Nondairy Probiotic Products: Functional Foods That Require More Attention
Abstract
:1. Introduction
2. Literature Search Methodology
3. Potential Strains and Raw Materials for Nondairy Probiotics
3.1. Probiotic Strains and Viability Properties
3.2. Properties and Environmental Concerns of Raw Nondairy Materials for Probiotic Products
3.3. Sensory Properties
4. In Vitro Assessment of Probiotic Product by Artificial Gastrointestinal Tract
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential Non-Dairy Probiotic Products—A Healthy Approach. Food Biosci. 2018, 21, 80–89. [Google Scholar] [CrossRef]
- Rosi, A.; Mena, P.; Pellegrini, N.; Turroni, S.; Neviani, E.; Ferrocino, I.; Di Cagno, R.; Ruini, L.; Ciati, R.; Angelino, D.; et al. Environmental Impact of Omnivorous, Ovo-Lacto-Vegetarian, and Vegan Diet. Sci. Rep. 2017, 7, 6105. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saarela, M.; Alakomi, H.L.; Mättö, J.; Ahonen, A.M.; Puhakka, A.; Tynkkynen, S. Improving the storage stability of Bifidobacterium breve in low pH fruit juice. Int. J. Food Microbiol. 2011, 149, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Challenges for the Production of Probiotic Fruit Juices. Beverages 2015, 1, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Liu, Y.; Tran, D.Q.; Rhoads, J.M. Probiotics in Disease Prevention and Treatment. J. Clin. Pharmacol. 2018, 58, S164–S179. [Google Scholar] [CrossRef]
- Ryma, T.; Samer, A.; Soufli, I.; Rafa, H.; Touil-Boukoffa, C. Role of Probiotics and Their Metabolites in Inflammatory Bowel Diseases (IBDs). Gastroenterol. Insights 2021, 12, 6. [Google Scholar] [CrossRef]
- Da Pontes, K.S.S.; Guedes, M.R.; da Cunha, M.R.; de Mattos, S.S.; Barreto Silva, M.I.; Neves, M.F.; Marques, B.C.A.A.; Klein, M.R.S.T. Effects of Probiotics on Body Adiposity and Cardiovascular Risk Markers in Individuals with Overweight and Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2021, 40, 4915–4931. [Google Scholar] [CrossRef]
- Abbasi, A.; Aghebati-Maleki, A.; Yousefi, M.; Aghebati-Maleki, L. Probiotic Intervention as a Potential Therapeutic for Managing Gestational Disorders and Improving Pregnancy Outcomes. J. Reprod. Immunol. 2021, 143, 103244. [Google Scholar] [CrossRef]
- De Brito Alves, J.L.; de Oliveira, Y.; Carvalho, N.N.C.; Cavalcante, R.G.S.; Pereira Lira, M.M.; do Nascimento, L.C.P.; Magnani, M.; Vidal, H.; de Braga, V.A.; de Souza, E.L. Gut Microbiota and Probiotic Intervention as a Promising Therapeutic for Pregnant Women with Cardiometabolic Disorders: Present and Future Directions. Pharmacol. Res. 2019, 145, 104252. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Rzepkowska, A.; Radawska, A.; Zieliński, K. In Vitro Screening of Selected Probiotic Properties of Lactobacillus Strains Isolated from Traditional Fermented Cabbage and Cucumber. Curr. Microbiol. 2015, 70, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Długosz, E.; Zawistowska-Deniziak, A. Functional Properties of Food Origin Lactobacillus in the Gastrointestinal Ecosystem—In Vitro Study. Probiotics Antimicrob. Proteins 2019, 11, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Aspri, M.; Papademas, P. Review on Non-Dairy Probiotics and Their Use in Non-Dairy Based Products. Fermentation 2020, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Fijan, S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767. [Google Scholar] [CrossRef] [PubMed]
- Ilango, S.; Antony, U. Probiotic Microorganisms from Non-Dairy Traditional Fermented Foods. Trends Food Sci. Technol. 2021, 118, 617–638. [Google Scholar] [CrossRef]
- Meybodi, N.M.; Mortazavian, A.M.; Arab, M.; Nematollahi, A. Probiotic viability in yoghurt: A review of influential factors. Int. Dairy J. 2020, 109, 104793. [Google Scholar] [CrossRef]
- Shori, A.B. Influence of Food Matrix on the Viability of Probiotic Bacteria: A Review Based on Dairy and Non-Dairy Beverages. Food Biosci. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Khartad, A.; Chakraborty, S. The potential of non-dairy synbiotic instant beverage powder: Review on a new generation of healthy ready-to-reconstitute drinks. Food Biosci. 2021, 42, 101195. [Google Scholar] [CrossRef]
- Zhu, W.; Lyu, F.; Naumovski, N.; Ajlouni, S.; Ranadheera, C.S. Functional Efficacy of Probiotic Lactobacillus Sanfranciscensis in Apple, Orange and Tomato Juices with Special Reference to Storage Stability and In Vitro Gastrointestinal Survival. Beverages 2020, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Rouissi, A.; Alfonso-Avila, A.R.; Guay, F.; Boulianne, M.; Létourneau-Montminy, M.P. Effects of Bacillus subtilis, butyrate, mannan-oligosaccharide, and naked oat (ß-glucans) on growth performance, serum parameters, and gut health of broiler chickens. Poultry Sci. 2021, 100, 101506. [Google Scholar] [CrossRef] [PubMed]
- Abdi, R.; Joye, I.J. Prebiotic Potential of Cereal Components. Foods 2021, 10, 2338. [Google Scholar] [CrossRef] [PubMed]
- Lazaridou, A.; Serafeimidou, A.; Biliaderis, C.G.; Moschakis, T.; Tzanetakis, N. Structure Development and Acidification Kinetics in Fermented Milk Containing Oat β-Glucan, a Yogurt Culture and a Probiotic Strain. Food Hydrocoll. 2014, 39, 204–214. [Google Scholar] [CrossRef]
- Qiu, X.J.; Zheng, W.X.; Zhang, L.; Shi, Y.L.; Hu, J.H.; Li, Y.L.; Liu, Z.Y.; Zhu, M.D. Prebiotic Effects of Xylanase Modification Of β-Glucan from Oat Bran on Bifidobacterium Bifidum. Ital. J. Food Sci. 2020, 32, 6–17. [Google Scholar] [CrossRef]
- Lillo-Pérez, S.; Guerra-Valle, M.; Orellana-Palma, P.; Petzold, G. Probiotics in Fruit and Vegetable Matrices: Opportunities for Nondairy Consumers. LWT 2021, 151, 112106. [Google Scholar] [CrossRef]
- Vanajakshi, V.; Vijayendra, S.V.N.; Varadaraj, M.C.; Venkateswaran, G.; Agrawal, R. Optimization of a Probiotic Beverage Based on Moringa Leaves and Beetroot. LWT—Food Sci. Technol. 2015, 63, 1268–1273. [Google Scholar] [CrossRef]
- Barbu, V.; Cotârleț, M.; Bolea, C.A.; Cantaragiu, A.; Andronoiu, D.G.; Bahrim, G.E.; Enachi, E. Three Types of Beetroot Products Enriched with Lactic Acid Bacteria. Foods 2020, 9, 786. [Google Scholar] [CrossRef] [PubMed]
- Sengun, I.Y.; Kirmizigul, A.; Atlama, K.; Yilmaz, B. Viability of Lactobacillus Rhamnosus in Orange Juice Fortified with Nettle (Urtica dioica L.) and Bioactive Properties of the Juice during Storage. LWT 2020, 118, 108707. [Google Scholar] [CrossRef]
- Almada-Érix, C.N.; Almada, C.N.; Cabral, L.; Barros de Medeiros, V.P.; Roquetto, A.R.; Santos-Junior, V.A.; Fontes, M.; Gonçalves, A.E.S.S.; Dos Santos, A.; Lollo, P.C.; et al. Orange Juice and Yogurt Carrying Probiotic Bacillus Coagulans GBI-30 6086: Impact of Intake on Wistar Male Rats Health Parameters and Gut Bacterial Diversity. Front. Microbiol. 2021, 12, 623951. [Google Scholar] [CrossRef]
- Swain, M.R.; Anandharaj, M.; Ray, R.C.; Parveen Rani, R. Fermented Fruits and Vegetables of Asia: A Potential Source of Probiotics. Biotechnol. Res. Int. 2014, 2014, 250424. [Google Scholar] [CrossRef] [PubMed]
- Noorbakhsh, R.; Yaghmaee, P.; Durance, T. Radiant Energy under Vacuum (REV) Technology: A Novel Approach for Producing Probiotic Enriched Apple Snacks. J. Funct. Foods 2013, 5, 1049–1056. [Google Scholar] [CrossRef]
- Russo, P.; Peña, N.; de Chiara, M.L.V.; Amodio, M.L.; Colelli, G.; Spano, G. Probiotic Lactic Acid Bacteria for the Production of Multifunctional Fresh-Cut Cantaloupe. Food Res. Int. 2015, 77, 762–772. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Y.; Yang, N.; Jiang, T.; Xu, H.; Lei, H. Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chem. 2022, 373, 131455. [Google Scholar] [CrossRef] [PubMed]
- Vaishanavi, S.; Preetha, R. Soy protein incorporated nanoemulsion for enhanced stability of probiotic (Lactobacillus delbrueckii subsp. bulgaricus) and its characterization. Mater. Today Proc. 2021, 40, S148–S153. [Google Scholar] [CrossRef]
- Menezes, A.G.T.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Res. Int. 2018, 111, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of Potentially Probiotic Lactic Acid Bacteria on the Physicochemical Composition and Acceptance of Fermented Cereal Beverages. J. Funct. Foods 2015, 15, 106–115. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Tao, Y.; Li, D.; Han, Y.; Show, P.L.; Wen, G.; Zhou, J. Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chem. 2021, 348, 129083. [Google Scholar] [CrossRef]
- Bujna, E.; Farkas, N.A.; Tran, A.M.; Dam, M.S.; Nguyen, Q.D. Lactic acid fermentation of apricot juice by mono- and mixed cultures of probiotic Lactobacillus and Bifidobacterium strains. Food Sci. Biotechnol. 2018, 27, 547–554. [Google Scholar] [CrossRef]
- Duru, K.C.; Kovaleva, E.G.; Danilova, I.G.; Belousova, A.V. Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT 2019, 111, 9–15. [Google Scholar] [CrossRef]
- Craig, W.J.; Brothers, C.J. Nutritional Content and Health Profile of Non-Dairy Plant-Based Yogurt Alternatives. Nutrients 2021, 13, 4069. [Google Scholar] [CrossRef] [PubMed]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of Dietary Compounds, Especially Polyphenols, with the Intestinal Microbiota: A Review. Eur. J. Nutr. 2015, 54, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Gawkowski, D.; Chikindas, M.L. Non-Dairy Probiotic Beverages: The next Step into Human Health. Benef. Microbes 2013, 4, 127–142. [Google Scholar] [CrossRef]
- Guan, R.; Van Le, Q.; Yang, H.; Zhang, D.; Gu, H.; Yang, Y.; Sonne, C.; Lam, S.S.; Zhong, J.; Jianguang, Z.; et al. A Review of Dietary Phytochemicals and Their Relation to Oxidative Stress and Human Diseases. Chemosphere 2021, 271, 129499. [Google Scholar] [CrossRef]
- Setta, M.C.; Matemu, A.; Mbega, E.R. Potential of probiotics from fermented cereal-based beverages in improving health of poor people in Africa. J. Food Sci. Technol. 2020, 57, 3935–3946. [Google Scholar] [CrossRef] [PubMed]
- Mridula, D.; Sharma, M. Development of non-dairy probiotic drink utilizing sprouted cereals, legume and soymilk. LWT—Food Sci. Technol. 2015, 62, 482–487. [Google Scholar] [CrossRef]
- Cosme, F.; Inês, A.; Vilela, A. Consumer’s Acceptability and Health Consciousness of Probiotic and Prebiotic of Non-Dairy Products. Food Res. Int. 2022, 151, 110842. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, M.; Börner, R.A.; Ghyselinck, J.; Verstrepen, L.; Medts, J.D.; den Abbeele, P.V.; Boulangé, C.L.; Priour, S.; Marzorati, M.; Damak, S. Water Kefir and Derived Pasteurized Beverages Modulate Gut Microbiota, Intestinal Permeability and Cytokine Production In Vitro. Nutrients 2021, 13, 3897. [Google Scholar] [CrossRef] [PubMed]
- Tsafrakidou, P.; Michaelidou, A.M.; Biliaderis, C.G. Fermented Cereal-Based Products: Nutritional Aspects, Possible Impact on Gut Microbiota and Health Implications. Foods 2020, 9, 734. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, T.C.; Gomes de Oliveira, L.I.; de Lourdes Chaves Macedo, E.; Costa, G.N.; Dias, D.R.; Schwan, R.F.; Magnani, M. Understanding the Potential of Fruits, Flowers, and Ethnic Beverages as Valuable Sources of Techno-Functional and Probiotics Strains: Current Scenario and Main Challenges. Trends Food Sci. Technol. 2021, 114, 25–59. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Gomes de Oliveira, L.I.; Carvalho de Souza, R.; Magnani, M. Probiotic Non-Dairy Frozen Dessert: Technological and Sensory Aspects and Industrial Challenges. Trends Food Sci. Technol. 2021, 107, 381–388. [Google Scholar] [CrossRef]
- Väkeväinen, K.; Ludena-Urquizo, F.; Korkala, E.; Lapveteläinen, A.; Peräniemi, S.; von Wright, A.; Plumed-Ferrer, C. Potential of Quinoa in the Development of Fermented Spoonable Vegan Products. LWT 2020, 120, 108912. [Google Scholar] [CrossRef]
- Schiano, A.N.; Harwood, W.S.; Gerard, P.D.; Drake, M.A. Consumer perception of the sustainability of dairy products and plant-based dairy alternatives. J. Dairy Sci. 2020, 103, 11228–11243. [Google Scholar] [CrossRef] [PubMed]
- Saari, U.A.; Herstatt, C.; Tiwari, R.; Dedehayir, O.; Mäkinen, S.J. The Vegan Trend and the Microfoundations of Institutional Change: A Commentary on Food Producers’ Sustainable Innovation Journeys in Europe. Trends Food Sci. Technol. 2021, 107, 161–167. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Buchs, M.; Saunders, C.; Wallbridge, R.; Smith, G.; Bardsley, N. Identifying and Explaining Framing Strategies of Low Carbon Lifestyle Movement Organisations. Glob. Environ. Chang. 2015, 35, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Bryant, C.J. We Can’t Keep Meating Like This: Attitudes towards Vegetarian and Vegan Diets in the United Kingdom. Sustainability 2019, 11, 6844. [Google Scholar] [CrossRef] [Green Version]
- Dupont, D.; Alric, M.; Blanquet-Diot, S.; Bornhorst, G.; Cueva, C.; Deglaire, A.; Denis, S.; Ferrua, M.; Havenaar, R.; Lelieveld, J.; et al. Can Dynamic in Vitro Digestion Systems Mimic the Physiological Reality? Crit. Rev. Food Sci. Nutr. 2019, 59, 1546–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, R.; Mortazavian, A.; Khosrokhavar, R. Probiotic Ice Cream: Viability of Probiotic Bacteria and Sensory Properties. Ann. Microbiol. 2011, 61, 411–424. [Google Scholar] [CrossRef]
- Sridharan, S.; Das, K.M.S. A Study on Suitable Non Dairy Food Matrix for Probiotic Bacteria Seanstematic Review. Curr. Res. Nutr. Food Sci. J. 2019, 7, 5–16. [Google Scholar] [CrossRef]
- Malganji, S.; Sohrabvandi, S.; Jahadi, M.; Nematollahi, A.; Sarmadi, B. Effect of Refrigerated Storage on Sensory Properties and Viability of Probiotic in Grape Drink. Appl. Food Biotechnol. 2016, 3, 59–62. [Google Scholar] [CrossRef]
- Peyer, L.; Zannini, E.; Arendt, E. Lactic Acid Bacteria as Sensory Biomodulators for Fermented Cereal-Based Beverages. Trends Food Sci. Technol. 2016, 54, 17–25. [Google Scholar] [CrossRef]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Bocker, R.; Silva, E.K. Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional, sensory and safety aspects. Future Foods 2022, 5, 100098. [Google Scholar] [CrossRef]
- Rasika, D.M.; Vidanarachchi, J.K.; Rocha, R.S.; Balthazar, C.F.; Cruz, A.G.; Sant’Ana, A.S.; Ranadheera, C.S. Plant-based milk substitutes as emerging probiotic carriers. Curr. Opin. Food Sci. 2021, 38, 8–20. [Google Scholar] [CrossRef]
- Dodoo, C.C.; Wang, J.; Basit, A.W.; Stapleton, P.; Gaisford, S. Targeted Delivery of Probiotics to Enhance Gastrointestinal Stability and Intestinal Colonisation. Int. J. Pharm. 2017, 530, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Haileselassie, Y.; Briscoe, L.; Bai, L.; Patel, A.; Sanjines, E.; Hendler, S.; Singh, P.K.; Garud, N.R.; Limketkai, B.N.; et al. The Effect of Gastric Acid Suppression on Probiotic Colonization in a Double Blinded Randomized Clinical Trial. Clin. Nutr. ESPEN 2021, 47, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Hassan, I.; Gani, A.; Ul Ashraf, Z. Chapter 3—Simulated Gastrointestinal System to Assess the Probiotic Properties Modified to Encapsulation of Probiotics and Their Survival Under Simulated Gastrointestinal System. In Advances in Probiotics; Dhanasekaran, D., Sankaranarayanan, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 37–44. ISBN 978-0-12-822909-5. [Google Scholar]
- Liu, W.; Fu, D.; Zhang, X.; Chai, J.; Tian, S.; Han, J. Development and Validation of a New Artificial Gastric Digestive System. Food Res. Int. 2019, 122, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M. The TNO Gastro-Intestinal Model (TIM). In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-15791-7. [Google Scholar]
- Van de Wiele, T.; Van den Abbeele, P.; Ossieur, W.; Possemiers, S.; Marzorati, M. The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Eds.; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-15791-7. [Google Scholar]
- Giuliani, C.; Marzorati, M.; Innocenti, M.; Vilchez-Vargas, R.; Vital, M.; Pieper, D.H.; Van de Wiele, T.; Mulinacci, N. Dietary Supplement Based on Stilbenes: A Focus on Gut Microbial Metabolism by the in Vitro Simulator M-SHIME®. Food Funct. 2016, 7, 4564–4575. [Google Scholar] [CrossRef]
- Patrignani, F.; Parolin, C.; D’Alessandro, M.; Siroli, L.; Vitali, B.; Lanciotti, R. Evaluation of the Fate of Lactobacillus Crispatus BC4, Carried in Squacquerone Cheese, throughout the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Food Res. Int. 2020, 137, 109580. [Google Scholar] [CrossRef]
- Chen, P.; Chen, X.; Hao, L.; Du, P.; Li, C.; Han, H.; Xu, H.; Liu, L. The Bioavailability of Soybean Polysaccharides and Their Metabolites on Gut Microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Food Chem. 2021, 362, 130233. [Google Scholar] [CrossRef] [PubMed]
Genus | Species | Product Type | Viability (log CFU per mL or g) | References |
---|---|---|---|---|
Lactobacillus | L. rhamnosus ATCC7469 | Fruit-Based Product Dried apple slices | 1.0–3.0 log in slices dried by freezing and a combination of air drying and vacuum drying after 120 days storage at 25 °C, but higher viability of 9.3–7.8 log was found at 4 °C for 180 days. | [31] |
L. plantarum B2, L. fermentum PBCC11. | Fruit-Based Product Fresh-cut cantaloupe | L. plantarum (8.1 log) and L. fermentum (7.8 log) after 11 days of storage at 4 °C | [32] | |
L. helveticus 76 (Lh76) | Fruit-Based Product Kiwifruit juice | Above 9.0 log CFU/mL after fermentation | [33] | |
L.delbrueckii subsp. bulgaricus | Legume Based ProductSoy Protein | First day after fermentation 54 × 10⁶ CFU/mL, after period of 15 days 43 × 107 CFU/mL | [34] | |
L. paracasei LBC-81 | Cereal-Based Product Maize-based substrate | Viable cell count, 106 CFU/mL | [35] | |
L. reuteri NCIMB11951 | Grain-based Product Fermented beverage made from oats, barley or malt | Viability between 7.8 and 8.1 log of the three species in fermented beverage after 10 h of fermentation at 37 °C. | [36] | |
L. johnsonii | Vegetable-Based Product Traditional fermented cabbage and cucumber | Above 9 log CFU/g | [12,13] | |
B. bifidum | Fruit-Based Product Blueberry and Black Berry Juices | Increased CFU/mL and 7.3 log10 CFU/mL to 8.2 log10 CFU/mL after 48 h fermentation, | [37] | |
Bifidobacterium strains | B. lactis Bb-12 | Fruit-Based Product Cashew apple juice | After 1 day fermentation 2.16 × 1010 CFU/L h | [38] |
B. longum Bifidobacterium longum Bb-46 | Fruit-Based Product Apricot Fruit Juice | After 24 h of fermentation were higher than 108 CFU/mL, | [38] | |
Saccharomyces | Saccharomyces cerevisiae CCMA 0731, | Cereal-Based Product Maize-based substrate | Viable cell counts 106 CFU/mL | [35] |
Streptococcus | Streptococcus thermophiles | Grain-based product Oat Flour | Viable cell counts 106 CFU/mL | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Küçükgöz, K.; Trząskowska, M. Nondairy Probiotic Products: Functional Foods That Require More Attention. Nutrients 2022, 14, 753. https://doi.org/10.3390/nu14040753
Küçükgöz K, Trząskowska M. Nondairy Probiotic Products: Functional Foods That Require More Attention. Nutrients. 2022; 14(4):753. https://doi.org/10.3390/nu14040753
Chicago/Turabian StyleKüçükgöz, Kübra, and Monika Trząskowska. 2022. "Nondairy Probiotic Products: Functional Foods That Require More Attention" Nutrients 14, no. 4: 753. https://doi.org/10.3390/nu14040753
APA StyleKüçükgöz, K., & Trząskowska, M. (2022). Nondairy Probiotic Products: Functional Foods That Require More Attention. Nutrients, 14(4), 753. https://doi.org/10.3390/nu14040753