± 7.1 | 88.2 ± 11.3 | 89.2 ± 10.5 |
AST (U/L) | 21.2 ± 7.2 | 21.2 ± 4.6 | 22.3 ± 4.6 | 22.8 ± 4.6 |
ALT (U/L) | 22.7 ± 14.4 | 20.6 ± 10.3 | 19.2 ± 6.9 § | 19.0 ± 6.9 |
gGT (U/L) | 25.2 ± 20.5 | 25.2 ± 17.9 | 21.9 ± 13.3 § | 22.4 ± 13.6 |
Lipid Accumulation Product | 34.9 ± 16.4 | 38.1 ± 19.1 | 33.4 ± 16.3 | 32.9 ± 13.3 § |
Hepatic Steatosis Index | 33.4 ± 5.2 | 32.8 ± 4.9 | 32.1 ± 4.1 | 31.7 ± 3.8 |
Fatty Liver Index | 31.4 ± 15.9 | 29.5 ± 17.6 | 26.4 ± 14.5 | 26.2 ± 13.9 § |
CPK (U/L) | 102.3 ± 74.8 | 108.4 ± 104.1 | 114.1 ± 67.8 | 99.2 ± 51.0 |
eGFR (mL/min) | 85.9 ± 15.8 | 85.9 ± 16.1 | 85.6 ± 15.9 | 83.0 ± 16.7 |
hs-CRP (mg/L) | 0.15 ± 0.15 | 0.12 ± 0.10 | 0.17 ± 0.24 | 0.13 ± 0.15 * |
Endothelial reactivity | 1.37 ± 0.31 | 1.38 ± 0.17 | 1.33 ± 0.27 | 1.43 ± 0.22 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogacci, F.; Rizzoli, E.; Giovannini, M.; Bove, M.; D’Addato, S.; Borghi, C.; Cicero, A.F.G. Effect of Dietary Supplementation with Eufortyn® Colesterolo Plus on Serum Lipids, Endothelial Reactivity, Indexes of Non-Alcoholic Fatty Liver Disease and Systemic Inflammation in Healthy Subjects with Polygenic Hypercholesterolemia: The ANEMONE Study. Nutrients 2022, 14, 2099. https://doi.org/10.3390/nu14102099
Fogacci F, Rizzoli E, Giovannini M, Bove M, D’Addato S, Borghi C, Cicero AFG. Effect of Dietary Supplementation with Eufortyn® Colesterolo Plus on Serum Lipids, Endothelial Reactivity, Indexes of Non-Alcoholic Fatty Liver Disease and Systemic Inflammation in Healthy Subjects with Polygenic Hypercholesterolemia: The ANEMONE Study. Nutrients. 2022; 14(10):2099. https://doi.org/10.3390/nu14102099
Chicago/Turabian StyleFogacci, Federica, Elisabetta Rizzoli, Marina Giovannini, Marilisa Bove, Sergio D’Addato, Claudio Borghi, and Arrigo F. G. Cicero. 2022. "Effect of Dietary Supplementation with Eufortyn® Colesterolo Plus on Serum Lipids, Endothelial Reactivity, Indexes of Non-Alcoholic Fatty Liver Disease and Systemic Inflammation in Healthy Subjects with Polygenic Hypercholesterolemia: The ANEMONE Study" Nutrients 14, no. 10: 2099. https://doi.org/10.3390/nu14102099
APA StyleFogacci, F., Rizzoli, E., Giovannini, M., Bove, M., D’Addato, S., Borghi, C., & Cicero, A. F. G. (2022). Effect of Dietary Supplementation with Eufortyn® Colesterolo Plus on Serum Lipids, Endothelial Reactivity, Indexes of Non-Alcoholic Fatty Liver Disease and Systemic Inflammation in Healthy Subjects with Polygenic Hypercholesterolemia: The ANEMONE Study. Nutrients, 14(10), 2099. https://doi.org/10.3390/nu14102099