Gluten-Free Cereals and Pseudocereals as a Potential Source of Exposure to Toxic Elements among Polish Residents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Microwave Digestion of Samples
2.3. Toxic Elements Determination
2.3.1. Mercury
2.3.2. Arsenic, Cadmium, Lead
2.3.3. Accuracy Check of the Methods
2.4. Participants
2.4.1. Questionnaire
2.4.2. Health Risk Assessment
2.5. Comparison of Results with European Regulations
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Arsenic
4.2. Cadmium
4.3. Lead
4.4. Mercury
4.5. Health Risk
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fardet, A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: A preliminary study with 98 ready-to-eat foods. Food Funct. 2016, 7, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- Sadler, C.; Grassby, T.; Hart, K.H.; Raats, M.; Sokolović, M.; Timotijevic, L. Processed food classification: Conceptualisation and challenges. Trends Food Sci. Technol. 2021, 112, 149–162. [Google Scholar] [CrossRef]
- Wijngaard, H.H.; Arendt, E.K. Buckwheat. Cereal Chem. 2006, 83, 391–401. [Google Scholar] [CrossRef]
- Hosaka, T.; Sasaga, S.; Yamasaka, Y.; Nii, Y.; Edazawa, K.; Tsutsumi, R.; Shuto, E.; Okahisa, N.; Iwata, S.; Tomotake, H.; et al. Treatment with buckwheat bran extract prevents the elevation of serum triglyceride levels and fatty liver in KK-Ay mice. J. Med. Investig. 2014, 61, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Stringer, D.M.; Taylor, C.G.; Appah, P.; Blewett, H.; Zahradka, P. Consumption of buckwheat modulates the post-prandial response of selected gastrointestinal satiety hormones in individuals with type 2 diabetes mellitus. Metabolism 2016, 62, 1021–1031. [Google Scholar] [CrossRef]
- Boncompagni, E.; Orozco-Arroyo, G.; Cominelli, E.; Gangashetty, P.I.; Grando, S.; Kwaku, Z.T.T.; Dominati, M.G.; Nielsen, E.; Sparvoli, F. Antinutritional factors in pearl millet grains: Phytate and goitrogens content variability and molecular characterization of genes involved in their pathways. PLoS ONE 2018, 13, e0198394. [Google Scholar] [CrossRef]
- Kaur, P.; Purewal, S.S.; Sandhu, K.S.; Kaur, M.; Salar, R.K. Millets: A cereal grain with potent antioxidants and health benefits. J. Food Meas. Charact. 2019, 13, 793–806. [Google Scholar] [CrossRef]
- Revilla, P.; Alves, M.L.; Andelković, V.; Balconi, C.; Dinis, I.; Mendes-Moreira, P.; Redaelli, R.; Ruiz de Galarreta, J.I.; Vaz Patto, M.C.; Žilić, S.; et al. Traditional Foods From Maize (Zea mays L.) in Europe. Front. Nutr. 2022, 8, 683399. [Google Scholar] [CrossRef]
- Kim, I.-S.; Hwang, C.-W.; Yang, W.-S.; Kim, C.-H. Multiple Antioxidative and Bioactive Molecules of Oats (Avena sativa L.) in Human Health. Antioxidants 2021, 10, 1454. [Google Scholar] [CrossRef]
- Navruz-Varli, S.; Sanlier, N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J. Cereal Sci. 2016, 69, 371–376. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, W.; Czop, M.; Iłowiecka, K.; Nawrocka, A.; Wiącek, D. Dietary Intake of Toxic Heavy Metals with Major Groups of Food Products—Results of Analytical Determinations. Nutrients 2022, 14, 1626. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Melough, M.M.; Vance, T.M.; Noh, H.; Koo, S.I.; Chun, O.K. Dietary Cadmium Intake and Sources in the US. Nutrients 2019, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Vromman, V.; Waegeneers, N.; Cornelis, C.; De Boosere, I.; Van Holderbeke, M.; Vinkx, C.; Smolders, E.; Huyghebaert, A.; Pussemier, L. Dietary cadmium intake by the Belgian adult population. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 1665–1673. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2020.
- EFSA. EFSA Panel on contaminants in the food chain (CONTAM), Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- Bielecka, J.; Markiewicz-Żukowska, R.; Nowakowski, P.; Grabia, M.; Puścion-Jakubik, A.; Mielcarek, K.; Gromkowska-Kępka, K.J.; Soroczyńska, J.; Socha, K. Content of Toxic Elements in 12 Groups of Rice Products Available on Polish Market: Human Health Risk Assessment. Foods 2020, 9, 1906. [Google Scholar] [CrossRef]
- Mielcarek, K.; Nowakowski, P.; Puścion-Jakubik, A.; Gromkowska-Kępka, K.J.; Soroczyńska, J.; Markiewicz-Żukowska, R.; Naliwajko, S.K.; Grabia, M.; Bielecka, J.; Żmudzińska, A.; et al. Arsenic, cadmium, lead and mercury content and health risk assessment of consuming freshwater fish with elements of chemometric analysis. Food Chem. 2022, 379, 132167. [Google Scholar] [CrossRef]
- Commission Regulation (EC). No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. 2006. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A02006R1881-20220101 (accessed on 11 April 2022).
- EFSA. Metals as Contaminants in Food. Available online: https://www.efsa.europa.eu/en/topics/topic/metals-contaminants-food (accessed on 5 April 2022).
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/quinoa/en/ (accessed on 15 May 2022).
- The Statistics Portal for Market Data, Market Research and Market Studies. Available online: https://www.statista.com/ (accessed on 15 May 2022).
- Laheri, Z.; Soon, J.M. Awareness of alternative gluten-free grains for individuals with coeliac disease. Br. Food J. 2018, 120, 2793–2803. [Google Scholar] [CrossRef]
- Nikniaz, Z.; Mahdavi, R.; Nikniaz, L. Comparison of diet quality between celiac patients and non-celiac people in East Azerbaijan-Iran. Nutr. J. 2020, 19, 44. [Google Scholar] [CrossRef]
- Rellán-Álvarez, R.; Ortega-Villasante, C.; Álvarez-Fernández, A.; del Campo, F.F.; Hernández, L.E. Stress Responses of Zea mays to Cadmium and Mercury. Plant Soil 2006, 279, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Mitrus, J.; Horbowicz, M. Impact of short-term exposure to lead and cadmium of common buckwheat (Fagopyrum esculentum Moench) seedlings grown in hydroponic culture. J. Elem. 2020, 25, 633–644. [Google Scholar]
- Qu, C.; Shi, W.; Guo, J.; Fang, B.; Wang, S.; Giesy, J.P. China’s Soil Pollution Control: Choices and Challenges. Environ. Sci. Technol. 2016, 50, 13181–13183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, C. Natural and Human Factors Affect the Distribution of Soil Heavy Metal Pollution: A Review. Water Air Soil Pollut. 2020, 231, 350. [Google Scholar] [CrossRef]
- Jo, G.; Todorov, T.I. Distribution of nutrient and toxic elements in brown and polished rice. Food Chem. 2019, 289, 299–307. [Google Scholar] [CrossRef]
- Peng, M.; Zhao, C.; Ma, H.; Yang, Z.; Yang, K.; Liu, F.; Li, K.; Yang, Z.; Tang, S.; Guo, F.; et al. Heavy metal and Pb isotopic compositions of soil and maize from a major agricultural area in Northeast China: Contamination assessment and source apportionment. J. Geochem. Explor. 2020, 208, 106403. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Q.; Yuan, Y.; Sun, W. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem. 2020, 316, 126213. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.Y.; Shin, H.C.; Kim, D.J.; Park, S.U.; Kim, Y.K. The content and health risk assessment of micro and toxic elements in cereals (oat and quinoa), legumes (lentil and chick pea), and seeds (chia, hemp, and flax). J. Food Compos. Anal. 2021, 99, 103881. [Google Scholar] [CrossRef]
- Bolaños, D.; Marchevsky, E.J.; Camiña, J.M. Elemental Analysis of Amaranth, Chia, Sesame, Linen, and Quinoa Seeds by ICP-OES: Assessment of Classification by Chemometrics. Food Anal. Methods 2016, 9, 477–484. [Google Scholar] [CrossRef]
- Lian-xin, P.; Yan-fei, H.; Yuan, L.; Zhi-feng, Z.; Lu-yang, L.; Gang, Z. Evaluation of Essential and Toxic Element Concentrations in Buckwheat by Experimental and Chemometric Approaches. J. Integr. Agric. 2014, 13, 1691–1698. [Google Scholar]
- Bratovcic, A.; Saric, E. Determination of essential nutrients and cadmium in the white quinoa and amaranth seeds. Croatian J. Food Sci. Technol. 2019, 11, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Vollmannová, A.; Margitanová, E.; Kujovský, M.; Čičová, I. Risk of cadmium and lead transfer from the soil into seeds of chosen minor plants. Environ. Prot. Nat. Resour. 2013, 2, 17–20. [Google Scholar]
- Rothenberg, S.E.; Du, X.; Zhu, Y.G.; Jay, J.A. The impact of sewage irrigation on the uptake of mercury in corn plants (Zea mays) from suburban Beijing. Environ. Pollut. 2007, 149, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Unal, H.; Izli, G.; Izli, N.; Asik, B.B. Comparison of some physical and chemical characteristics of buckwheat (Fagopyrum esculentum Moench) grains, CyTA. J. Food 2017, 15, 257–265. [Google Scholar]
- Salihu, S.O.; Jacob, J.O.; Kolo, M.T.; Osundiran, B.J.; Emmanuel, J. Heavy Metals in Some Fruits and Cereals in Minna Markets, Nigeria. Pak. J. Nutr. 2014, 13, 722–727. [Google Scholar] [CrossRef] [Green Version]
- Larsen, K.V.; Cobbina, S.J.; Ofori, S.A.; Addo, D. Quantification and health risk assessment of heavy metals in milled maize and millet in the Tolon District, Northern Ghana. Food Sci. Nutr. 2020, 8, 4205–4213. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wu, H.; Ding, J.; Fu, W.; Gan, L.; Li, Y. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Sci. Rep. 2017, 7, 46545. [Google Scholar] [CrossRef] [Green Version]
Type of Product | As µg/kg | Cd µg/kg | Hg µg/kg | Pb µg/kg |
---|---|---|---|---|
X ± SD (Min–Max) | X ± SD (Min–Max) | X ± SD (Min–Max) | X ± SD (Min–Max) | |
Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | |
Buckwheat groats (n = 17) | 3.24 ± 3.57 (0–14.77) | 55.85 ± 19.10 (27.94–91.84) | 0.70 ± 0.44 (0.23–1.67) | 34.91 ± 27.50 (4.57–110.32) |
2.54 (0–4.74) | 53.60 (43.73–71.04) | 0.53 (0.38–0.91) | 38.03 (13.65–49.62) | |
Expanded buckwheat (n = 7) | 44.84 ± 78.04 (0–206.49) | 32.44 ± 10.84 (22.22–49.31) | 1.44 ± 1.08 (0.85–3.88) | 27.02 ± 50.86 (0–141.60) |
4.72 (4.14–88.87) | 27.23 (24.02–43.96) | 1.12 (0.97–1.15) | 9.577 (0.42–15.72) | |
Flakes (n = 9) | 2.98 ± 2.09 (0–5.84) | 45.09 ± 24.22 (10.70–84.33) | 1.91 ± 2.80 (0.42–9.34) | 28.62 ± 16.03 (11.47–48.27) |
3.54 (1.99–4.65) | 48.27 (26.67–52.92) | 1.16 (0.94–1.27) | 17.02 (15.82–43.99) | |
Flour (n = 12) | 3.77 ± 4.69 (0–17.12) | 43.21 ± 30.91 (0–126.34) | 1.74 ± 3.20 (0.33–11.50) | 66.70 ± 114.69 (14.69–423.42) |
3.79 (0–4.75) | 32.00 (22.82–52.36) | 0.56 (0.45–63.87) | 19.28 (17.69–63.97) | |
Pasta (n = 7) | 7.82 ± 7.75 (2.37–24.42) | 37.22 ± 12.17 (22.55–56.55) | 1.22 ± 0.64 (0.43–2.40) | 25.91 ± 14.72 (14.57–47.85) |
5.11 (2.44–9.92) | 35.12 (28.93–50.26) | 1.14 (0.82–1.63) | 18.58 (17.04–46.84) | |
Roasted buckwheat groats (n = 9) | 2.77 ± 2.29 (0–5.28) | 65.36 ± 20.52 (33.57–100.60) | 1.67 ± 2.06 (0.29–6.05) | 15.56 ± 15.59 (4.12–56.59) |
4.16 (0–4.71) | 64.48 (61.70–74.77) | 0.68 (0.33–2.20) | 11.89 (10.23–11.99) | |
Total (n = 61) | 8.53 ± 28.28 (0–206.49) | 48.35 ± 23.31 (10.70–126.34) | 1.37 ± 1.98 (0.23–11.50) | 35.44 ± 56.93 (0–423.42) |
4.13 (1.82–4.90) | 45.62 (28.93–61.70) | 0.85 (0.46–1.17) | 17.04 (11.99–46.84) |
Type of Product | As µg/kg | Cd µg/kg | Hg µg/kg | Pb µg/kg |
---|---|---|---|---|
X ± SD (Min–Max) | X ± SD (Min–Max) | X ± SD (Min–Max) | X ± SD (Min–Max) | |
Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | |
Cakes (n = 9) | 5.43 ± 6.58 (0–21.68) | 11.20 ± 11.66 (3.43–39.76) | 1.02 ± 0.63 (0.30–2.36) | 73.70 ± 6.78 (66.0–87.64) |
2.55 (2.20–7.40) | 7.12 (5.26–8.34) | 0.90 (0.57–1.16) | 74.53 (68.81–75.96) | |
Maize groats (n = 10) | 10.27 ± 9.03 (2.40–30.68) | 35.70 ± 15.32 (21.44–49.19) | 0.88 ± 0.76 (0.25–2.45) | 56.24 ± 24.62 (39.46–112.57) |
8.37 (4.04–12.22) | 33.89 (21.44–49.19) | 0.62 (0.31–1.24) | 47.70 (40.62–60.65) | |
Crisps (n = 13) | 2.63 ± 3.04 (0–11.28) | 7.32 ± 3.38 (3.57–15.12) | 1.80 ± 1.31 (0.43–4.27) | 80.80 ± 24.41 (44.56–140.95) |
1.99 (0–3.62) | 7.52 (4.62–8.24) | 1.22 (0.92–2.42) | 75.26 (64.84–89.66) | |
Flour (n = 11) | 3.39 ± 2.23 (1.66–9.33) | 5.30 ± 2.33 (1.66–9.69) | 0.62 ± 0.63 (0.20–2.44) | 65.04 ± 19.37 (34.92–93.17) |
2.79 (1.78–4.03) | 5.53 (3.76–6.60) | 0.42 (0.26–0.69) | 64.36 (51.35–78.38) | |
Pasta (n = 8) | 2.48 ± 1.83 (0–5.03) | 6.33 ± 4.10 (2.90–15.17) | 0.56 ± 0.61 (0.14–2.00) | 74.34 ± 13.37 (60.05–96.52) |
2.38 (1.05–3.95) | 5.11 (3.40–7.80) | 0.40 (0.20–0.57) | 70.22 (63.68–85.17) | |
Popcorn (n = 7) | 4.66 ± 4.38 (0–10.74) | 3.68 ± 2.21 (0–6.24) | 2.34 ± 0.89 (1.16–3.88) | 99.80 ± 22.34 (53.73–117.09) |
3.82 (0–10.36) | 4.03 (1.91–5.37) | 2.0 (1.92–3.09) | 106.65 (88.52–114.70) | |
Total (n = 59) | 3.63 ± 3.62 (0–21.69) | 7.11 ± 7.37 (3.63–7.52) | 1.11 ± 1.04 (0.09–4.27) | 74.52 ± 24.02 (18.98–140.95) |
2.30 (1.66–4.12) | 5.37 (3.62–7.52) | 0.71 (0.40–1.47) | 73.47 (61.97–87.83) |
Type of Product | As µg/kg | Cd µg/kg | Hg µg/kg | Pb µg/kg |
---|---|---|---|---|
X ± SD (Min–Max) | X ± SD (Min–Max) | X ± SD (Min–Max) | X ± SD (Min–Max) | |
Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | |
Expanded millet groats (n = 6) | 13.82 ± 17.04 (0–40.54) | 32.44 ± 10.84 (22.22–49.31) | 1.44 ± 1.08 (0.85–3.88) | 27.03 ± 50.86 (0–141.60) |
4.72 (4.14–88.87) | 27.23 (24.02–43.96) | 1.12 (0.97–1.15) | 9.56 (0.42–15.72) | |
Flakes (n = 15) | 4.97 ± 3.29 (2.28–15.95) | 35.00 ± 22.23 (7.22–68.80) | 0.77 ± 0.64 (0.33–2.61) | 58.04 ± 64.43 (20.67–281.32) |
4.39 (3.57–4.57) | 25.02 (18.21–59.32) | 0.46 (0.40–0.96) | 33.07 (26.39–65.91) | |
Flour (n = 8) | 5.61 ± 4.25 (1.77–14.71) | 55.30 ± 25.03 (13.64–76.99) | 0.52 ± 0.23 (0.01–0.71) | 72.76 ± 22.96 (20.59–91.95) |
4.38 (2.47–7.34) | 65.65 (34.65–75.56) | 0.58 (0.46–0.68) | 76.89 (69.24–88.64) | |
Millet groats (n = 18) | 4.93 ± 2.24 (0–9.58) | 24.55 ± 16.81 (5.70–70.92) | 0.64 ± 0.49 (0.12–1.58) | 58.48 ± 96.27 (20.67–436.83) |
4.66 (4.19–5.69) | 20.74 (10.89–33.89) | 0.45 (0.29–1.09) | 24.47 (21.66–57.51) | |
Total (n = 47) | 6.19 ± 6.95 (0–40.54) | 33.14 ± 23.92 (5.70–83.71) | 0.76 ± 0.61 (0.01–2.77) | 57.56 ± 70.10 (19.74–436.83) |
4.55 (3.57–5.69) | 22.86 (15.18–53.04) | 0.55 (0.40–1.09) | 32.90 (23.59–68.15) |
Type of Product | As µg/kg | Cd µg/kg | Hg µg/kg | Pb µg/kg |
---|---|---|---|---|
X ± SD (Min–Max) | X ± SD (Min–Max) | X ± SD (Min–Max) | X ± SD (Min–Max) | |
Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | |
Bran (n = 6) | 10.11 ± 4.93 (5.46–18.27) | 60.49 ± 45.64 (6.48–138.83) | 1.07 ± 0.39 (0.51–1.66) | 56.93 ± 15.96 (38.22–78.62) |
8.29 (6.65–13.69) | 50.40 (34.58–68.44) | 1.11 (0.83–1.23) | 56.23 (43.86–68.43) | |
Flakes (n = 22) | 10.20 ± 10.00 (1.78–44.11) | 27.74 ± 19.32 (1.05–73.22) | 1.11 ± 0.85 (0.19–3.57) | 47.00 ± 8.88 (18.99–58.26) |
8.12 (2.57–12.84) | 21.83 (15.74–31.02) | 0.99 (0.42–1.38) | 49.14 (18.99–58.26) | |
Flour (n = 9) | 10.12 ± 3.68 (4.21–15.20) | 19.98 ± 9.64 (10.11–41.67) | 0.57 ± 0.35 (0.13–1.2) | 56.74 ± 13.76 (40.97–86.60) |
10.51 (7.88–12.13) | 19.93 (12.67–23.63) | 0.47 (0.30–0.80) | 55.44 (46.34–61.31) | |
Oat groats (n = 8) | 10.27 ± 9.04 (2.40–30.68) | 24.54 ± 16.81 (5.70–70.92) | 0.88 ± 0.76 (0.25–2.45) | 56.25 ± 24.63 (39.46–112.58) |
8.37 (0–3.70) | 20.74 (21.44–49.19) | 0.62 (0.31–1.24) | 47.70 (40.62–60.65) | |
Total (n = 45) | 10.19 ± 8.12 (1.78–44.11) | 31.97 ± 24.92 (1.05–138.83) | 0.96 ± 0.72 (0.13–3.57) | 51.92 ± 0.72 (18.99–112.58) |
8.67 (4.49–12.84) | 22.06 (17.94–41.67) | 0.83 (0.42–1.20) | 49.89 (43.07–55.09) |
Type of Product | As µg/kg | Cd µg/kg | Hg µg/kg | Pb µg/kg |
---|---|---|---|---|
X ± SD (Min–Max) | X ± SD (Min–Max) | X ± SD (Min–Max) | X ± SD (Min–Max) | |
Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | |
Black quinoa (n = 7) | 7.09 ± 2.69 (4.13–9.88) | 22.90 ± 5.15 (17.25–32.12) | 1.54 ± 0.79 (0.44–2.45) | 54.04 ± 8.80 (34.26–58.37) |
8.66 (4.28–9.28) | 22.69 (18.33–25.92) | 1.86 (0.58–2.13) | 57.71 (55.28–58.28) | |
Red quinoa (n = 7) | 6.86 ± 2.22 (4.09–9.33) | 24.57 ± 5.56 (17.22–31.10) | 1.58 ± 0.68 (0.81–2.70) | 53.60 ± 8.38 (34.75–58.35) |
7.80 (4.64–9.04) | 24.95 (17.73–30.66) | 1.57 (0.90–2.05) | 56.39 (55.30–57.62) | |
Tricolor quinoa (n = 5) | 9.10 ± 4.02 (5.31–15.95) | 27.88 ± 4.55 (5.31–15.95) | 0.72 ± 0.67 (0.34–1.92) | 55.50 ± 1.12 (54.25–57.30) |
8.13 (7.65–8.45) | 8.13 (7.65–8.45) | 0.42 (0.41–0.49) | 55.26 (55.07–55.59) | |
White quinoa (n = 11) | 9.94 ± 10.07 (1.98–38.15) | 32.20 ± 11.86 (10.03–53.44) | 0.55 ± 0.19 (0.24–0.99) | 53.46 ± 8.31 (37.69–65.62) |
7.46 (4.10–10.05) | 33.72 (24.69–41.01) | 0.52 (0.47–0.61) | 54.55 (53.76–55.42) | |
Total (n = 30) | 8.41 ± 6.45 (1.98–38.15) | 27.53 ± 8.88 (10.03–53.44) | 1.05 ± 0.73 (0.24–2.70) | 53.97 ± 7.42 (34.26–65.62) |
7.90 (4.32–9.28) | 25.50 (22.69–32.12) | 0.70 (0.48–1.86) | 55.36 (54.33–57.62) |
Type of Product | Target Hazard Quotient (THQ) | ||||
---|---|---|---|---|---|
As | Cd | Hg | Pb | ∑THQ 1 | |
Buckwheat groats | 4.03 × 10−4 | 2.09 × 10−3 | 1 × 10−4 | 3.7 × 10−4 | 2.95 × 10−3 |
Roasted buckwheat groats | 4.96 × 10−4 | 3.51 × 10−3 | 3 × 10−4 | 2.4 × 10−4 | 4.55 × 10−3 |
Millet groats | 9.21 × 10−4 | 1.38 × 10−3 | 1.2 × 10−4 | 9.4 × 10−4 | 3.35 × 10−3 |
Millet flakes | 9.37 × 10−4 | 1.98 × 10−3 | 1.5 × 10−4 | 9.4 × 10−4 | 4 × 10−3 |
Popcorn | 7.95 × 10−4 | 1.9 × 10−4 | 4 × 10−4 | 1.46 × 10−3 | 2.84 × 10−3 |
Oat flakes | 8.08 × 10−3 | 6.59 × 10−3 | 8.8 × 10−4 | 3.10 × 10−3 | 1.87 × 10−2 |
Cancer Risk (CR) | 3.7 × 10−7 | 6.8 × 10−5 | - | 1.5 × 10−7 | - |
Group of Products | Maize | Millet | Quinoa | Oat |
---|---|---|---|---|
Buckwheat | Cd 0.001, Pb 0.001 | Cd 0.01, Pb 0.001 | As 0.001, Cd 0.05, Pb 0.001 | As 0.001, Cd 0.01, Pb 0.001 |
Maize | - | As 0.01, Cd 0.001, Pb 0.001 | As 0.001, Cd 0.001, Pb 0.05 | As 0.001, Cd 0.001, Pb 0.001 |
Millet | As 0.01, Cd 0.001, Pb 0.001 | - | - | As 0.05 |
As | Cd | Pb | Hg |
---|---|---|---|
Buckwheat groats-Oat groats (0.05) | Buckwheat groats-Millet groats (0.01) | Expanded buckwheat-Expanded millet (0.05) | Buckwheat pasta-Corn pasta (0.05) |
Corn groats-Oat groats (0.05) | Buckwheat groats-Corn groats (0.001) | Buckwheat flakes-Oat flakes (0.05) | White quinoa-Red quinoa (0.05) |
Buckwheat flakes-Oat flakes (0.05) | Corn groats-Oat groats (0.05) | Buckwheat pasta-Corn pasta (0.01) | Conventional buckwheat groats-Organic buckwheat groats (0.05) |
Buckwheat pasta-Corn pasta (0.05) | Buckwheat pasta-Corn pasta (0.01) | Buckwheat flour-Millet flour (0.05) | |
Buckwheat flour-Oat flour (0.01) | Buckwheat flour-Corn flour (0.001) | ||
Corn flour-Oat flour (0.01) | Millet flour-Corn flour (0.001) |
As | Cd | Hg | Pb |
---|---|---|---|
Maize: 60 µg/kg (30–1300 µg/kg) China [30] | Buckwheat: 50–285 µg/kg China [34] | Maize: 1.61 µg/kg (1.25–2.25 µg/kg) China [30] | Maize: 100 µg/kg (20 to 800 µg/kg) China [30] |
Maize: 14 µg/kg China [31] | Maize: 100 µg/kg China [31] | Maize: 1.4 µg/kg China [31] | Maize: 230 µg/kg China [31] |
Quinoa: 27 µg/kg Oat: 28 µg/kg Korea [32] | Quinoa: 49 µg/kg Oat: 13 µg/kg Korea [32] | Oat: <LOD Quinoa: <LOD Korea [32] | Oat: 44 µg/kg Quinoa: 31 µg/kg Korea [32] |
Quinoa: 150 µg/kg Argentina [33] | Quinoa: 40 µg/kg Argentina [33] | Maize: 0.55- 21.02 µg/kg China [41] | Quinoa: <LOQ Argentina [33] |
Quinoa:26 µg/kg [35] | Maize: 2218 µg/kg Millet: 2278 µg/kg Ghana [40] | ||
Quinoa: 90–190 µg/kg Buckwheat: 50–90 µg/kg Slovakia [36] | Quinoa: 330–560 µg/kg Buckwheat: 100–400 µg/kg Slovakia [36] | ||
Buckwheat: 190 µg/kg Turkey [38] | |||
Buckwheat: 790–4765 µg/kg China [34] | |||
Maize: 1154 µg/kg Nigeria [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecka, J.; Markiewicz-Żukowska, R.; Puścion-Jakubik, A.; Grabia, M.; Nowakowski, P.; Soroczyńska, J.; Socha, K. Gluten-Free Cereals and Pseudocereals as a Potential Source of Exposure to Toxic Elements among Polish Residents. Nutrients 2022, 14, 2342. https://doi.org/10.3390/nu14112342
Bielecka J, Markiewicz-Żukowska R, Puścion-Jakubik A, Grabia M, Nowakowski P, Soroczyńska J, Socha K. Gluten-Free Cereals and Pseudocereals as a Potential Source of Exposure to Toxic Elements among Polish Residents. Nutrients. 2022; 14(11):2342. https://doi.org/10.3390/nu14112342
Chicago/Turabian StyleBielecka, Joanna, Renata Markiewicz-Żukowska, Anna Puścion-Jakubik, Monika Grabia, Patryk Nowakowski, Jolanta Soroczyńska, and Katarzyna Socha. 2022. "Gluten-Free Cereals and Pseudocereals as a Potential Source of Exposure to Toxic Elements among Polish Residents" Nutrients 14, no. 11: 2342. https://doi.org/10.3390/nu14112342
APA StyleBielecka, J., Markiewicz-Żukowska, R., Puścion-Jakubik, A., Grabia, M., Nowakowski, P., Soroczyńska, J., & Socha, K. (2022). Gluten-Free Cereals and Pseudocereals as a Potential Source of Exposure to Toxic Elements among Polish Residents. Nutrients, 14(11), 2342. https://doi.org/10.3390/nu14112342