Current Strategies for Selenium and Iodine Biofortification in Crop Plants
Abstract
:1. Introduction
2. Health Aspects
2.1. Selenium in the Human Body
2.2. Iodine in the Human Body
2.3. Effect of Interactions of Iodine and Selenium on Thyroid Health
2.4. Importance of Iodine and Selenium for Livestock
3. Selenium and Iodine in Foodstuffs
Food | Iodine Content | Reference | Selenium Content | Reference |
---|---|---|---|---|
Milk | 194.8 µg∙kg−1 | [43] | 12.5 µg∙kg−1 | [42] |
Cheese | 77.1 µg∙kg−1 | [43] | 23.2 µg∙kg−1 | [42] |
Yoghurt | 80 µg∙kg−1 | [44] | 12.4 µg∙kg−1 | [42] |
Butter | 30.3 µg∙kg−1 | [43] | 24.0 µg∙kg−1 | [42] |
Wheat | 74.4 µg∙kg−1 | [43] | 11.9 µg∙kg−1 | [42] |
Rice | 143.2 µg∙kg−1 | [43] | 26.5 µg∙kg−1 | [55] |
Chicken meat | 69–160 µg∙kg−1 | [45] | 144.6 µg∙kg−1 | [55] |
Beef meat | 62–265 µg∙kg−1 | [45] | 145.5 µg∙kg−1 | [55] |
Marine fish | 2453.4 µg∙kg−1 | [43] | 616.8 µg∙kg−1 | [55] |
Eggs | 378.8 µg∙kg−1 | [43] | 240.1 µg∙kg−1 | [55] |
Bread | 35.4 µg∙kg−1 | [43] | 22.3 µg∙kg−1 | [55] |
Potatoes | 20 µg∙kg−1 | [44] | 1.5 µg∙kg−1 | [42] |
Beans | 186.7 µg∙kg−1 | [43] | 152.6 µg∙kg−1 | [42] |
Cabbage | 123.1 µg∙kg−1 | [43] | 13.7 µg∙kg−1 | [55] |
Tomatoes | 65.1 µg∙kg−1 | [43] | 1.1–29.1 µg∙kg−1 | [42] |
Herbs and spices | 160.1 µg∙kg−1 | [43] | 17–132 µg∙kg−1 | [56] |
Lettuce | 455.5 µg∙kg−1 | [43] | 0.3–20 µg∙kg−1 | [42] |
Cucumber | 194.8 µg∙kg−1 | [43] | 14.7 µg∙kg−1 | [42] |
4. Selenium and Iodine in Plants
5. Selenium and Iodine Biofortification Strategies
5.1. Biofortification of Meat
5.2. Plant Biofortification Strategies
5.2.1. Agronomic Biofortification
5.2.2. Conventional Plant Breeding
5.2.3. Genetic Engineering
6. Simultaneous Biofortification of Crops with Selenium and Iodine
7. Content and Stability of Selenium and Iodine in Biofortified Plants
Species | Application | I Dose | Se Dose | Control | I Accumulated | Se Accumulated | Reference | |
---|---|---|---|---|---|---|---|---|
I | Se | |||||||
Carrot | Soil spray | 4000 g·ha−1 (I−) | 250 g·ha−1 (SeO42−) | 73.5 µg·kg−1 | 220.5 µg·kg−1 | 546 µg·kg−1 | 1315 µg·kg−1 | [163] |
Foliar spray | 400 g·ha−1 (I−) | 20 g·ha−1 (SeO42−) | 28.5 µg·kg−1 | 11.3 µg·kg−1 | 567 µg·kg−1 | 198.4 µg·kg−1 | [90] | |
Rice | Soil and foliar spray | 0.05% (IO3−) | 0.001% (SeO42−) | 11 µg·kg−1 | 65 µg·kg−1 | 25-355 µg·kg−1 * | 90-602 µg·kg−1 * | [161] |
Radish | hydroponic | 1 mg·L−1 (IO3−) | 1 mg·L-1 Se(VI) | 15 µg·g−1 | 13 µg·g−1 | 292.1 µg·g−1 | 312.6 µg·g−1 | [171] |
Cabbage | Foliar spray | 1 g·L−1 (I−) | 10 mg·L-1 Se(VI) | 0.065 µg·g−1 | 0.030 µg·g−1 | 0.286 µg·g−1 | 0.578 µg·g−1 | [172] |
Lettuce | Irrigation drainage | 150 µM (IO3−) | 20 µM (SeO42−) | 2.42 mg·kg−1 | 0.7 mg·kg−1 | 2.47 mg·kg−1 | 104 mg·kg−1 | [164] |
Floating system | 5 µM (I−) | 13 µM (SeO42−) | 4.7 mg·kg−1 | 0.09 mg·kg−1 | 72.55 mg·kg−1 | 3.44 mg·kg−1 | [173] | |
Aeroponic system | 5 µM (I−) | 13 µM (SeO42−) | 4.02 mg·kg−1 | 0.1 mg·kg−1 | 71.9 mg·kg−1 | 6.46 mg·kg−1 | ||
Hydroponic | 30 µg·L−1 | 8.5 µg·L−1 | 3.5 mg·kg−1 | 1.5 mg·kg−1 | 254.1 mg·kg−1 | 9.4 mg·kg−1 | [165] | |
Apple | Foliar spray | 2 × 1.5 kg IO3− (ha·m CH **)−1 | 2 × 0.05 kg SeO42 (ha·m CH)−1 | 0.76 µg·100 g−1 | 0.4 µg·100g−1 | 43.3 µg·100 g−1 | 2.7 µg·100 g−1 | [167] |
Pear | Foliar spray | 3 × 1.5 kg IO3− (ha·m CH)−1 | 3 × 0.05 kg SeO42 (ha·m CH)−1 | 1.1 µg·100 g−1 | 0.1 µg·100g−1 | 59.9 µg·100 g−1 | 2.1 µg·100 g−1 | |
Pumpkin seeds | Seed soaking | 1000 mg·L−1 (IO3−) | 10 mg·L−1 (SeO42−) | 30 ng·g−1 | 35 ng·g−1 | 20 ng·g−1 | 87 ng·g−1 | [166] |
Chicory | Foliar spray | 1000 mg·L−1 (IO3−) | 10 mg·L−1 (SeO42−) | 20.2 ng·g−1 | 14.2 ng·g−1 | 79.3 ng·g−1 | 71 ng·g−1 | [162] |
Potato | Hydroponic | 30 µg·L−1 (IO3−) | 8.5 µg·L−1 (SeO3−) | 118.5 µg·kg−1 | 255.75 µg·kg−1 | 831 µg·kg−1 | 2695 µg·kg−1 | [140] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schomburg, L.; Köhrle, J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol. Nutr. Food Res. 2008, 52, 1235–1246. [Google Scholar] [CrossRef]
- WHO. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers, 3rd ed.; World Health Organisation: Geneva, Switzerland, 2007; p. 97. [Google Scholar]
- Kipp, A.P.; Strohm, D.; Brigelius-Flohé, R.; Schomburg, L.; Bechthold, A.; Leschik-Bonnet, E.; Heseker, H. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015, 32, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Hagarová, I.; Žemberyová, M. Determination of selenium in blood serum of children by electrothermal atomic absorption spectrometry. Chem. Listy 2005, 99, 34–39. [Google Scholar]
- Hetzel, B.S. Iodine: Deficiency Disorders. In Encyclopedia of Human Nutrition, 2nd ed.; Caballero, B., Ed.; Elsevier: Oxford, UK, 2005; pp. 74–82. [Google Scholar]
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef]
- Hagarová, I.; Žemberyová, M.; Bajčan, D. Sequential and single step extraction procedures used for fractionation of selenium in soil samples. Chem. Pap. 2005, 59, 93–98. [Google Scholar]
- Bujdoš, M.; Kubová, J.; Streško, V. Problems of selenium fractionation in soils rich in organic matter. Anal. Chim. Acta 2000, 408, 103–109. [Google Scholar] [CrossRef]
- Singh, S.S.; Hazra, K.K.; Praharaj, C.S.; Singh, U. Biofortification: Pathway Ahead and Future Challenges. In Biofortification of Food Crops; Singh, U., Praharaj, C.S., Singh, S.S., Singh, N.P., Eds.; Springer: New Delhi, India, 2016; pp. 479–492. [Google Scholar]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- Carvalho, S.M.P.; Vasconcelos, M.W. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res. Int. 2013, 54, 961–971. [Google Scholar] [CrossRef]
- Shreenath, A.P.; Ameer, M.A.; Dooley, J. Selenium Deficiency; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science 1973, 179, 588. [Google Scholar] [CrossRef] [PubMed]
- Farkašovská, I.; Žemberyová, M. Determination and speciation by AAS techniques of selenium in environmental and biological samples. Chem. Listy 1999, 93, 633–638. [Google Scholar]
- Alexander, J. Selenium. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 1175–1208. [Google Scholar]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Khatiwada, S.; Subedi, A. A Mechanistic Link Between Selenium and Coronavirus Disease 2019 (COVID-19). Curr. Nutr. Rep. 2021, 10, 125–136. [Google Scholar] [CrossRef]
- Schomburg, L. Selenium Deficiency Due to Diet, Pregnancy, Severe Illness, or COVID-19—A Preventable Trigger for Autoimmune Disease. Int. J. Mol. Sci. 2021, 22, 8532. [Google Scholar] [CrossRef]
- Varikasuvu, S.R.; Prasad, V.S.; Kothapalli, J.; Manne, M. Brain Selenium in Alzheimer’s Disease (BRAIN SEAD Study): A Systematic Review and Meta-Analysis. Biol. Trace Elem. Res. 2019, 189, 361–369. [Google Scholar] [CrossRef]
- Pereira, M.E.; Souza, J.V.; Galiciolli, M.E.A.; Sare, F.; Vieira, G.S.; Kruk, I.L.; Oliveira, C.S. Effects of Selenium Supplementation in Patients with Mild Cognitive Impairment or Alzheimerr’s Disease: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 3205. [Google Scholar] [CrossRef] [PubMed]
- WHO. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Brasher, A.M.; Scott Ogle, R. Comparative toxicity of selenite and selenate to the amphipodHyalella azteca. Arch. Environ. Contam. Toxicol. 1993, 24, 182–186. [Google Scholar] [CrossRef]
- Nuttall, K.L. Evaluating selenium poisoning. Ann. Clin. Lab. Sci. 2006, 36, 409–420. [Google Scholar]
- Hagarová, I.; Nemček, L. Selenium in Blood Serum of Healthy European Population. Chem. Listy 2020, 114, 329–335. [Google Scholar]
- Ruta, D.A.; Haider, S. Attempted murder by selenium poisoning. Br. Med. J. 1989, 299, 316–317. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.Q.; Wang, S.Z.; Zhou, R.H.; Sun, S.Z. Endemic selenium intoxication of humans in China. Am. J. Clin. Nutr. 1983, 37, 872–881. [Google Scholar] [CrossRef]
- Zimmermann, M.B. Iodine deficiency. Endocr. Rev. 2009, 30, 376–408. [Google Scholar] [CrossRef] [Green Version]
- Greenspan, F.S. Štítná žláza. In Základní a Klinická Endokrinologie; Greenspan, F.S., Baxter, J.D., Eds.; H&H: Praha, Czech Republic, 2003; pp. 174–245. [Google Scholar]
- Hetzel, B.S. The Iodine Deficiency Disorders. In Iodine Deficiency in Europe: A Continuing Concern; Delange, F., Dunn, J.T., Glinoer, D., Eds.; Springer: Boston, MA, USA, 1993; pp. 25–31. [Google Scholar]
- Furman, B.L. Iodide Salt. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–3. [Google Scholar]
- Duntas, L.H. Environmental factors and autoimmune thyroiditis. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 454–460. [Google Scholar] [CrossRef]
- Davies, T.F.; Andersen, S.; Latif, R.; Nagayama, Y.; Barbesino, G.; Brito, M.; Eckstein, A.K.; Stagnaro-Green, A.; Kahaly, G.J. Graves’ disease. Nat. Rev. Dis. Primers 2020, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.B.; Schomburg, L.; Köhrle, J.; Pedersen, I.B.; Hollenbach, B.; Hög, A.; Ovesen, L.; Perrild, H.; Laurberg, P. Selenium status, thyroid volume, and multiple nodule formation in an area with mild iodine deficiency. Eur. J. Endocrinol. 2011, 164, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Negro, R.; Greco, G.; Mangieri, T.; Pezzarossa, A.; Dazzi, D.; Hassan, H. The Influence of Selenium Supplementation on Postpartum Thyroid Status in Pregnant Women with Thyroid Peroxidase Autoantibodies. J. Clin. Endocrinol. Metab. 2007, 92, 1263–1268. [Google Scholar] [CrossRef]
- Gashu, D.; Stoecker, B.J.; Adish, A.; Haki, G.D.; Bougma, K.; Aboud, F.E.; Marquis, G.S. Association of serum selenium with thyroxin in severely iodine-deficient young children from the Amhara region of Ethiopia. Eur. J. Clin. Nutr. 2016, 70, 929–934. [Google Scholar] [CrossRef]
- Gaitan, E. 9 Goitrogens. Best Pract. Res. Clin. Endocrinol. Metab. 1988, 2, 683–702. [Google Scholar] [CrossRef]
- Clements, F.W. Naturally occuring goitrogens. Br. Med. Bull. 1960, 16, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Arthington, J.D.; Ranches, J. Trace Mineral Nutrition of Grazing Beef Cattle. Animals 2021, 11, 2767. [Google Scholar] [CrossRef]
- Lindberg, P.; Siren, M. Fluorometric selenium determinations in the liver of normal pigs and in pigs affected with nutritional muscular dystrophy and liver dystrophy. Acta Vet. Scand. 1965, 6, 59–64. [Google Scholar] [CrossRef]
- David, J.S.E. The effect of prolonged Kale feeding on the thyroid glands of sheep. J. Comp. Pathol. 1976, 86, 235–241. [Google Scholar] [CrossRef]
- Arthur, J.R.; Beckett, G.J.; Mitchell, J.H. The interactions between selenium and iodine deficiencies in man and animals. Nutr. Res. Rev. 1999, 12, 55–73. [Google Scholar] [CrossRef] [Green Version]
- Smrkolj, P.; Pograjc, L.; Hlastan-Ribič, C.; Stibilj, V. Selenium content in selected Slovenian foodstuffs and estimated daily intakes of selenium. Food Chem. 2005, 90, 691–697. [Google Scholar] [CrossRef]
- Fordyce, F. Database of the Iodine Content of Food and Diets Populated with Data from Published Literature; British Geological Survey: Nottingham, UK, 2003. [Google Scholar]
- Dahl, L.; Johansson, L.; Julshamn, K.; Meltzer, H.M. The iodine content of Norwegian foods and diets. Public Health Nutr. 2004, 7, 569–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hejtmánková, A.; Vejdová, M.; Trnková, E. Stanovení jodu v biologickém materiálu metodou HPLC s elektrochemickým detektorem. Chem. Listy 2005, 99, 657–660. [Google Scholar]
- Sarwar, N.; Akhtar, M.; Kamran, M.A.; Imran, M.; Riaz, M.A.; Kamran, K.; Hussain, S. Selenium biofortification in food crops: Key mechanisms and future perspectives. J. Food Compos. Anal. 2020, 93, 103615. [Google Scholar] [CrossRef]
- Hagarová, I.; Nemček, L. Reliable Quantification of Ultratrace Selenium in Food, Beverages, and Water Samples by Cloud Point Extraction and Spectrometric Analysis. Nutrients 2022, 14, 3530. [Google Scholar] [CrossRef]
- Thavarajah, D.; Thavarajah, P.; Wejesuriya, A.; Rutzke, M.; Glahn, R.P.; Combs, G.F.; Vandenberg, A. The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: Preliminary results from a 3 year study. Euphytica 2011, 180, 123–128. [Google Scholar] [CrossRef]
- Duborská, E.; Urík, M.; Šeda, M. Iodine Biofortification of Vegetables Could Improve Iodine Supplementation Status. Agronomy 2020, 10, 1574. [Google Scholar] [CrossRef]
- Müssig, K. Iodine-Induced Toxic Effects due to Seaweed Consumption. In Comprehensive Handbook of Iodine; Preedy, V.R., Burrow, G.N., Watson, R., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 897–908. [Google Scholar]
- Zava, T.T.; Zava, D.T. Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis. Thyroid Res. 2011, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Charlton, K.; Yeatman, H.; Lucas, C.; Axford, S.; Gemming, L.; Houweling, F.; Goodfellow, A.; Ma, G. Poor knowledge and practices related to iodine nutrition during pregnancy and lactation in Australian women: Pre- and post-iodine fortification. Nutrients 2012, 4, 1317–1327. [Google Scholar] [CrossRef]
- Charlton, K.; Skeaff, S. Iodine fortification: Why, when, what, how, and who? Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 618–624. [Google Scholar] [CrossRef]
- Alfthan, G.; Eurola, M.; Ekholm, P.; Venäläinen, E.-R.; Root, T.; Korkalainen, K.; Hartikainen, H.; Salminen, P.; Hietaniemi, V.; Aspila, P.; et al. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J. Trace Elem. Med. Biol. 2015, 31, 142–147. [Google Scholar] [CrossRef]
- Ventura, M.G.; do Carmo Freitas, M.; Pacheco, A.; van Meerten, T.; Wolterbeek, H.T. Selenium content in selected Portuguese foodstuffs. Eur. Food Res. Technol. 2006, 224, 395. [Google Scholar] [CrossRef]
- Abhay, K.; Krishnaswamy, K. Selenium Content of Common Indian Cereals, Pulses, and Spices. J. Agric. Food Chem. 1997, 45, 2565–2568. [Google Scholar] [CrossRef]
- WHO. Guideline: Fortification of Food-Grade Salt with Iodine for the Prevention and Control of Iodine Deficiency Disorders; World Health Organisation: Geneva, Switzerland, 2014; p. 44. [Google Scholar]
- Rasmussen, L.B.; Jørgensen, T.; Perrild, H.; Knudsen, N.; Krejbjerg, A.; Laurberg, P.; Pedersen, I.B.; Bjergved, L.; Ovesen, L. Mandatory iodine fortification of bread and salt increases iodine excretion in adults in Denmark—A 11-year follow-up study. Clin. Nutr. 2014, 33, 1033–1040. [Google Scholar] [CrossRef]
- WHO. Recommended Iodine Levels in Salt and Guidelines for Monitoring Their Adequacy and Effectiveness; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Rana, R.; Raghuvanshi, R.S. Effect of different cooking methods on iodine losses. J. Food Sci. Technol. 2013, 50, 1212–1216. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Kiferle, C.; Gonzali, S.; Holwerda, H.T.; Ibaceta, R.R.; Perata, P. Tomato fruits: A good target for iodine biofortification. Front. Plant Sci. 2013, 4, 205. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Liu, H.P.; Hong, C.L.; Dai, Z.X.; Liu, J.W.; Zhou, J.; Hu, C.Q.; Weng, H.X. Iodide and iodate effects on the growth and fruit quality of strawberry. J. Sci. Food Agric. 2017, 97, 230–235. [Google Scholar] [CrossRef]
- Li, R.; Li, D.-W.; Liu, H.-P.; Hong, C.-L.; Song, M.-Y.; Dai, Z.-X.; Liu, J.-W.; Zhou, J.; Weng, H.-X. Enhancing iodine content and fruit quality of pepper (Capsicum annuum L.) through biofortification. Sci. Hortic. 2017, 214, 165–173. [Google Scholar] [CrossRef]
- Weng, H.X.; Weng, J.K.; Yan, A.L.; Hong, C.L.; Yong, W.B.; Qin, Y.C. Increment of iodine content in vegetable plants by applying iodized fertilizer and the residual characteristics of iodine in soil. Biol. Trace Elem. Res. 2008, 123, 218–228. [Google Scholar] [CrossRef]
- Sors, T.G.; Ellis, D.R.; Salt, D.E. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res. 2005, 86, 373–389. [Google Scholar] [CrossRef]
- White, P.J.; Bowen, H.C.; Parmaguru, P.; Fritz, M.; Spracklen, W.P.; Spiby, R.E.; Meacham, M.C.; Mead, A.; Harriman, M.; Trueman, L.J.; et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004, 55, 1927–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, B.; Lin, Q.; Hamid, Y.; Sanaullah, M.; Di, L.; Hashmi, M.L.u.R.; Khan, M.B.; He, Z.; Yang, X. Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci. Total Environ. 2020, 712, 136497. [Google Scholar] [CrossRef] [PubMed]
- Praus, L.; Száková, J.; Steiner, O.; Goessler, W. Rapeseed (Brassica napus L.) biofortification with selenium: How do sulphate and phosphate influence the efficiency of selenate application into soil? Arch. Agron. Soil Sci. 2019, 65, 2059–2072. [Google Scholar] [CrossRef]
- Schiavon, M.; Berto, C.; Malagoli, M.; Trentin, A.; Sambo, P.; Dall’Acqua, S.; Pilon-Smits, E.A. Selenium Biofortification in Radish Enhances Nutritional Quality via Accumulation of Methyl-Selenocysteine and Promotion of Transcripts and Metabolites Related to Glucosinolates, Phenolics, and Amino Acids. Front. Plant Sci. 2016, 7, 1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, I.J.; Prince, R.C.; Salt, D.E.; George, G.N. Quantitative, chemically specific imaging of selenium transformation in plants. Proc. Natl. Acad. Sci. USA 2000, 97, 10717–10722. [Google Scholar] [CrossRef] [Green Version]
- Hartikainen, H. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Biol. 2005, 18, 309–318. [Google Scholar] [CrossRef]
- Trelease, S.F.; Trelease, H.M. Physiological differentiation in astragalus with reference to selenium. Am. J. Bot. 1939, 26, 530–535. [Google Scholar] [CrossRef]
- Terry, N.; Zayed, A.M.; De Souza, M.P.; Tarun, A.S. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [Green Version]
- Lima, L.W.; Pilon-Smits, E.A.H.; Schiavon, M. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 2343–2353. [Google Scholar] [CrossRef]
- Wang, Y.; Böck, A.; Neuhierl, B. Acquisition of selenium tolerance by a selenium non-accumulating Astragalus species via selection. Biofactors 1999, 9, 3–10. [Google Scholar] [CrossRef]
- Neuhierl, B.; Thanbichler, M.; Lottspeich, F.; Böck, A. A Family of S-Methylmethionine-dependent Thiol/Selenol Methyltransferases: Role in slenium tolerance and evolutionary relation. J. Biol. Chem. 1999, 274, 5407–5414. [Google Scholar] [CrossRef] [Green Version]
- Hawrylak-Nowak, B. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul. 2013, 70, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Eustice, D.C.; Kull, F.J.; Shrift, A. Selenium toxicity: Aminoacylation and Peptide bond formation with selenomethionine. Plant Physiol. 1981, 67, 1054–1058. [Google Scholar] [CrossRef]
- de Oliveira, V.C.; Faquin, V.; Andrade, F.R.; Carneiro, J.P.; da Silva Júnior, E.C.; de Souza, K.R.D.; Pereira, J.; Guilherme, L.R.G. Physiological and Physicochemical Responses of Potato to Selenium Biofortification in Tropical Soil. Potato Res. 2019, 62, 315–331. [Google Scholar] [CrossRef]
- Lyons, G. Selenium in cereals: Improving the efficiency of agronomic biofortification in the UK. Plant Soil 2010, 332, 1–4. [Google Scholar] [CrossRef]
- Lyons, G.H.; Genc, Y.; Soole, K.; Stangoulis, J.C.R.; Liu, F.; Graham, R.D. Selenium increases seed production in Brassica. Plant Soil 2009, 318, 73–80. [Google Scholar] [CrossRef]
- Hegedüsová, A.; Mezeyová, I.; Hegedűs, O.; Musilová, J.; Paulen, O. Selenium content increasing in the seeds of garden pea after foliar biofortification. Potravin. Slovak J. Food Sci. 2015, 9, 435–441. [Google Scholar] [CrossRef]
- Seppänen, M.; Turakainen, M.; Hartikainen, H. Selenium effects on oxidative stress in potato. Plant Sci. 2003, 165, 311–319. [Google Scholar] [CrossRef]
- Zayed, A.M.; Terry, N. Selenium Volatilization in Roots and Shoots: Effects of Shoot Removal and Sulfate Level. J. Plant Physiol. 1994, 143, 8–14. [Google Scholar] [CrossRef]
- Terry, N.; Carlson, C.; Raab, T.K.; Zayed, A.M. Rates of Selenium Volatilization among Crop Species. J. Environ. Qual. 1992, 21, 341–344. [Google Scholar] [CrossRef]
- Martens, D.A.; Suarez, D.L. Mineralization of Selenium-Containing Amino Acids in Two California Soils. Soil Sci. Soc. Am. J. 1997, 61, 1685–1694. [Google Scholar] [CrossRef]
- De Angeli, A.; Monachello, D.; Ephritikhine, G.; Frachisse, J.M.; Thomine, S.; Gambale, F.; Barbier-Brygoo, H. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 2006, 442, 939–942. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Chloride in Soils and its Uptake and Movement within the Plant: A Review. Ann. Bot. 2001, 88, 967–988. [Google Scholar] [CrossRef]
- Rakoczy-Lelek, R.; Smoleń, S.; Grzanka, M.; Ambroziak, K.; Pitala, J.; Skoczylas, Ł.; Liszka-Skoczylas, M.; Kardasz, H. Effectiveness of Foliar Biofortification of Carrot With Iodine and Selenium in a Field Condition. Front. Plant Sci. 2021, 12, 656283. [Google Scholar] [CrossRef]
- Mackowiak, C.L.; Grossl, P.R.; Cook, K.L. Iodine toxicity in a plant-solution system with and without humic acid. Plant Soil 2005, 269, 141–150. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Huang, Y.Z.; Hu, Y.; Liu, Y.X. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: Effects of iodine species and solution concentrations. Environ. Int. 2003, 29, 33–37. [Google Scholar] [CrossRef]
- Voogt, W.; Holwerda, H.T.; Khodabaks, R. Biofortification of lettuce (Lactuca sativa L.) with iodine: The effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. J. Sci. Food Agric. 2010, 90, 906–913. [Google Scholar] [CrossRef]
- Duborská, E.; Urík, M.; Kubová, J. Interaction with soil enhances the toxic effect of iodide and iodate on barley (Hordeum vulgare L.) compared to artificial culture media during initial growth stage. Arch. Agron. Soil Sci. 2018, 64, 46–57. [Google Scholar] [CrossRef]
- Watanabe, I.; Tensho, K. Further study on iodine toxicity in relation to “Reclamation Akagare” disease of lowland rice. Soil Sci. Plant Nutr. 1970, 16, 192–194. [Google Scholar] [CrossRef]
- Kiferle, C.; Martinelli, M.; Salzano, A.M.; Gonzali, S.; Beltrami, S.; Salvadori, P.A.; Hora, K.; Holwerda, H.T.; Scaloni, A.; Perata, P. Evidences for a Nutritional Role of Iodine in Plants. Front. Plant Sci. 2021, 12, 616868. [Google Scholar] [CrossRef] [PubMed]
- Leyva, R.; Sánchez-Rodríguez, E.; Ríos, J.J.; Rubio-Wilhelmi, M.M.; Romero, L.; Ruiz, J.M.; Blasco, B. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci. 2011, 181, 195–202. [Google Scholar] [CrossRef]
- Medrano Macías, J.; López Caltzontzit, M.G.; Rivas Martínez, E.N.; Narváez Ortiz, W.A.; Benavides Mendoza, A.; Martínez Lagunes, P. Enhancement to Salt Stress Tolerance in Strawberry Plants by Iodine Products Application. Agronomy 2021, 11, 602. [Google Scholar] [CrossRef]
- Kato, S.; Wachi, T.; Yoshihira, K.; Nakagawa, T.; Ishikawa, A.; Takagi, D.; Tezuka, A.; Yoshida, H.; Yoshida, S.; Sekimoto, H.; et al. Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Front. Plant Sci. 2013, 4, 227. [Google Scholar] [CrossRef]
- Duborská, E.; Urík, M.; Bujdoš, M.; Kubová, J. Aging and Substrate Type Effects on Iodide and Iodate Accumulation by Barley (Hordeum vulgare L.). Water Air Soil Pollut. 2016, 227, 407. [Google Scholar] [CrossRef]
- Dudova, J.; Bujdoš, M. Study of Selenium Sorption on Iron Oxide Hydroxides. Chem. Listy 2015, 109, 770–774. [Google Scholar]
- Golubkina, N.; Moldovan, A.; Kekina, H.; Kharchenko, V.; Sekara, A.; Vasileva, V.; Skrypnik, L.; Tallarita, A.; Caruso, G. Joint Biofortification of Plants with Selenium and Iodine: New Field of Discoveries. Plants 2021, 10, 1352. [Google Scholar] [CrossRef] [PubMed]
- Saini, H.S.; Attieh, J.M.; Hanson, A.D. Biosynthesis of halomethanes and methanethiol by higher plants via a novel methyltransferase reaction. Plant Cell Environ. 1995, 18, 1027–1033. [Google Scholar] [CrossRef]
- Attieh, J.M.; Hanson, A.D.; Saini, H.S. Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea. J. Biol. Chem. 1995, 270, 9250–9257. [Google Scholar] [CrossRef] [Green Version]
- Carlessi, M.; Mariotti, L.; Giaume, F.; Fornara, F.; Perata, P.; Gonzali, S. Targeted knockout of the gene OsHOL1 removes methyl iodide emissions from rice plants. Sci. Rep. 2021, 11, 17010. [Google Scholar] [CrossRef]
- Landini, M.; Gonzali, S.; Kiferle, C.; Tonacchera, M.; Agretti, P.; Dimida, A.; Vitti, P.; Alpi, A.; Pinchera, A.; Perata, P. Metabolic engineering of the iodine content in Arabidopsis. Sci. Rep. 2012, 2, 338. [Google Scholar] [CrossRef] [Green Version]
- WHO. Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption, 25–29 January 2010, Rome, Italy; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Barbosa, V.; Maulvault, A.L.; Anacleto, P.; Santos, M.; Mai, M.; Oliveira, H.; Delgado, I.; Coelho, I.; Barata, M.; Araújo-Luna, R.; et al. Enriched feeds with iodine and selenium from natural and sustainable sources to modulate farmed gilthead seabream (Sparus aurata) and common carp (Cyprinus carpio) fillets elemental nutritional value. Food Chem. Toxicol. 2020, 140, 111330. [Google Scholar] [CrossRef]
- Granby, K.; Amlund, H.; Valente, L.M.P.; Dias, J.; Adoff, G.; Sousa, V.; Marques, A.; Sloth, J.J.; Larsen, B.K. Growth performance, bioavailability of toxic and essential elements and nutrients, and biofortification of iodine of rainbow trout (Onchorynchus mykiss) fed blends with sugar kelp (Saccharina latissima). Food Chem. Toxicol. 2020, 141, 111387. [Google Scholar] [CrossRef]
- Grabež, V.; Coll-Brasas, E.; Fulladosa, E.; Hallenstvedt, E.; Håseth, T.T.; Øverland, M.; Berg, P.; Egelandsdal, B. Seaweed Inclusion in Finishing Lamb Diet Promotes Changes in Micronutrient Content and Flavour-Related Compounds of Raw Meat and Dry-Cured Leg (Fenalår). Foods 2022, 11, 1043. [Google Scholar] [CrossRef]
- Khan, A.Z.; Kumbhar, S.; Liu, Y.; Hamid, M.; Pan, C.; Nido, S.A.; Parveen, F.; Huang, K. Dietary Supplementation of Selenium-Enriched Probiotics Enhances Meat Quality of Broiler Chickens (Gallus gallus domesticus) Raised Under High Ambient Temperature. Biol. Trace Elem. Res. 2018, 182, 328–338. [Google Scholar] [CrossRef]
- Skrivan, M.; Dlouha, G.; Mašata, O.; Ševčíková, S. Effect of dietary selenium on lipid oxidation, selenium and vitamin E content in the meat of broiler chickens. Czech J. Anim. Sci. 2008, 53, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Duborska, E.; Kubova, J.; Matus, P. Factors Affecting Iodine Mobility in Soils. Chem. Listy 2016, 110, 625–629. [Google Scholar]
- Bujdoš, M.; Muľová, A.; Kubová, J.; Medveď, J. Selenium fractionation and speciation in rocks, soils, waters and plants in polluted surface mine environment. Environ. Geol. 2005, 47, 353–360. [Google Scholar] [CrossRef]
- Idrees, M.; Alam, S.; Farooq, M.; Wakeel, A. Selenium Nutrition for Yield Enhancement and Grain Biofortification of Wheat through Different Application Methods. Int. J. Agric. Biol. 2018, 20, 1701–1709. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Ligas, B.; Mikula, K.; Witek-Krowiak, A.; Moustakas, K.; Chojnacka, K. Biofortification of edible plants with selenium and iodine—A systematic literature review. Sci. Total Environ. 2021, 754, 141983. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweather-Tait, S.; Hart, D.; Hurst, R.; Knott, P.; McGrath, S.; et al. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 2010, 332, 5–18. [Google Scholar] [CrossRef]
- Jiang, X.M.; Cao, X.Y.; Jiang, J.Y.; Tai, M.; James, D.W.; Rakeman, M.A.; Dou, Z.H.; Mamette, M.; Amette, K.; Zhang, M.L.; et al. Dynamics of environmental supplementation of iodine: ‘Four years’ experience of iodination of irrigation water in Hotien, Xinjiang, China. Arch. Environ. Health 1997, 52, 399–408. [Google Scholar] [CrossRef]
- de Oliveira, V.C.; Faquin, V.; Guimarães, K.C.; Andrade, F.R.; Pereira, J.; Guilherme, L.R.G. Agronomic biofortification of carrot with selenium. Cienc. Agrotecnol. 2018, 42, 138–147. [Google Scholar] [CrossRef]
- Germ, M.; Stibilj, V.; Šircelj, H.; Jerše, A.; Kroflič, A.; Golob, A.; Maršić, N.K. Biofortification of common buckwheat microgreens and seeds with different forms of selenium and iodine. J. Sci. Food Agric. 2019, 99, 4353–4362. [Google Scholar] [CrossRef]
- Ducsay, L.; Ložek, O.; Marček, M.; Varényiová, M.; Hozlár, P.; Lošák, T. Possibility of selenium biofortification of winter wheat grain. Plant Soil Environ. 2016, 62, 379–383. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wu, Y.; Li, B.; Yang, Y.; Yang, Y. Selenium Accumulation Characteristics and Biofortification Potentiality in Turnip (Brassica rapa var. rapa) Supplied with Selenite or Selenate. Front. Plant Sci. 2017, 8, 2207. [Google Scholar] [CrossRef] [PubMed]
- Lidon, F.C.; Oliveira, K.; Galhano, C.; Guerra, M.; Ribeiro, M.M.; Pelica, J.; Pataco, I.; Ramalho, J.C.; Leitão, A.E.; Almeida, A.S.; et al. Selenium biofortification of rice through foliar application with selenite and selenate. Exp. Agric. 2019, 55, 528–542. [Google Scholar] [CrossRef]
- Golubkina, N.; Kekina, H.; Caruso, G. Yield, Quality and Antioxidant Properties of Indian Mustard (Brassica juncea L.) in Response to Foliar Biofortification with Selenium and Iodine. Plants 2018, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Zahedi, S.M.; Hosseini, M.S.; Daneshvar Hakimi Meybodi, N.; Teixeira da Silva, J.A. Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. S. Afr. J. Bot. 2019, 124, 350–358. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Y.; Li, J.; Wan, Y.; Huang, Q.; Guo, Y.; Li, H. Effects of Different Forms of Selenium Fertilizers on Se Accumulation, Distribution, and Residual Effect in Winter Wheat-Summer Maize Rotation System. J. Agric. Food Chem. 2017, 65, 1116–1123. [Google Scholar] [CrossRef]
- Leija-Martínez, P.; Benavides-Mendoza, A.; Cabrera-De La Fuente, M.; Robledo-Olivo, A.; Ortega-Ortíz, H.; Sandoval-Rangel, A.; González-Morales, S. Lettuce Biofortification with Selenium in Chitosan-Polyacrylic Acid Complexes. Agronomy 2018, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Bañuelos, G.S.; Arroyo, I.; Pickering, I.J.; Yang, S.I.; Freeman, J.L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015, 166, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, G.S.; Arroyo, I.S.; Dangi, S.R.; Zambrano, M.C. Continued Selenium Biofortification of Carrots and Broccoli Grown in Soils Once Amended with Se-enriched S. pinnata. Front. Plant Sci. 2016, 7, 1251. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; El Mehdawi, A.F.; Tripti; Lima, L.W.; Stonehouse, G.; Fakra, S.C.; Hu, Y.; Qi, H.; Pilon-Smits, E.A.H. Characterization of Selenium Accumulation, Localization and Speciation in Buckwheat–Implications for Biofortification. Front. Plant Sci. 2018, 9, 1583. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.L.; Weng, H.X.; Qin, Y.C.; Yan, A.L.; Xie, L.L. Transfer of iodine from soil to vegetables by applying exogenous iodine. Agron. Sustain. Dev. 2008, 28, 575–583. [Google Scholar] [CrossRef]
- Weng, H.; Hong, C.; Xia, T.; Bao, L.; Liu, H.; Li, D. Iodine biofortification of vegetable plants—An innovative method for iodine supplementation. Chin. Sci. Bull. 2013, 58, 2066–2072. [Google Scholar] [CrossRef]
- Smoleń, S.; Skoczylas, Ł.; Ledwożyw-Smoleń, I.; Rakoczy, R.; Kopeć, A.; Piątkowska, E.; Bieżanowska-Kopeć, R.; Koronowicz, A.; Kapusta-Duch, J. Biofortification of Carrot (Daucus carota L.) with Iodine and Selenium in a Field Experiment. Front. Plant Sci. 2016, 7, 730. [Google Scholar] [CrossRef] [Green Version]
- Lawson, P.G.; Daum, D.; Czauderna, R.; Meuser, H.; Hartling, J.W. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci. 2015, 6, 450. [Google Scholar] [CrossRef]
- Smoleń, S.; Kowalska, I.; Skoczylas, Ł.; Tabaszewska, M.; Pitala, J.; Mrożek, J.; Kováčik, P. Effectiveness of enriching lettuce with iodine using 5-iodosalicylic and 3,5-diiodosalicylic acids and the chemical composition of plants depending on the type of soil in a pot experiment. Food Chem. 2022, 382, 132347. [Google Scholar] [CrossRef] [PubMed]
- Reis, H.P.G.; Barcelos, J.P.d.Q.; Junior, E.F.; Santos, E.F.; Silva, V.M.; Moraes, M.F.; Putti, F.F.; Reis, A.R.d. Agronomic biofortification of upland rice with selenium and nitrogen and its relation to grain quality. J. Cereal Sci. 2018, 79, 508–515. [Google Scholar] [CrossRef]
- Ramkissoon, C.; Degryse, F.; da Silva, R.C.; Baird, R.; Young, S.D.; Bailey, E.H.; McLaughlin, M.J. Improving the efficacy of selenium fertilizers for wheat biofortification. Sci. Rep. 2019, 9, 19520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobini, M.; Khoshgoftarmanesh, A.H.; Ghasemi, S. Biofortification of onion bulb with selenium at different levels of sulfate. J. Plant Nutr. 2019, 42, 269–277. [Google Scholar] [CrossRef]
- Golubkina, N.; Moldovan, A.; Fedotov, M.; Kekina, H.; Kharchenko, V.; Folmanis, G.; Alpatov, A.; Caruso, G. Iodine and Selenium Biofortification of Chervil Plants Treated with Silicon Nanoparticles. Plants 2021, 10, 2528. [Google Scholar] [CrossRef] [PubMed]
- Smoleń, S.; Kowalska, I.; Skoczylas, Ł.; Liszka-Skoczylas, M.; Grzanka, M.; Halka, M.; Sady, W. The effect of salicylic acid on biofortification with iodine and selenium and the quality of potato cultivated in the NFT system. Sci. Hortic. 2018, 240, 530–543. [Google Scholar] [CrossRef]
- Smoleń, S.; Kowalska, I.; Kováčik, P.; Halka, M.; Sady, W. Biofortification of Six Varieties of Lettuce (Lactuca sativa L.) With Iodine and Selenium in Combination with the Application of Salicylic Acid. Front. Plant Sci. 2019, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Smoleń, S.; Wierzbińska, J.; Sady, W.; Kołton, A.; Wiszniewska, A.; Liszka-Skoczylas, M. Iodine biofortification with additional application of salicylic acid affects yield and selected parameters of chemical composition of tomato fruits (Solanum lycopersicum L.). Sci. Hortic. 2015, 188, 89–96. [Google Scholar] [CrossRef]
- Smoleń, S.; Ledwożyw-Smoleń, I.; Sady, W. The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.). Plant Soil 2016, 402, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Matulová, M.; Bujdoš, M.; Miglierini, M.B.; Mitróová, Z.; Kubovčíková, M.; Urík, M. The effects of selenate on goethite synthesis and selenate sorption kinetics onto a goethite surface—A three-step process with an unexpected desorption phase. Chem. Geol. 2020, 556, 119852. [Google Scholar] [CrossRef]
- Matulová, M.; Urík, M.; Bujdoš, M.; Duborská, E.; Cesnek, M.; Miglierini, M.B. Selenite sorption onto goethite: Isotherm and ion-competitive studies, and effect of pH on sorption kinetics. Chem. Pap. 2019, 73, 2975–2985. [Google Scholar] [CrossRef]
- Farkas, B.; Vojtková, H.; Bujdoš, M.; Kolenčík, M.; Šebesta, M.; Matulová, M.; Duborská, E.; Danko, M.; Kim, H.; Kučová, K.; et al. Fungal mobilization of selenium in the presence of hausmannite and ferric oxyhydroxides. J. Fungi 2021, 7, 810. [Google Scholar] [CrossRef] [PubMed]
- Ban-nai, T.; Muramatsu, Y.; Amachi, S. Rate of iodine volatilization and accumulation by filamentous fungi through laboratory cultures. Chemosphere 2006, 65, 2216–2222. [Google Scholar] [CrossRef] [PubMed]
- Amachi, S.; Kasahara, M.; Hanada, S.; Kamagata, Y.; Shinoyama, H.; Fujii, T.; Muramatsu, Y. Microbial Participation in Iodine Volatilization from Soils. Environ. Sci. Technol. 2003, 37, 3885–3890. [Google Scholar] [CrossRef] [PubMed]
- Duborská, E.; Urík, M.; Bujdoš, M. Comparison of Iodide and Iodate Accumulation and Volatilization by Filamentous Fungi during Static Cultivation. Water Air Soil Pollut. 2017, 228, 225. [Google Scholar] [CrossRef]
- Yang, D.; Hu, C.; Wang, X.; Shi, G.; Li, Y.; Fei, Y.; Song, Y.; Zhao, X. Microbes: A potential tool for selenium biofortification. Metallomics 2021, 13, mfab054. [Google Scholar] [CrossRef]
- Acuña, J.J.; Jorquera, M.A.; Barra, P.J.; Crowley, D.E.; de la Luz Mora, M. Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol. Fertil. Soils 2013, 49, 175–185. [Google Scholar] [CrossRef]
- Durán, P.; Acuña, J.J.; Armada, E.; López-Castillo, O.M.; Cornejo, P.; Mora, M.L.; Azcón, R. Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. J. Soil Sci. Plant Nutr. 2016, 16, 211–225. [Google Scholar] [CrossRef]
- Yasin, M.; El-Mehdawi, A.F.; Anwar, A.; Pilon-Smits, E.A.H.; Faisal, M. Microbial-enhanced Selenium and Iron Biofortification of Wheat (Triticum aestivum L.)—Applications in Phytoremediation and Biofortification. Int. J. Phytoremediat. 2015, 17, 341–347. [Google Scholar] [CrossRef]
- Yasin, M.; El-Mehdawi, A.F.; Pilon-Smits, E.A.; Faisal, M. Selenium-fortified wheat: Potential of microbes for biofortification of selenium and other essential nutrients. Int. J. Phytoremediat. 2015, 17, 777–786. [Google Scholar] [CrossRef]
- Lidon, F.C.; Oliveira, K.; Ribeiro, M.M.; Pelica, J.; Pataco, I.; Ramalho, J.C.; Leitão, A.E.; Almeida, A.S.; Campos, P.S.; Ribeiro-Barros, A.I.; et al. Selenium biofortification of rice grains and implications on macronutrients quality. J. Cereal Sci. 2018, 81, 22–29. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Folmanis, G.E.; Tananaev, I.G.; Krivenkov, L.V.; Kosheleva, O.V.; Soldatenko, A.V. Comparative Evaluation of Spinach Biofortification with Selenium Nanoparticles and Ionic Forms of the Element. Nanotechnol. Russ. 2017, 12, 569–576. [Google Scholar] [CrossRef]
- Halka, M.; Smoleń, S.; Czernicka, M.; Klimek-Chodacka, M.; Pitala, J.; Tutaj, K. Iodine biofortification through expression of HMT, SAMT and S3H genes in Solanum lycopersicum L. Plant Physiol. Biochem. 2019, 144, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Lyons, G. Biofortification of Cereals with Foliar Selenium and Iodine Could Reduce Hypothyroidism. Front. Plant Sci. 2018, 9, 730. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Du, Y.; Rashid, A.; Ram, H.; Savasli, E.; Pieterse, P.J.; Ortiz-Monasterio, I.; Yazici, A.; Kaur, C.; Mahmood, K.; et al. Simultaneous Biofortification of Wheat with Zinc, Iodine, Selenium, and Iron through Foliar Treatment of a Micronutrient Cocktail in Six Countries. J. Agric. Food Chem. 2019, 67, 8096–8106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cakmak, I.; Marzorati, M.; Van den Abbeele, P.; Hora, K.; Holwerda, H.T.; Yazici, M.A.; Savasli, E.; Neri, J.; Du Laing, G. Fate and Bioaccessibility of Iodine in Food Prepared from Agronomically Biofortified Wheat and Rice and Impact of Cofertilization with Zinc and Selenium. J. Agric. Food Chem. 2020, 68, 1525–1535. [Google Scholar] [CrossRef] [PubMed]
- Prom-u-thai, C.; Rashid, A.; Ram, H.; Zou, C.; Guilherme, L.R.G.; Corguinha, A.P.B.; Guo, S.; Kaur, C.; Naeem, A.; Yamuangmorn, S.; et al. Simultaneous Biofortification of Rice with Zinc, Iodine, Iron and Selenium Through Foliar Treatment of a Micronutrient Cocktail in Five Countries. Front. Plant Sci. 2020, 11, 589835. [Google Scholar] [CrossRef] [PubMed]
- Germ, M.; Kacjan-Maršić, N.; Kroflič, A.; Jerše, A.; Stibilj, V.; Golob, A. Significant Accumulation of Iodine and Selenium in Chicory (Cichorium intybus L. var. foliosum Hegi) Leaves after Foliar Spraying. Plants 2020, 9, 1766. [Google Scholar] [CrossRef]
- Smoleń, S.; Baranski, R.; Ledwożyw-Smoleń, I.; Skoczylas, Ł.; Sady, W. Combined biofortification of carrot with iodine and selenium. Food Chem. 2019, 300, 125202. [Google Scholar] [CrossRef]
- Sahin, O. Combined biofortification of soilless grown lettuce with iodine, selenium and zinc and its effect on essential and non-essential elemental composition. J. Plant Nutr. 2021, 44, 673–678. [Google Scholar] [CrossRef]
- Smoleń, S.; Kowalska, I.; Czernicka, M.; Halka, M.; Kęska, K.; Sady, W. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata). Front. Plant Sci. 2016, 7, 1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golob, A.; Kroflič, A.; Jerše, A.; Kacjan Maršić, N.; Šircelj, H.; Stibilj, V.; Germ, M. Response of Pumpkin to Different Concentrations and Forms of Selenium and Iodine, and their Combinations. Plants 2020, 9, 899. [Google Scholar] [CrossRef] [PubMed]
- Budke, C.; Dierend, W.; Schön, H.-G.; Hora, K.; Mühling, K.H.; Daum, D. Iodine Biofortification of Apples and Pears in an Orchard Using Foliar Sprays of Different Composition. Front. Plant Sci. 2021, 12, 638671. [Google Scholar] [CrossRef] [PubMed]
- Tonacchera, M.; Dimida, A.; De Servi, M.; Frigeri, M.; Ferrarini, E.; De Marco, G.; Grasso, L.; Agretti, P.; Piaggi, P.; Aghini-Lombardi, F.; et al. Iodine Fortification of Vegetables Improves Human Iodine Nutrition: In Vivo Evidence for a New Model of Iodine Prophylaxis. J. Clin. Endocrinol. Metab. 2013, 98, E694–E697. [Google Scholar] [CrossRef]
- Li, R.; Li, D.W.; Yan, A.L.; Hong, C.L.; Liu, H.P.; Pan, L.H.; Song, M.Y.; Dai, Z.X.; Ye, M.L.; Weng, H.X. The bioaccessibility of iodine in the biofortified vegetables throughout cooking and simulated digestion. J. Food Sci. Technol. 2018, 55, 366–375. [Google Scholar] [CrossRef]
- Sun, G.-X.; Van de Wiele, T.; Alava, P.; Tack, F.M.G.; Du Laing, G. Bioaccessibility of selenium from cooked rice as determined in a simulator of the human intestinal tract (SHIME). J. Sci. Food Agric. 2017, 97, 3540–3545. [Google Scholar] [CrossRef]
- Hu, L.; Fan, H.; Wu, D.; Wan, J.; Wang, X.; Huang, R.; Liu, W.; Shen, F. Assessing bioaccessibility of Se and I in dual biofortified radish seedlings using simulated in vitro digestion. Food Res. Int. 2019, 119, 701–708. [Google Scholar] [CrossRef]
- Golob, A.; Novak, T.; Maršić, N.K.; Šircelj, H.; Stibilj, V.; Jerše, A.; Kroflič, A.; Germ, M. Biofortification with selenium and iodine changes morphological properties of Brassica oleracea L. var. gongylodes) and increases their contents in tubers. Plant Physiol. Biochem. 2020, 150, 234–243. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Incrocci, L.; Rosellini, I.; Pezzarossa, B. Effects of Individual and Simultaneous Selenium and Iodine Biofortification of Baby-Leaf Lettuce Plants Grown in Two Different Hydroponic Systems. Horticulturae 2021, 7, 590. [Google Scholar] [CrossRef]
- Cerretani, L.; Comandini, P.; Fumanelli, D.; Scazzina, F.; Chiavaro, E. Evaluation of iodine content and stability in recipes prepared with biofortified potatoes. Int. J. Food Sci. Nutr. 2014, 65, 797–802. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duborská, E.; Šebesta, M.; Matulová, M.; Zvěřina, O.; Urík, M. Current Strategies for Selenium and Iodine Biofortification in Crop Plants. Nutrients 2022, 14, 4717. https://doi.org/10.3390/nu14224717
Duborská E, Šebesta M, Matulová M, Zvěřina O, Urík M. Current Strategies for Selenium and Iodine Biofortification in Crop Plants. Nutrients. 2022; 14(22):4717. https://doi.org/10.3390/nu14224717
Chicago/Turabian StyleDuborská, Eva, Martin Šebesta, Michaela Matulová, Ondřej Zvěřina, and Martin Urík. 2022. "Current Strategies for Selenium and Iodine Biofortification in Crop Plants" Nutrients 14, no. 22: 4717. https://doi.org/10.3390/nu14224717
APA StyleDuborská, E., Šebesta, M., Matulová, M., Zvěřina, O., & Urík, M. (2022). Current Strategies for Selenium and Iodine Biofortification in Crop Plants. Nutrients, 14(22), 4717. https://doi.org/10.3390/nu14224717