Is Extra Virgin Olive Oil the Critical Ingredient Driving the Health Benefits of a Mediterranean Diet? A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Blood Pressure
3.2. Low-Density Lipoprotein Cholesterol (LDL-c)
3.3. High-Density Lipoprotein Cholesterol (HDL-c)
3.4. Fasting Blood Glucose
3.5. Body Weight
3.6. Quality Assessment
4. Discussion
4.1. Clinical Implications
4.2. Strengths
4.3. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Noncommunicable Diseases. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases#:~:text=People%20at%20Risk (accessed on 30 March 2023).
- Itsiopoulos, C.; Mayr, H.L.; Thomas, C.J. The anti-inflammatory effects of a Mediterranean diet: A review. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 415–422. [Google Scholar] [CrossRef]
- West Virginia Department of Health & Human Resources. Dietary Guidelines for Americans; USDA: Washington, DC, USA, 2015.
- Heart Foundation. Dietary Position Statement: Heart Healthy Eating Pattern; Heart Foundation: Subiaco, Australia, 2019. [Google Scholar]
- Costentino, F.; Grant, P.J.; Aboyans, V.; Cliford, F.B.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2019, 41, 255–323. [Google Scholar]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J.; et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef] [PubMed]
- Public Health England. The Eatwell Guide. 2018. Available online: https://www.gov.uk/government/publications/the-eatwell-guide (accessed on 6 April 2023).
- Ireland FSAo. Scientific Recommendations for Healthy Eating Guidelines in Ireland. 2011. Available online: https://www.fsai.ie/science_and_health/healthy_eating.html (accessed on 6 April 2023).
- The Australian Dietary Guidelines. 2013. Available online: https://www.eatforhealth.gov.au/ (accessed on 6 April 2023).
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 13. [Google Scholar] [CrossRef]
- Hammad, S.; Pu, S.; Jones, P.J. Current Evidence Supporting the Link Between Dietary Fatty Acids and Cardiovascular Disease. Lipids 2016, 51, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Parry, S.A.; Rosqvist, F.; Cornfield, T.; Barrett, A.; Hodson, L. Oxidation of dietary linoleate occurs to a greater extent than dietary palmitate in vivo in humans. Clin. Nutr. 2021, 40, 1108–1114. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Dominguez, L.J.; Delgado-Rodriguez, M. Olive oil consumption and risk of CHD and/or stroke: A meta-analysis of case-control, cohort and intervention studies. Br. J. Nutr. 2014, 112, 248–259. [Google Scholar] [CrossRef] [Green Version]
- Salas-Salvado, J.; Bullo, M.; Estruch, R.; Ros, E.; Covas, M.-I.; Ibarrola-Jurado, N.; Corella, D.; Aros, F.; Gomez-Gracia, F.; Ruiz-Gutierrez, V.; et al. Prevention of diabetes with Mediterranean diets: A subgroup analysis of a randomized trial. Ann. Intern. Med. 2014, 160, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Lampousi, A.M.; Portillo, M.P.; Romaguera, D.; Hoffmann, G.; Boeing, H. Olive oil in the prevention and management of type 2 diabetes mellitus: A systematic review and meta-analysis of cohort studies and intervention trials. Nutr. Diabetes 2017, 7, e262. [Google Scholar] [CrossRef] [Green Version]
- Esposito, K.; Marfella, R.; Ciotola, M. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. JAMA 2004, 292, 1440–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Julian, B.S.; Sanchez-Tainta, A.; Corella, D.; Lamuela-Raventos, R.M.; Martinez, J.A.; Martinez-Gonzalez, M. Virgin olive oil supplementation and long-term cognition: The PREDIMED-NAVARRA randomized, trial. J. Nutr. Health Aging 2013, 17, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Martin-Moreno, J.M.; Willett, W.C.; Gorgojo, L.; Banegas, J.R.; Rodriguez-Artalejo, F.; Fernandez-Rodriguez, J.C.; Maisonneuve, P.; Boyle, P. Dietary fat, olive oil intake and breast cancer risk. Int. J. Cancer 1994, 58, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Mourouti, N.; Panagiotakos, D.B. The beneficial effect of a Mediterranean diet supplemented with extra virgin olive oil in the primary prevention of breast cancer among women at high cardiovascular risk in the PREDIMED Trial. Evid. Based Nurs. 2016, 19, 71. [Google Scholar] [CrossRef] [PubMed]
- Sealy, N.; Hankinson, S.E.; Houghton, S.C. Olive oil and risk of breast cancer: A systematic review and dose-response meta-analysis of observational studies. Br. J. Nutr. 2021, 125, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A. Olive oil and breast cancer. Cancer Causes Control 1995, 6, 475–476. [Google Scholar] [CrossRef]
- Hashim, Y.Z.; Eng, M.; Gill, C.I.; McGlynn, H.; Rowland, I.R. Components of olive oil and chemoprevention of colorectal cancer. Nutr. Rev. 2005, 63, 374–386. [Google Scholar] [CrossRef]
- Stoneham, M.; Goldacre, M.; Seagroatt, V.; Gill, L. Olive oil, diet and colorectal cancer: An ecological study and a hypothesis. J Epidemiol. Community Health 2000, 54, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Soriguer, F.; Rojo-Martinez, G.; Goday, A.; Bosch-Comas, A.; Bordiú, E.; Caballero-Díaz, F.; Calle-Pascual, A.; Carmena, R.; Casamitjana, R.; Castaño, L.; et al. Olive oil has a beneficial effect on impaired glucose regulation and other cardiometabolic risk factors. [email protected] study. Eur. J. Clin. Nutr. 2013, 67, 911–916. [Google Scholar] [CrossRef] [Green Version]
- Razquin, C.; Martinez, J.A.; Martinez-Gonzalez, M.A.; Mitjavila, M.T.; Estruch, R.; Marti, A. A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. Eur. J. Clin. Nutr. 2009, 63, 1387–1393. [Google Scholar] [CrossRef] [Green Version]
- Buckland, G.; Mayen, A.L.; Agudo, A.; Travier, N.; Navarro, C.; Huerta, J.M.; Chirlaque, M.D.; Barricarte, A.; Ardanaz, E.; Moreno-Iribas, C.; et al. Olive oil intake and mortality within the Spanish population (EPIC-Spain). Am. J. Clin. Nutr. 2012, 96, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations; World Health Organization. Standard for Olive Oils and Olive Pomace Oils, Codex Stan 33-1981. 2015. Available online: https://static.oliveoiltimes.com/library/codexalimentarius-olive-oil-standard.pdf (accessed on 6 April 2023).
- Yubero-Serrano, E.M.; Lopez-Moreno, J.; Gomez-Delgado, F.; Lopez-Miranda, J. Extra virgin olive oil: More than a healthy fat. Eur. J. Clin. Nutr. 2019, 72, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baiano, A.T.C.; Viggiani, I. Nobile MAD Effects of cultivars and location on quality, phenolic content and antioxidant activity of extra-virgin olive oils. J. Am. Oil Chem. Soc. 2013, 90, 103–111. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G.; Simal-Gandara, J. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkinson, L.; Cicerale, S. The Health Benefiting Mechanisms of Virgin Olive Oil Phenolic Compounds. Molecules 2016, 21, 1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinbrenner, T.; Fito, M.; de la Torre, R.; Saez, G.T.; Rijken, P.; Tormos, C.; Coolen, S.; Albaladejo, M.F.; Abanades, S.; Schroder, H.; et al. Olive oils high in phenolic compounds modulate oxidative/antioxidative status in men. J. Nutr. 2004, 134, 2314–2321. [Google Scholar] [CrossRef] [Green Version]
- Tung, W.C.; Rizzo, B.; Dabbagh, Y.; Saraswat, S.; Romanczyk, M.; Codorniu-Hernández, E.; Rebollido-Rios, R.; Needs, P.W.; Kroon, P.A.; Rakotomanomana, N.; et al. Polyphenols bind to low density lipoprotein at biologically relevant concentrations that are protective for heart disease. Arch. Biochem. Biophys. 2020, 694, 108589. [Google Scholar] [CrossRef]
- Hernaez, A.; Fernandez-Castillejo, S.; Farras, M.; Catalan, U.; Subirana, I.; Montes, R.; Sola, R.; Montes, R.; Munoz-Aguayos, D.; Gelabert-Gorgues, A.; et al. Olive oil polyphenols enhance high-density lipoprotein function in humans: A randomized controlled trial. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2115–2119. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R. Writing narrative style literature reviews. Med. Writ. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- Dietetics AoNa. Evidence Analysis Manual: Steps in the Academy Evidence Analysis Process. 2016. Available online: https://www.andeal.org/evidence-analysis-manual (accessed on 8 January 2021).
- Kargin, D.; Tomaino, L.; Serra-Majem, L. Experimental Outcomes of the Mediterranean Diet: Lessons Learned from the Predimed Randomized Controlled Trial. Nutrients 2019, 11, 2991. [Google Scholar] [CrossRef] [Green Version]
- Bondia-Pons, I.; Schroder, H.; Covas, M.I.; Castellote, A.I.; Kaikkonen, J.; Poulsen, H.E.; Gaddi, A.V.; Machowetz, A.; Kiesewetter, H.; López-Sabater, M.C. Moderate consumption of olive oil by healthy European men reduces systolic blood pressure in non-Mediterranean participants. J. Nutr. 2007, 137, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Campos, V.P.; Portal, V.L.; Markoski, M.M.; Quadros, A.S.; Bersch-Ferreira, C.; Garavaglia, J.; Marcadenti, A. Effects of a healthy diet enriched or not with pecan nuts or extra-virgin olive oil on the lipid profile of patients with stable coronary artery disease: A randomised clinical trial. J. Hum. Nutr. Diet 2020, 33, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Castaner, O.; Covas, M.I.; Khymenets, O.; Nyyssonen, K.; Konstantinidou, V.; Zunft, H.-F.; de la Torre, R.; Muñoz-Aguayo, D.; Vila, J.; Fitó, M. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am. J. Clin. Nutr. 2012, 95, 1238–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covas, M.I.; Nyyssonen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, K.-J.F.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Baumler, H.; et al. The effect of polyphenols in olive oil on heart disease risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Domenech, M.; Roman, P.; Lapetra, J.; de la Corte, F.J.G.; Sala-Vila, A.; de la Torre, R.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Lamuela-Raventós, R.-M.; et al. Mediterranean diet reduces 24-hour ambulatory blood pressure, blood glucose, and lipids: One-year randomized, clinical trial. Hypertension 2014, 64, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, J.L.; Portal, V.L.; Markoski, M.M.; de Quadros, A.S.; Bersch-Ferreira, A.; Marcadenti, A. Effect of pecan nuts and extra-virgin olive oil on glycemic profile and nontraditional anthropometric indexes in patients with coronary artery disease: A randomized clinical trial. Eur. J. Clin. Nutr. 2022, 76, 827–834. [Google Scholar] [CrossRef]
- Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Salas-Salvadó, J.; Fitó, M.; Chiva-Blanch, G.; Fiol, M.; Gómez-Gracia, E.; Arós, F.; Lapetra, J.; et al. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: A prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 2019, 7, e6–e17. [Google Scholar] [CrossRef]
- Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Salas-Salvado, J.; Ruiz-Gutierrez, V.; Covas, M.I.; Fiol, M.; Gomez-Gracia, E.; Lopez-Sabater, M.C.; Vinyoles, E.; et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef]
- Ferrara, L.A.; Raimondi, A.S.; d’Episcopo, L.; Guida, L.; Russo, A.D.; Marotta, T. Olive oil and reduced need for antihypertensive medications. Arch. Intern. Med. 2000, 160, 837–842. [Google Scholar] [CrossRef] [Green Version]
- Fito, M.; Cladellas, M.; de la Torre, R.; Marti, J.; Alcantara, M.; Pujadas-Bastardes, M.; Marrugat, J.; Bruguera, J.; Lopez-Sabater, M.C.; Vila, J.; et al. Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: A randomized, crossover, controlled, clinical trial. Atherosclerosis 2005, 181, 149–158. [Google Scholar] [CrossRef]
- Flynn, M.M.; Reinert, S.E. Comparing an olive oil-enriched diet to a standard lower-fat diet for weight loss in breast cancer survivors: A pilot study. J. Womens Health 2010, 19, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Flynn, M.M.; Cunningham, J.; Renzulli, J.; Mega, A. Including extra virgin olive oil may more improve glycemic control despite similar weight loss compared to the diet recommended by the Prostate Cancer Foundation: A randomized, pilot study. J. Cancer Ther. 2017, 8, 880–890. [Google Scholar] [CrossRef] [Green Version]
- Galvao Candido, F.; Xavier Valente, F.; da Silva, L.E.; Coelho, O.G.L.; Peluzio, M.D.C.G.; Alfenas, R.D.C.G. Consumption of extra virgin olive oil improves body composition and blood pressure in women with excess body fat: A randomized, double-blinded, placebo-controlled clinical trial. Eur. J. Nutr. 2018, 57, 2445–2455. [Google Scholar] [CrossRef]
- Hernaez, A.; Castaner, O.; Goday, A.; Ros, E.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Arós, F.; Serra-Majem, L.; et al. The Mediterranean Diet decreases LDL atherogenicity in high cardiovascular risk individuals: A randomized controlled trial. Mol. Nutr. Food Res. 2017, 61, 1601015. [Google Scholar] [CrossRef]
- Hernaez, A.; Remaley, A.T.; Farras, M.; Fernández-Castillejo, S.; Subirana, I.; Schröder, H.; Fernández-Mampel, M.; Muñoz-Aguayo, D.; Sampson, M.; Solà, R.; et al. Olive Oil Polyphenols Decrease LDL Concentrations and LDL Atherogenicity in Men in a Randomized Controlled Trial. J. Nutr. 2015, 145, 1692–1697. [Google Scholar] [CrossRef] [Green Version]
- Khandouzi, N.; Zahedmehr, A.; Nasrollahzadeh, J. Effect of polyphenol-rich extra-virgin olive oil on lipid profile and inflammatory biomarkers in patients undergoing coronary angiography: A randomised, controlled, clinical trial. Int. J. Food Sci. Nutr. 2021, 72, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Khaw, K.T.; Sharp, S.J.; Finikarides, L.; Afzal, I.; Lentjes, M.; Luben, R.; Forouhi, N.G. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. BMJ Open 2018, 8, e020167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontogianni, M.D.; Vlassopoulos, A.; Gatzieva, A.; Farmaki, A.-E.; Katsiougiannis, S.; Panagiotakos, D.B.; Kalogeropoulos, N.; Skopouli, F.N. Flaxseed oil does not affect inflammatory markers and lipid profile compared to olive oil, in young, healthy, normal weight adults. Metabolism 2013, 62, 686–693. [Google Scholar] [CrossRef]
- Kozic Dokmanovic, S.; Kolovrat, K.; Laskaj, R.; Jukić, V.; Vrkić, N. Effect of Extra Virgin Olive Oil on Biomarkers of Inflammation in HIV-Infected Patients: A Randomized, Crossover, Controlled Clinical Trial. Med. Sci. Monit. 2015, 21, 2406–2413. [Google Scholar]
- Kruse, M.; von Loeffelholz, C.; Hoffmann, D.; Pohlmann, A.; Seltmann, A.-C.; Osterhoff, M.; Hornemann, S.; Pivovarova, O.; Rohn, S.; Jahreis, G.; et al. Dietary rapeseed/canola-oil supplementation reduces serum lipids and liver enzymes and alters postprandial inflammatory responses in adipose tissue compared to olive-oil supplementation in obese men. Mol. Nutr. Food Res. 2015, 59, 507–519. [Google Scholar] [CrossRef]
- Madigan, C.; Ryan, M.; Owens, D.; Collins, P.; Tomkin, G.H. Dietary unsaturated fatty acids in type 2 diabetes: Higher levels of postprandial lipoprotein on a linoleic acid-rich sunflower oil diet compared with an oleic acid-rich olive oil diet. Diabetes Care 2000, 23, 1472–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, K.C.; Lawless, A.L.; Kelley, K.M.; Kaden, V.N.; Geiger, C.J.; Dicklin, M.R. Corn oil improves the plasma lipoprotein lipid profile compared with extra-virgin olive oil consumption in men and women with elevated cholesterol: Results from a randomized controlled feeding trial. J. Clin. Lipidol. 2015, 9, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Marrugat, J.; Covas, M.I.; Fito, M.; Schröder, H.; Miró-Casas, E.; Gimeno, E.; López-Sabater, M.C.; de la Torre, R.; Farré, M. Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation—A randomized controlled trial. Eur. J. Nutr. 2004, 43, 140–147. [Google Scholar] [CrossRef]
- Martin-Pelaez, S.; Castaner, O.; Konstantinidou, V.; Subirana, I.; Muñoz-Aguayo, D.; Blanchart, G.; Gaixas, S.; De La Torre, R.; Farré, M.; Sáez, G.T.; et al. Effect of olive oil phenolic compounds on the expression of blood pressure-related genes in healthy individuals. Eur. J. Nutr. 2017, 56, 663–670. [Google Scholar] [CrossRef]
- Moreno-Luna, R.; Munoz-Hernandez, R.; Miranda, M.L.; Costa, A.F.; Jimenez-Jimenez, L.; Vallejo-Vaz, A.J.; Muriana, F.J.G.; Villar, J.; Stiefel, P. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am. J. Hypertens. 2012, 25, 1299–1304. [Google Scholar] [CrossRef] [Green Version]
- Paniagua, J.A.; de la Sacristana, A.G.; Sanchez, E.; Romero, I.; Vidal-Puig, A.; Berral, F.J.; Escribano, A.; Moyano, M.J.; Peréz-Martinez, P.; López-Miranda, J.; et al. A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. J. Am. Coll. Nutr. 2007, 26, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Perona, J.S.; Canizares, J.; Montero, E.; Sánchez-Domínguez, J.M.; Catala, A.; Ruiz-Gutierrez, V. Virgin olive oil reduces blood pressure in hypertensive elderly subjects. Clin. Nutr. 2004, 23, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- Rozati, M.; Barnett, J.; Wu, D.; Handelman, G.; Saltzman, E.; Wilson, T.; Li, L.; Wang, J.; Marcos, A.; Ordovás, J.M.; et al. Cardio-metabolic and immunological impacts of extra virgin olive oil consumption in overweight and obese older adults: A randomized controlled trial. Nutr. Metab. 2015, 12, 28. [Google Scholar] [CrossRef] [Green Version]
- Sarapis, K.; Thomas, C.J.; Hoskin, J.; George, E.S.; Marx, W.; Mayr, H.L.; Kennedy, G.; Pipingas, A.; Willcox, J.C.; Prendergast, L.A.; et al. The Effect of High Polyphenol Extra Virgin Olive Oil on Blood Pressure and Arterial Stiffness in Healthy Australian Adults: A Randomized, Controlled, Cross-Over Study. Nutrients 2020, 12, 2272. [Google Scholar] [CrossRef]
- Sarapis, K.; George, E.S.; Marx, W.; Mayr, H.L.; Willcox, J.; Powell, K.L.; Folasire, O.S.; Lohning, A.E.; Prendergast, L.A.; Itsiopoulos, C.; et al. Extra-virgin olive oil improves HDL lipid fraction but not HDL-mediated cholesterol efflux capacity: A double-blind, randomized, controlled, cross-over study (OLIVAUS). Br. J. Nutr. 2022. [Google Scholar] [CrossRef] [PubMed]
- Sola, R.; Fito, M.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; De La Torre, R.; Muñoz, M.A.; López-Sabater, M.D.C.; Martínez-González, M.-A.; Arós, F.; et al. Effect of a traditional Mediterranean diet on apolipoproteins B, A-I, and their ratio: A randomized, controlled trial. Atherosclerosis 2011, 218, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.; Hu, F.B.; Estruch, R.; Buil-Cosiales, P.; Corella, D.; Salas-Salvadó, J.; Covas, M.I.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: Results from a randomized controlled trial. BMC Med. 2013, 11, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, K.C.; Lawless, A.L.; Kelley, K.M.; Kaden, V.N.; Geiger, C.J.; Palacios, O.M.; Dicklin, M.R. Corn oil intake favorably impacts lipoprotein cholesterol, apolipoprotein and lipoprotein particle levels compared with extra-virgin olive oil. Eur. J. Clin. Nutr. 2017, 71, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Salas-Salvadó, J.; Fitó, M.; Chiva-Blanch, G.; Fiol, M.; Gómez-Gracia, E.; Arós, F.; Lapetra, J.; et al. Retracted: Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: A prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 2016, 4, 666–676. [Google Scholar] [CrossRef]
- Barcelo, F.; Perona, J.S.; Prades, J.; Funari, S.S.; Gomez-Gracia, E.; Conde, M.; Estruch, R.; Ruiz-Gutierrez, V. Mediterranean-style diet effect on the structural properties of the erythrocyte cell membrane of hypertensive patients: The Prevencion con Dieta Mediterranea Study. Hypertension 2009, 54, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Storniolo, C.E.; Casillas, R.; Bullo, M.; Castañer, O.; Ros, E.; Sáez, G.T.; Toledo, E.; Estruch, R.; Ruiz-Gutiérrez, V.; Fitó, M.; et al. A Mediterranean diet supplemented with extra virgin olive oil or nuts improves endothelial markers involved in blood pressure control in hypertensive women. Eur. J. Nutr. 2017, 56, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.; McInerney, D.; Owens, D.; Collins, P.; Johnson, A.; Tomkin, G. Diabetes and the Mediterranean diet: A beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. QJM 2000, 93, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Rigacci, S.; Stefani, M. Nutraceutical Properties of Olive Oil Polyphenols. An Itinerary from Cultured Cells through Animal Models to Humans. Int. J. Mol. Sci. 2016, 17, 843. [Google Scholar] [CrossRef] [Green Version]
- Melguizo Rodriguez, L.; Illescas-Montes, R.; Costela-Ruiz, V.J.; García-Martínez, O. Stimulation of brown adipose tissue by polyphenols in extra virgin olive oil. Crit. Rev. Food Sci. Nutr. 2021, 61, 3481–3488. [Google Scholar] [CrossRef]
- Claro-Cala, C.M.; Jimenez-Altayo, F.; Zagmutt, S.; Rodriguez-Rodriguez, R. Molecular Mechanisms Underlying the Effects of Olive Oil Triterpenic Acids in Obesity and Related Diseases. Nutrients 2022, 14, 1606. [Google Scholar] [CrossRef]
- FDA. FDA Response to Petition for a Qualified Health Claim for Oleic Acid in Edible Oils and Reduced Risk of Coronary Heart Disease. 2017. Available online: https://www.fda.gov/media/118199/download (accessed on 26 February 2021).
- Tome-Carneiro, J.; Crespo, M.C.; Lopez de Las Hazas, M.C.; Visioli, F.; Davalos, A. Olive oil consumption and its repercussions on lipid metabolism. Nutr. Rev. 2020, 78, 952–968. [Google Scholar] [CrossRef] [PubMed]
- Agbiolab. Polyphenols and Antioxidants in Olive Oil; Agbiolab: Durham, CA, USA, 2014. [Google Scholar]
- California Department of Food & Agriculture. 2020–2021 Grade and Labeling Standards for Olive Oil, Refined-Olive Oil and Olive-Pomace Oil; California Department of Food & Agriculture: Sacramento, CA, USA, 2020.
- Miller, P.; Ravetti, L. Australian Standards Olive Oil and Olive-Pomace Oils; Australian Olive Association: Melbourne, Australia, 2011. [Google Scholar]
- Guillaume, C.; Gertz, C.; Ravetti, L. Pyropheophytin a and 1, 2-diacyl-glycerols over time under different storage conditions in natural olive oils. J. Am. Oil Chem. Soc. 2014, 91, 697–709. [Google Scholar] [CrossRef]
- Brown, M.J.; Ferruzzi, M.G.; Nguyen, M.L.; Cooper, D.; Eldridge, A.L.; Schwartz, S.J.; White, W.S. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 2004, 80, 396–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, M.; Reinert, S.; Schiff, A.R. A Six-week Cooking Program of Plant-based Recipes Improves Food Security, Body Weight, and Food Purchases for Food Pantry Clients. J. Hunger. Environ. Nutr. 2013, 1, 73–84. [Google Scholar] [CrossRef]
- Ramirez-Anaya Jdel, P.; Samaniego-Sanchez, C.; Castaneda-Saucedo, M.C.; Villalón-Mir, M.; De La Serrana, H.L.-G. Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chem. 2015, 188, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Jabbarzadeh-Ganjeh, B.; Jayedi, A.; Shab-Bidar, S. The effects of olive oil consumption on blood lipids: A systematic review and dose-response meta-analysis of randomised controlled trials. Br. J. Nutr. 2022. [Google Scholar] [CrossRef]
Author | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Quality Rating |
---|---|---|---|---|---|---|---|---|---|---|---|
Bondia-Pons et al. [39] | + | + | + | + | − | + | + | + | + | + | Positive |
Campos et al. [40] | + | + | + | + | + | + | + | + | + | + | Positive |
Castaner et al. [41] | + | + | + | + | − | + | + | + | + | + | Positive |
Covas et al. [42] | + | + | + | + | + | + | + | + | + | + | Positive |
Domenech et al. [43] | + | + | + | + | − | + | + | + | + | + | Positive |
Dos Santos et al. [44] | + | + | + | + | + | + | + | + | + | + | Positive |
Estruch et al. (2019) [45] | + | + | + | + | + | + | + | + | + | + | Positive |
Estruch et al. (2006) [46] | + | + | + | + | + | + | + | + | + | + | Positive |
Ferrara et al. [47] | + | + | + | + | + | + | + | + | − | + | Positive |
Fito et al. [48] | + | + | + | + | + | + | + | + | + | + | Positive |
Flynn et al. (2010) [49] | + | + | + | + | − | + | + | + | + | + | Positive |
Flynn et al. (2017) [50] | + | + | + | + | − | + | + | + | + | + | Positive |
Galvao Candido et al. [51] | + | + | + | + | + | + | + | + | + | + | Positive |
Hernaez et al. (2017) [52] | + | + | + | + | − | + | + | + | + | + | Positive |
Hernaez et al. (2014) [35] | + | + | + | + | − | + | + | + | + | + | Positive |
Hernaez et al. (2015) [53] | + | + | + | + | − | + | + | + | + | + | Positive |
Khandouzi et al. [54] | + | + | + | + | − | + | + | + | + | + | Positive |
Khaw et al. [55] | + | + | + | + | − | + | + | + | + | + | Positive |
Kontogianni et al. [56] | + | + | + | + | + | + | + | + | + | + | Positive |
Kozic et al. [57] | + | + | + | + | + | + | + | + | + | + | Positive |
Kruse et al. [58] | + | + | + | + | − | + | + | + | + | + | Positive |
Madigan et al. [59] | + | + | + | + | − | + | + | + | − | + | Positive |
Maki et al. [60] | + | + | + | + | + | + | + | + | + | − | Positive |
Marrugat et al. [61] | + | + | + | + | + | + | + | + | + | + | Positive |
Martin-Pelaez et al. [62] | + | + | + | + | + | + | + | + | + | + | Positive |
Moreno-Luna et al. [63] | + | + | + | + | + | + | + | + | + | + | Positive |
Paniagua et al. [64] | + | + | + | + | − | + | + | + | + | + | Positive |
Perona et al. [65] | + | + | + | + | − | + | + | + | − | + | Positive |
Rozati et al. [66] | + | + | + | + | + | + | + | + | + | + | Positive |
Sarapis et al. (2020) [67] | + | + | + | + | + | + | + | + | + | + | Positive |
Sarapis et al. (2022) [68] | + | + | + | + | + | + | + | + | + | + | Positive |
Sola et al. [69] | + | + | + | + | − | + | + | + | + | + | Positive |
Toledo et al. [70] | + | + | + | + | − | + | + | + | + | + | Positive |
Weinbrenner et al. [33] | + | + | + | + | + | + | + | + | + | + | Positive |
First Author, Journal, Year, Country | Population | Intervention/Design | Outcomes |
---|---|---|---|
Other Dietary Fats | |||
Ferrara, L.A. Arch Inter Med 2000 [47] Italy | n = 23; m/f a hypertensive 25–70 yrs. BMI b 26.2 ± 2 kg/m2 BP c < 165/104 mmHg | EVOO d vs. sunflower oil (SO) 40 g/day m; 30 g/day Crossover 24 wks. | SBP e/DBP f post-intervention: SBP: EVOO127 + 14 mmHg vs. SO 135 + 13 mmHg; p = 0.05 DBP: EVOO 84 + 8 mmHg vs. SO 90 + 8 mmHg; p = 0.01 8 on EVOO ceased BP medications |
Perona, J.S. Clin Nutr 2004 [65] Spain | N = 62; m/f 31 nl BP; 31 HTN g 84 ± 7.4 yrs. BMI 28.8 ± 5.2 kg/m2 | VOO h (232 mg/kg) vs. sunflower (SO) 60 g/day Crossover 4 wks. | SBP/DBP post-intervention: SBP: HTN: EVOO: 136 ± 10 mmHg vs. SO 150 ± 8 mmHG; p < 0.01 nl BP SBP: NS difference (values NA) DBP: NS difference HTN or nl (values NA) |
Rozati, M. Nutr Metab 2015 [66] USA | N= 41; m/f healthy 72 ± 1 yrs. BMI 29.1 ± 1 BP: control: SBP 126 ± 2 mmHg; DBP 76 ± 2 mmHg EVOO: SBP 128 ± 3 mmHg DBP 76 ± 2 mmHg | EVOO or combo corn oil (CO), soybean oils (SB), butter (control) 40 g/day Single blind 12 wks. | SBP/DBP—comparing change from baseline values: SBP: EVOO base 128 + 3.7 mmHg to FU 122 + 2 mmHg vs. control base 126.2 ± 2 mmHg to FU 126.2 ± 2 mmHg; p = 0.04 DBP: EVOO base 76 ± 2 mmHg to FU 73 ± 1 mmHg vs. Control base 76 + 2 mmHg to FU 73 ± 2 mmHg; p = 0.99 |
Maki, K.C. J Clin Lipidol 2015 [60] USA | N = 54 m/f Healthy 53.8 + 1.3 yrs. BMI: 28.2 + 0.5 kg/m2 SBP: 119.5 + 1.6 mmHg DBP: 75.3 + 2.0 mmHg | EVOO or corn oil (CO) 4 tbs/day (35% total fat) Crossover Double blind 21 days | SBP/DBP post-intervention: SBP: EVOO −1.9 + 1 mmHg vs. CO −1.2 + 1 mmHg; p = 0.44 DBP: EVOO −1.5 + 0.8 mmHg vs. CO +0.1 + 0.8 mmHg; p = 0.04 |
Galvao Candidio, F.G. Eur J Nutr 2018 [51] Brazil | N = 41; f normotensive EVOO: 26.8 ± 5.0 yrs BMI 30.5 ± 0.60 kg/m2 SBP: 115 ± 2.4 mmHg DBP: 74.5 ± 1.9 mmHg Control: 27.2 ± 6.1 yrs BMI 29.7 ± 0.6 kg/m2 SBP: 109 ± 2.1 mmHg DBP: 67.5 ± 1.5 mmHg | EVOO vs. soybean (control) 25 mL/day Double blind 9 wks. | SBP/DBP post-intervention: SBP: EVOO −3.9 ± 1.9 mmHg vs. control −3.6 ± 1.5 mmHg; p = 0.918 DBP: EVOO −5.1 + 1.6 mmHg vs. control 0.3 + 1.2 mmHg; p = 0.01 |
Khaw, K.T. BMJ Open 2018 [55] UK | N = 91 m/f Healthy EVOO (n = 32): 59.1 ± 6.4 yrs. BMI: 25.0 ± 4.5 kg/m2 SBP: 133.1 ± 16.5 mmHg DBP: 78.1 ± 6.7 mmHg Coconut oil (EVco) (n = 29): 59.1 ± 6.1 yrs. BMI: 25.5 ± 4.5 kg/m2 SBP: 131.4 ± 18.8 mmHg DBP 79.8 ± 9.3 mmHg Butter (n = 33) 61.5 ± 5.8 yrs. BMI 24.8 ± 3.5 kg/m2 SBP: 136.5 ± 18.8 mmHg DBP: 81.0 ± 12.0 mmHg | EVOO vs. coconut oil vs. butter 50 g/day 4 wks. | Mean change from baseline by group: SBP: EVOO −3.7 ± 8.2 mmHg vs. scoconut oil 0.18 ± 11.5 mmHg vs. butter −3.8 ± 11.1 mmHg; p = 0.29 DBP: EVOO −0.45 ± 8.5 mmHg vs. coconut oil −2.0 ± 5.7 mmHg vs. butter −1.3 ± 6.2; p = 0.81 |
Low-fat diet | |||
Estruch, R. Ann Intern Med 2006 [46] Spain | PREDIMED N = 722; m/f Type 2 DM or ≥3 CHD risk factors EVOO (n = 257) 68.6 ± 6.9 yrs BMI: 29.7 ± 4.1 kg/m2 BP: NA LF i (n = 257) 69.5 ± 6.1 yrs BMI: 30.2 ± 4.3 kg/m2 BP: NA | EVOO vs. nuts vs. (control) LF EVOO = 50 mL/day 3 months | Change in EVOO vs. change LF: SBP: −5.9 mmHg; p < 0.001. DBP −1.6 mmHg; p = 0.048 Changes greater for those with HTN |
Toledo, E. BMC Med 2013 [70] Spain | PREDIMED N = 7447 m/f Type 2 DM or >3 CHD risk factors EVOO (n = 2441) 66.9 + 6.2 yrs. BMI 29.9 + 3.7 kg/m2 SBP 148 + 19 mmHg DBP 83 + 10 mmHg LF (n = 2350) 67.3 + 6.3 yrs BMI 30.2 + 4.0 kg/m2 SBP 149 + 19 mmHg DBP 82 + 10 mmHg | EVOO vs. nuts vs. (control) LF EVOO = 4 tbs/day 4 yrs. | EVOO vs. LF: SBP: +0.42 mmHg; p = 0.35 DBP: −1.41 mmHg; p < 0.001 |
Domenech, M. Hypertension 2014 [43] Spain | PREDIMED N = 235 m/f Type 2 DM or ≥3 CHD risk factors EVOO (n = 78) 66.2 ± 5.8 yrs; BMI: 29.5 ± 3.9 kg/m2 SBP 146.2 ± 21.1 mmHg DBP 80.4 ± 10.7 mmHg LF (n = 75) 66.2 ± 6.2 yrs BMI 30.4 ± 3.5 kg/m2 SBP 143.8 ± 18.8 mmHg DBP 83.0 ± 9.5 mmHg | EVOO vs. nuts vs. LF 1 year | EVOO vs. LF: SBP: EVOO = −2.3 mmHg; nuts = −2.6 mmHg; LF = +1.7 mmHg; p < 0.001 DBP: EVOO = −1.2 mmHg; nuts = −1.2 mmHg; LF = +0.7 mmHg; p = 0.017 |
Dos Santos, J.L. Eur J Clin Nutr 2022 [44] Brazil | N = 204 40–80 yrs. Control = 67 Nuts = 68 Olive oil = 69 Stable CAD Mild HTN; NS between groups, baseline | Control diet = 25% fat Nuts, pecans = 30 g/day Olive oil, total phenol = 172 mg/kg, 30 mL/day 12 weeks of study | Comparison between the groups: NS difference |
Total phenol | |||
Fito, M. Atherosclerosis 2005 [48] Spain | n = 40; m Stable CHD Refined → EVOO 69.8 ± 8.4 yrs BMI 28.0 ± 3.0 kg/m2 SBP 136 ± 10.9 mmHg DBP 78 ± 8.2 mmHg EVOO → refined 66.0 ± 8.9 yrs BMI 27.0 ± 3/1 kg/m2 SBP 136 ± 12.6 mmHg DBP 78.5 ± 12.0 mmHg | 14.7 (refined) vs. 161 mg/kg 50 mL/day Crossover 3 wks. | Comparison by phenol content: SBP: Refined: 135.2 ± 6.6 mmHg vs. EVOO 132.6 ± 5.6 mmHg; p = 0.001 DBP: Refined: 78.4 ± 6.0 mmHg vs. EVOO 79.6 ± 5.2 mmHg; p = 0.06 |
Bondia-Pons, I. J Nutr 2007 [39] Spain | N = 160; m 5 EU j cities; North, Central, South (Mediterranean) healthy 33.3 + 1.1 yrs. BMI 23.8 + 2.5 kg/m2 SBP North 126.7 ± 2.6 mmHg Central 124.2 ± 2.4 mmHg South 122.0 ± 2.4 mmHg DBP North 80.6 ± 3.3 mmHg Central 78.6 ± 3.2 mmHg South 74.0 ± 3.1 mmHg | 2.7 vs. 164 vs. 366 mg/kg phenols. 25 mL/d Crossover Single blind 3 wks. | Baseline to post-intervention by location: SBP: North: base 126.7 ± 2.6 mmHg vs. FU 122.5 ± 2.4 mmHg; p < 0.05 Central: base 124.2 ± 2.4 mmHg vs. FU 119.8 ± 2.5 mmHg; p < 0.05 South: base 122.0 ± 2.4 mmHg vs. FU 119.6 ± 2.3 mmHg; NS DBP North: base 80.6 ± 3.3 mmHg vs. FU 78.4 ± 3.1 mmHg; p < 0.05 Central: base 78.6 ± 3.2 mmHg vs. 75.7 ± 3 mmHg; p < 0.05 South: base 74.0 ± 3.1 mmHg vs. FU 72.6 ± 2.9 mmHg; NS |
Castaner, O. Am J Clin Nutr 2012 [41] Spain | n = 18; m Healthy 38.2 + 11.5 yrs. BMI 24.7 + 2.9 kg/m2 SBP 129 ± 14 mmHg DBP 47 ± 0 mmHg | 2.7 vs. 366 mg/kg 25 mL/day Crossover 3 wks. | SBP/DBP change by phenol content: SBP: 2.7 mg/kg 0.88 ± 1.9 mmHg vs. 366 mg/kg −1.6 ± 2.3 mmHg; p = 0.361 DBP: 2.7 mg/kg; +2.78 ± 1.7 mmHg vs. 366 mg/kg −1.22 ± 1.04 mmHg; p = 0.043 |
Moreno-Luna, R. Am J Hypertens 2012 [63] Spain | n = 24; f high nl BP or stage 1 HTN 26 yrs (24 to 27 yo) BMI 25.4 kg/m2 (23.5 to 27.0 kg/m2) SBP 134.4 ± 9.3 mmHg DBP84.6 ± 8.5 mmHg | Refined vs. 564 mg/kg. 60 mL/day Crossover 8 wks. | SBP/DBP change by phenol content: SBP: refined −1.6 ± 8.2 mmHg vs. 564 mg/kg −7.9 ± 9.5 mmHg; p < 0.001 DBP refined −2.2 ± 7.2 mmHg vs. 564 mg/kg −6.6 ± 6.6 mmHg; p < 0.001 |
Martin-Pelaez, S. Eur J Nutr 2017 [62] Spain | N = 18; m Healthy 36 ± 11.1 yrs BMI 24.3 ± 3.2 kg/m2 SBP 127 ± 14 mmHg DBP 78 ± 9 mmHg | 2.7 vs. 366 mg/kg 25 mL/day 65% oleuropein Crossover Double blind 3 wks. | SBP/DBP change by phenol content: SBP 2.7 mg/kg 0.44 ± 1.81 mmHg vs. 366 mg/kg −4.22 ± 1.81 mmHg; p = 0.06 DBP 2.7 mg/kg 2.94 ± 1.34 mmHg vs. 366 mg/kg −2.1 ± 1.3; p = 0.007 |
Sarapis, K. Nutrients 2020 [67] Australia | N = 50; m = 17 Healthy 38.5 ± 13.9 yrs BMI 24.7 ± 3.5 kg/m2 SBP 120.0 ± 13.4 mmHg DBP 69.9 ± 8.4 mmHg | 86 mg/kg vs. 360 mg/kg 60 mL/day Crossover Double blind 3 wks. | Changes from baseline by phenol content: SBP: 360 mg/kg: −2.5 mmHg vs. baseline; p < 0.05 86 mg/kg: NS (values NA) DBP: NS difference either phenol amt. (values NA) |
First Author, Journal, Year, Country | Population | Intervention/Design | Outcomes |
---|---|---|---|
Other dietary fats | |||
Madigan, C. Diabetes Care 2000 [59] Ireland | n = 11; m a Type 2 DM 56.0 + 2.5 yrs A1c: 5.7 + 0.86% BMI b 27.7 + 2.6 kg/m2 LDL-c: 123.6 ± 19 mg/dL | EVOO c vs. sunflower oil (SO) 30 mL/d Crossover 2 wks. | LDL-c comparison by intervention: EVOO: 116.0 + 19.3 mg/dL vs. SO: 123.7 + 19.3 mg/dL; p < 0.001 |
Perona, J.S. Clin Nutr 2004 [65] Spain | N = 62; m/f d 31 nl BP e; 31 HTN f; 84 ± 7.4 y BMI g 28.8 ± 5.2 kg/m2 LDL-c: NA | VOO h (232 mg/kg) vs. sunflower (SO) 60 g/day Crossover 4 wks. | LDL-c comparison by intervention: nl BP: VOO 99.2 ± 32.4 mg/dL vs. SO 113.0 ± 35.5 mg/dL; p < 0.01 HTN: VOO 105.7 ± 29.3 vs. SO 112.0 ± 27.9; p > 0.01 |
Kontogianni, M.D. Metab Clin Exp 2013 [56] Greece | N = 37 (m = 8) Healthy 25.6 ± 5.9 years BMI 21.9 ± 2.5 kg/m2 LDL-c: EVOO: 100 ± 23.2 mg/dL Flaxseed: 103.9 ± 27.0 mg/dL | EVOO vs. flaxseed oil 15 mL Crossover Single blind 6 wks. | LDL-c comparison by intervention: EVOO: baseline 100.0 + 23.2 mg/dL vs. FU i 100.0 + 23.2 mg/dL Flaxseed: 103.9 + 27.0 mg/dL vs. FU 96.9 + 23.2 * mg/dL p = 0.89 for comparisons between diet * p = < 0.01 for comparison of baseline LDL-c with FU |
Maki, J.C. J Clin Lipidol 2015 [60] USA | N = 54 m/f healthy 53.8 ± 1.3 yrs. BMI: 28.2 ± 0.5 kg/m2 LDL-c: 153.3 ± 3.5 mg/dL | EVOO or corn oil (CO) 4 tbs/day Crossover Double blind 21 days | LDL-c comparison by intervention: EVOO −3.5 ± 1.5 mg/dL vs. CO −10.9 ± 1.5 mg/dL; p < 0.001 |
Kruse, M. Mol Nutr Food Res 2015 [58] Germany | N = 19; m Healthy EVOO 58.0 ± 2.6 yrs BMI 29.2 ± 0.7 kg/m2 LDL-c: 128.0 ± 11.6 mg/dL Rapeseed/canola 52.0 ± 2.3 yrs BMI: 29.7 ± 0.87 kg/m2 LDL-c 130.7 ± 8.9 mg/dL | EVOO or rapeseed (canola) oil (CO) 50 g/day 4 wks. | LDL-c change from baseline: EVOO −5.0 ± 6.6 vs. CO −17.4 ± 4.2; p = 0.132 |
Khaw, K.T. BMJ Open 2018 [55] UK | N = 91; m/f Healthy Coconut oil (n = 28) 59.1 ± 6.1 yrs BMI: 25.5 ± 4.5 kg/m2 LDL-c: 135.1 ± 34.7 mg/dL Butter (n = 33) 61.5 ± 5.8 yrs BMI: 24.8 ± 3.5 yrs LDL-c: 135.1 ± 34.7 mg/dL EVOO (n = 30) 59.1 ± 6.4 yrs BMI 25.0 ± 4.5 yrs. LDL-c: 142.8 ± 38.6 mg/dL | Coconut oil vs. butter vs. EVOO 50 g/day 4 wks. | LDL change from baseline: Coconut oil −3.5 ± 18.9 mg/dL vs. EVOO −2.3 ± 15 mg/dL; p = 0.74 |
Galvao Candido, F. Eur J Nutr 2018 [51] Brazil | N = 41; f Control: 27.2 + 6.1 yrs BMI: 29.7 + 0.6 kg/m2 LDL-c: 43.6 ± 2.7 mg/dL EVOO: 26.8 ± 5.0 yrs BMI: 30.5 ± 0.6 kg/m2 LDL-c: 45.4 ± 3.6 mg/dL | EVOO vs. soybean oil (control) 25 mL/day Double-blind 9 wks. | Change in LDL (mean, SE): EVOO: −0.72 ± 1.44 mg/dL vs. control: −1.0 ± 1.0 mg/dL; p = 0.83 |
Low-fat diet | |||
Flynn, M.M. J Women’s Health 2010 [49] USA | n = 28; f Breast cancer survivors 59.2 ± 6.1 yrs BMI 27.9 ± 2.8 LDL-c: NA | EVOO 3 tbs./day vs. <30% fat (NCI j diet) Crossover 8 wks. | LDL-c comparison by intervention: EVOO 103 ± 22 mg/dL vs. NCI j 108 ± 18 mg/dL; p = 0.82 |
Sola, R. Atherosclerosis 2011 [69] Spain | PREDIMED N = 551; m/f Type 2 DM or >3 CHD l risk factors EVOO (n = 181) 69.3 ± 6.2 yrs. BMI 29.8 ± 4.3 kg/m2 LDL-c: 146.2 ± 35.6 mg/dL LF (n = 177) 69.7 ± 6.3 yrs. BMI 30.1 ± 4.3 kg/m2 LDL-c: 142.6 ± 33.9 mg/dL | EVOO 50 ml/day Nuts 30 gr/day LF k 3 months | LDL-c change in EVOO intervention to LF: EVOO vs. LF: −3.2 mg/dL (95% CI m l −8.4 to 2.0); p = 0.23 Apo B: −2.9 (−5.6 to −0.08); p = 0.44 |
Flynn, M.M. J Cancer Therapy 2017 [50] USA | N = 18; m Prostate cancer on surveillance 66.6 ± 5.9 yrs BMI 30.9 ± 2.7 kg/m2 LDL-c: NA | EVOO (625 mg/kg) 3 tbs./day vs. Prostate Cancer Foundation diet (PCF) Crossover 8 wks | LDL-c comparison between intervention: EVOO 96.5 ± 24.7 mg/dL vs. PCF 93.8 ± 30.1 mg/dL; p = 0.29 |
Hernaez, A. Mol Nutr Food Res 2017 [52] Spain | PREDIMED N = 210; m/f Type 2 DM or ≥3 CHD risk factors EVOO (n = 71) 66.5 ± 6.34 yrs BMI 30.2 ± 3.96 kg/m2 LDL-c: 129 ± 30 mg/dL LF (n = 68) 64.7 ± 6.58 yrs BMI 29.7 ± 3.98 kg/m2 LDL-c: 135.0 ± 33.0 mg/dL | EVOO 50 mL/day Nuts 30 gr/day LF 1 year | LDL-c change in LF intervention vs. EVOO: LF −10.5 mg/dL vs. EVOO; p = 0.003 LF: no change in apo B; smaller LDL EVOO: increase in size of LDL vs. LF (p = 0.021) |
Campos, V.P. J Hum Nutr Diet 2020 [40] Brazil | N = 204 Control = 67 (49% m) Nuts = 68 (55% m) Olive oil = 69 (51% m) Stable CAD n LDL < 100 mg/dL NS between groups at baseline | Control diet = 25% fat Nuts, pecan = 30 g/day Olive oil, total phenol = 172 mg/kg, 30 mL/day 12 wks. | Comparison between groups: NS difference for change in LDL-c |
Total phenol | |||
Marrugat, J. Eur J Nutr 2004 [61] Spain | n = 30; m Healthy 54.8 ± 21.4 to 61.0 ± 19.2 yrs BMI: <25.0 kg/m2 LDL-c (by diet order) VCR: 135.1 ± 34.7 mg/dL CRV: 142.8 ± 38.6 mg/dL RVC: 150.6 ± 38.6 mg/dL | Refined (R) vs. 68 mg/kg (C = common) vs. 150 mg/kg (V = virgin) 25 mL/day Crossover Double blind 3 wks. | LDL-c change from baseline by phenol content: Refined baseline 131.4 ± 30.9 vs. FU 138.9 ± 34.7 mg/dL; NS 68 mg/kg baseline 138.9 ± 30.9 vs. FU 131.3 ± 30.9 mg/dL; NS 150 mg/kg baseline 135.1 ± 34.7 vs. FU 131.3 ± 2.7 mg/dL; NS 150 mg/kg decreased LDL ox |
Weinbrenner, T. J Nutr 2004 [33] Spain | n = 12; m Healthy 21.1 yrs; (20–22 yrs) BMI 22.9 ± 1.7 kg/m2 LDL baseline each oil: 10 mg/kg: 77.9 ± 7.7 mg/dL 133 mg/kg: 76.4 ± 7.7 mg/dL 486 mg/kg: 80.1 ± 9.3 mg/dL | 10 vs. 133 vs. 486 mg/kg 25 mL/day Crossover Double-blind 4 days | LDL change from baseline by phenol content: 10 mg/kg: 77.9 ± 7.7 → 77.6 ± 7.7 mg/dL 133 mg/kg: 76.4 ± 7.7 → 74.9 ± 7.3 mg/dL 486 mg/kg: 80.3 ± 9.3 → 78.4 ± 7.3 mg/dL p> 0.05 for all comparisons |
Covas, M.I. Ann Inter Med 2006 [42] Spain | n=200; m Healthy BMI < 25.0 kg/m2 23.7–24.0 mg/m2 LDL-c (by diet sequence) 1: 118 ± 35 mg/dL 2: 120 ± 36 mg/dL 3: 113 ± 38 mg/dL | 2.7 vs. 164 vs. 336 mg/kg 25 mL/day Crossover 3 wks. | LDL-c change (mean, 95% CI) from baseline by phenol content: 2.7 mg/kg: 0.61 mg/dL (−2.3 to 3.4 mg/dL) 164 mg/kg −0.75 mg/dL (−3.8 to 1.9 mg/dL) 336 mg/kg (−3.1 to 2.3 mg/dL) p = 0.74 336 mg/kg: decrease in LDL-ox |
Castaner, O. Am J Clin Nutr 2012 [41] Spain | n = 18; m Healthy 38.2 ± 11.5 yrs BMI 24.7 ± 2.9 kg/m2 LDL 129 ± 44 mg/dL | 2.7 vs. 366 mg/kg 25 mL/day Crossover 3 wks. | LDL-c change by phenol content: 2.7 mg/kg: 6.4 ± 2.8 mg/dL vs. 366 mg/kg: −6.3 ± 4.8 mg/dL; p = 0.028 |
Hernaez, A. J Nutr 2015 [53] Spain | N = 25; m Healthy 32.3 ± 11.2 yrs BMI-NA Weight = 78.2 ± 10.9 kg LDL-c 100.4 ± 38.6 mg/d | 2.7 vs. 366 mg/kg 25 mL Crossover 3 wks. | LDL-c and composition change by phenol content: LDL-c: NS difference Total LDL particles: 2.7 mg/kg: 4.7 ± 22.0% vs. 366 mg/kg: −11.9 ± 12.0%; p = 0.013 Apo B 2.7 mg/kg +6.4 ± 16.6% vs. 366 mg/kg −5.9 ± 16.6%; p = 0.004 |
Martin-Pelaez, S. Eur J Nutr 2017 [62] Spain | N = 18; m Healthy 36 ± 11.1 yrs BMI 24.3 ± 3.2 kg/m2 LDL-c 125 ± 45 mg/dL | 2.7 vs. 366 mg/kg 25 mL/day 65% oleuropein Crossover Double blind 3 wks. | LDL-c change by phenol content: 2.7 mg/kg 4.87 ± 4.13 mg/dL vs. 366 mg/kg −6.61 ± 4.12 mg/dL; p = 0.04 |
Khandozi, N. Int J Food Sci Nutr 2021 [54] Iran | N = 40 (m = 38) >1 CVD risk factor EVOO: 53.6 ± 7.6 yrs. Refined: 56.0 + 6.3 yrs. LDL-c: EVOO: 83.3 (69.4–97.2) Refined: 61.4 (55.8–73.2) | 2–10 (refined) vs. 500–700 (EVOO) mg/kg 25 mL/day 6 wks. | LDL-c change: Refined: 4.3 (−1.2 to 9.9) vs. EVOO: −5.1 (−0.55 to −10.7); p = 0.011 |
Sarapis, K. Br J Nutr 2022 [68] Australia | N= 50; m = 34% Healthy 38.5 ± 13.9 yrs. BMI 24.7 ± 3.5 kg/m2 LDL-c: 115.8 ± 34.7 mg/dL | 86 vs. 320 mg/kg 60 mL/day Crossover Double blind 3 wks | No between-group differences |
First Author, Journal, Year, Country | Population | Intervention/Design | Outcomes |
---|---|---|---|
Other fats | |||
Madigan, C. Diabetes Care 2000 [59] Ireland | N = 11; m a Type 2 DM 56.0 ± 2.5 yrs A1c: 5.7 ± 0.86% BMI b 27.7 ± 2.6 kg/m2 HDL-c = 42.3 ± 11.6 mg/dL | EVOO c vs. sunflower oil (SO) 30 mL/d Crossover 2 wks. | HDL-c comparison by intervention: SO 42.5 ± 22.5 vs. EVOO 42.5 ± 11.6; NS |
Perona, J.S. Clin Nutr 2004 [65] Spain | N = 62; m/f d 31 nl BP e; 31 HTN 84 ± 7.4 yr BMI 28.8 ± 5.2 kg/m2 HDL-c: NA | VOO f (232 mg/kg) vs. sunflower (SO) 60 g/day Crossover 4 wks. | HDL-c comparison by intervention and by nl BP and HTN nl BP: VOO 48.1 ± 14.9 mg/dL vs. SO 57.6 ± 17.8 mg/dL; p < 0.01 HTN: VOO 51.2 ± 17.2 mg/dL vs. SO 54.0 ± 18.7; p > 0.01 |
Kontogianni, M.D. Metabolism 2013 [56] Greece | N = 37 (m = 8) Healthy 25.6 ± 5.9 years BMI 21.9 ± 2.5 kg/m2 HDL-c: EVOO: 60.2 ± 15.4 mg/dL Flaxseed: 61.8 ± 11.6 mg/dL | EVOO vs. Flaxseed oil 15 mL Crossover Single blind 6 wks. | HDL-c change from baseline: EVOO: 60.2 ± 15.4 mg/dL vs. FU 59.8 ± 397.7 * mg/dL Flaxseed 61.8 ± 11.6 mg/dL vs. FU 60.6 ± 11.6 mg/dL p = 0.69 * Value provided in Table 2 of article; possibly an error |
Maki, K.C. J Clin Lipidol 2015 [60] USA | N = 54 m/f Healthy 53.8 ± 1.3 yrs. BMI: 28.2 ± 0.5 kg/m2 HDL 47.4 ± 1.7 mg/dL | EVOO or corn oil (CO) 4 tbs/day Crossover Double blind 21 days | Compared with baseline HDL: EVOO −1.7% CO −3.4% p = 0.192 |
Kruse, M. Mol Nutr Food Res 2015 [58] Germany | N = 19; m Healthy EVOO 58.0 ± 2.6 yrs BMI 29.2 ± 0.7 kg/m2 HDL-c: 43.7 ± 3.1 mg/dL Rapeseed/canola 52.0 ± 2.3 yrs BMI: 29.7 ± 0.87 kg/m2 HDL-c 44.9 ± 2.3 mg/dL | EVOO or rapeseed (canola) oil (CO) 50 g/day 4 wks. | HDL-c change from baseline: EVOO 2.3 ± 1.9 vs. −2.7 ± 1.5 mg/dL; p = 0.61 |
Khaw, K.T. BMJ Open 2018 [55] UK | N = 91; m/f d Healthy Coconut oil (n = 28) 59.1 ± 6.1 yrs BMI: 25.5 ± 4.5 kg/m2 HDL-c: 77.2 ± 19.3 mg/dL Butter (n = 33) 61.5 ± 5.8 yrs BMI: 24.8 ± 3.5 yrs HDL-c: 73.4 ± 19.3 mg/dL EVOO (n = 30) 59.1 ± 6.4 yrs BMI: 25.0 ± 4.5 yrs. HDL-c: 69.5 ± 19.3 mg/dL | Coconut oil vs. butter vs. EVOO 50 g/day 4 wks. | HDL-c change from baseline: Coconut oil: + 10.8 mg/dL vs. butter +3.5 + 10.4 mg/dL vs. EVOO 3.9 + 5.8 mg/dL; p = 0.009 Compared with EVOO: Coconut oil +6.2 mg/dL (CI g 95%1.2 to 10.8); p < 0.05 |
Galvao Candido, F. Eur J Nutr 2018 [51] Brazil | N = 41; f Control: 27.2 ± 6.1 yrs BMI: 29.7 ± 0.6 kg/m2 HDL-c: 21.4 ± 1.0 mg/dL EVOO: 26.8 ± 5.0 yrs BMI: 30.5 ± 0.6 kg/m2 HDL-c: 23.6 ± 1.3 mg/dL | EVOO vs. soybean oil (control) 25 mL/day Double-blind 9 wks. | Change in HDL-c (mean, SE): EVOO: −0.54 ± 0.54 mg/dL vs. control: −1.3 ± 0.54 mg/dL; p = 0.38 |
Low-fat diet | |||
Paniagua, J.A. J Am Coll Nutr 2007 [64] Spain | N = 11; f = 7 Offspring ob/type 2 DM A1c 6.0 ± 0.5 62 ± 9 yrs BMI 32.6 ± 7.8 kg/m2 HDL-c: NA | SAT: 38% fat, 23% SFA, 47% CHO MFA: 38% fat, 73 g/d EVOO 47% CHO LF h: 65% CHO, 20% fat Food provided Crossover 4 wks. | HDL comparison of EVOO with LF: EVOO 47 ± 5.4 mg/dL vs. LF 42 ± 4.2 mg/dL; p < 0.05 |
Flynn, M.M. J Women’s Health 2010 [49] USA | N = 28; f Breast cancer survivors 59.2 ± 6.1 yrs BMI 27.9 ± 2.8 HDL-c- NA | EVOO 3 tbs./day vs. <30% fat (NCI diet) Crossover 8 wks. | HDL-c comparison by intervention: EVOO 68 ± 12 mg/dL vs. LF: 64 ± 13; p = 0.001 |
Sola, R.M. Atherosclerosis 2011 [69] Spain | PREDIMED N = 551; m/f Type 2 DM or ≥3 CHD risk factors EVOO (n = 181) 69.3 ± 6.2 yrs. BMI 29.8 ± 4.3 kg/m2 HDL-c 51.9 ± 12 mg/dL LF (n = 177) 69.7 ± 6.3 yrs. BMI 30.1 ± 4.3 kg/m2 HDL-c 54.4 ± 11.3 mg/dL | EVOO 4 tbs./day Nuts 30 gr/day LF 3 months | HDL comparison of EVOO with LF: EVOO vs. LF: +2.1 (95% CI 0.9 to 3.2) mg/dL; p = 0.001 |
Flynn, M.M. J Cancer Therapy 2017 [50] USA | N = 18; m Prostate cancer on surveillance 66.6 ± 5.9 yrs BMI 30.9 ± 2.7 kg/m2 HDL-c: 46.3 ± 10.9 mg/dL | EVOO (625 mg/kg total phenols) 3 tbs./day vs. Prostate Cancer Foundation diet (LF diet) Crossover 8 wks. | HDL-c comparison by intervention: EVOO: 45.6 ± 13.5 mg/dL vs. PCF 44.4 ± 13.9 mg/dL; p = 0.12 |
Campos, V.P. J Hum Nutr Diet 2020 [40] Brazil | N= 204; m/f Control = 67 (49% m) Nuts = 68 (55% m) Olive oil = 69 (51% m) Stable CAD Normal HDL NS between groups at Baseline | Control diet = 25% fat Nuts, pecans = 30 g/day Olive oil, total phenol = 172 mg/kg, 30 mL/day 12 weeks of study | Comparison between the groups: NS difference for change in HDL-c |
Refined olive oil | |||
Kozic, D.S. Med Sci Monit 2015 [57] Croatia | N= 35; HIV+ men 18–75 ys. old BMI: 23.0–27.9 kg/m2 HDL-c (by diet order): 46.3 to 50.2 mg/dL | Refined or EVOO 50 mL/day Crossover 20 days | HDL: Refined 50.2 ± 0.0 EVOO 50.2 ± 0.0 p = 0.884 |
Total phenol | |||
Marrugat, J. Eur J Nutr 2004 [61] Spain | N = 30; m Healthy 54.8 ± 21.4 to 61.0 ± 19.2 yrs BMI: <25.0 kg/m2 HDL-c: 54.1 ± 11.6 to 57.9 ± 11.6 mg/dL | Refined vs. 68 vs. 150 mg/kg 25 mL/day Crossover Double blind 3 wks. | HDL by phenol content: Refined: 61.0 ± 13.1 vs. 62.5 ± 13.1 mg/dL; NS 68 mg/kg: 60.6 ± 13.1 vs. 60.2 ± 11.9 mg/dL; NS 150 mg/kg: 60.6 ± 11.2 vs. 63.7 ± 12.4 mg/dL; p = 0.029 |
Weinbrenner, T. J Nutr 2004 [33] Spain | N = 12; m Healthy 21.1 yrs; (20–22 yrs) BMI 22.9 ± 1.7 kg/m2 HDL-c: (by diet order) 44.8 ± 3.5 to 46.3 ± 3.1 | 10 vs. 133 vs. 486 mg/dL 25 mL/day Crossover Double blind 4 days | HDL comparison by phenol content: 10 mg/kg: 46.3 + 3.1 → 48.3 + 3.5 mg/dL 113 mg/kg: 44.7 + 3.5 → 47.9 + 3.9 mg/dL * 486 mg/kg: 46.3 + 3.1 → 49.4 + 3.1 mg/dL * * p < 0.05 Linear trend: p < 0.05 |
Covas, M.I. Ann Intern Med 2006 [42] Spain | N = 200; m Healthy BMI < 25.0 kg/m2 23.7–24.0 mg/m2 HDL-c: (by diet order) 47.0 ± 11.0 to 47.9 ± 11.3 mg/dL | 2.7 vs. 164 vs. 336 mg/kg 25 mL/day Crossover 3 wks. | HDL-c compared with baseline: 2.7 mg/kg = +0.9 mg/dL 164 mg/kg = +1.2 mg/dL 336 mg/kg = +1.7 mg/dL p = 0.018 |
Castaner, O. Am J Clin Nutr 2012 [41] Spain | N = 18; m Healthy 38.2 ± 11.5 yrs BMI 24.7 ± 2.9 kg/m2 HDL 47 ± 10 mg/dL | 366 vs. 2.7 mg/kg 25 mL/day Crossover 3 wks. | HDL: NS difference |
Martin-Pelaez, S. Eur J Nutr 2017 [62] Spain | N = 18; m Healthy 36 ± 11.1 yrs BMI 24.3 ± 3.2 kg/m2 HDL 46 ± 10 mg/dL | 2.7 vs. 366 mg/kg 25 mL/day 65% oleuropein Crossover Double blind 3 wks. | HDL 2.7 mg/kg 2.59 ± 1.40 vs. 366 mg/dL 0.49 ± 1.40; p = 0.26 |
Khandozi, N. Int J Food Sci Nutr 2021 [54] Iran | N= 40; m = 38 >1 CVD risk factor EVOO: 53.6 + 7.6 yrs Refined: 56.0 + 6/3 yrs HDL-c: EVOO: 43.9 mg/dL (39.1 to 53.9) Refined: 37.2 mg/dL (33.6 to 40.7) | 2–10 (refined) vs. 500–700 (EVOO) mg/kg 25 mL/day 6 wks. | HDL-c change: Refined: 1.60 mg/dL (−0.24 to 2.45) vs. EVOO: −1.47 mg/dL (−9.96 to 1.96); p = 0.11 |
Sarapis, K. Br J Nutr 2022 [68] Australia | N = 50; 34% m 39 ± 14 yrs HDL 57.9 ± 11.6 mg/dL | 86 vs. 320 mg/kg 60 mL/day Crossover Double blind 3 wks. | No between-group differences. |
HDL2; HDL function | |||
Hernaez, A. Arterio Thromb Vasc Biol 2014 [35] Spain | N = 47; m Healthy 33.5 ± 10.9 yrs HDL-c: 52 ± 11 mg/dL | 2.7 vs. 366 mg/kg 25 mL/day Crossover 3 wks. | HDL comparisons by phenol content: HDL: NS difference total (values NA) Percent change from baseline: HDL-c efflux capacity: 2.7 mg/kg: −2.34 vs. 366 mg/kg +3.05; p = 0.042 HDL2: 366 mg/kg: +15% vs. baseline; p = 0.01 vs. 2.7 mg/kg; p = 0.05 |
First Author, Journal, Year, Country | Population | Intervention/Design | Outcomes |
---|---|---|---|
Other fats | |||
Madigan, C. Diabetes Care 2000 [59] Ireland | N = 11; m a type 2 DM 56.0 ± 2.5 yrs BMI b 27.7 ± 2.6 kgm2 FBG c NA A1c 5.7 ± 0.8% | EVOO d vs. sunflower oil (SO) 30 mL/d Crossover 2 wks. | FBG comparison by intervention: SO: 153.0 ± 14.4 mg/dL vs. EVOO: 136.8 ± 12.6 mg/dL; p < 0.01 Insulin (mU/L): SO: 2.23 ± 0.48 mU/L vs. EVOO: 1.97 ± 0.38 mU/L; p < 0.001 |
Kontogianni, M.D. Metabolism 2013 [56] Greece | N = 37 (m = 8) Healthy 25.6 ± 5.9 years BMI 21.9 ± 2.5 kg/m2 FBG < 90 mg/dL: approximately 60 mg/dL | EVOO vs. Flaxseed oil 15 mL Crossover Single blind 6 wks. | FBG: comparison by intervention: EVOO: baseline 86.2 + 7.2 mg/dL vs. FU f 85.3 + 5.4 mg/dL Flaxseed: baseline 87.1 + 7.2 mg/dL vs. FU 86.6 + 7.2 mg/dL p = 0.50 |
Kruse, M. Mol Nutr Food Res 2015 [58] Germany | N = 19 m Healthy EVOO d 58.0 + 2.6 yrs BMI 29.2 ± 0.7 kg/m2 FBG 107.5 ± 6.4 mg/dL Rapeseed/canola oil 52.0 ± 2.3 yrs BMI 29.7 ± 0.9 kg/m2 FBG 103.5 ± 3.4 mg/dL | EVOO or rapeseed (canola) oil (CO) 50 g/day 4 wks. | Change from baseline by intervention: FBG: EVOO −15.8 ± 6.8 mg/dL vs. CO −4.8 ± 2.4 mg/dL; p = 0.153 Insulin: EVOO 0.3 ± 0.8 mU/L vs. CO −2.2 ± 0.8 mU/L; p = 0.058 HOMA-IR e: EVOO 0.3 ± 0.5 vs. CO −0.5 ± 0.2; p = 0.154 |
Galvao Candido, F. Eur J Nutr 2018 [51] Brazil | N = 41; f g Normotensive EVOO: 26.8 ± 5.0 yrs BMI: 30.5 ± 0.60 kg/m2 Control: 27.2 ± 6.1 yrs. BMI:29.7 ± 0.6 kg/m2 | EVOO vs. soybean (control) 25 mL/day Double-blind 9 wks. | Change by intervention (mean, SE) Glucose: EVOO: −0.11 + 0.39 vs. control: −0.13 ± 0.05; p = 0.81 Insulin: EVOO: −4.31 ± 5.9 vs. control: 3.82 ± 35.6; p = 0.06 HOMA-IR EVOO: −0.19 ± 0.22 vs. control: 0.08 ± 1.15: p0.054 |
Khaw, K.T. BMJ Open 2018 [55] UK | N= 91 m/f Healthy EVOO (n = 32) 59.1 ± 6.4 yr BMI: 25.0 ± 4.5 kg/m2 FBG: EVOO: 5.4 ± 0.5 mmol/L Coconut oil: 5.3 + 0.4 mmol/L Butter: 5.4 ± 0.5 mmol/L | EVOO vs. coconut oil vs. butter 50 g/day 4 wks. | Mean change from baseline by group: FBG: EVOO: −0.06 ± 0.49 vs. coconut oil: −0.05 ± 0.49 vs. butter: 0.02 ± 0.48; p = 0.68 |
Low-fat diet | |||
Estruch, R. Ann Intern Med 2006 [46] Spain | PREDIMED N = 722; m/f Type 2 DM or >3 CHD risk factors EVOO (n = 257) 68.6 ± 6.9 yrs BMI: 29.7 ± 4.1 kg/m2 FBG, insulin: NA LF (n = 257) 69.5 + 6.1 yrs BMI: 30.2 + 4.3 kg/m2 FBG, insulin: NA | EVOO vs. nuts vs. (control) LF EVOO = 4 tbs/day 3 months | Change in EVOO intervention vs. LF: FBG: −7.02 mg/dL (CI i −13.0 to −1.3); p = 0.017 Insulin: −2.4 mU/L (CI −3.9 to −0.06); p < 0.001 HOMA: −0.91 (CI −1.40 to −0.46); p < 0.001 |
Paniagua, J.A. J Am Coll Nutr 2007 [64] Spain | N = 11; f g = 7 Offspring ob/type 2 DM. A1c 6.0 ± 0.5% 62 ± 9 yrs BMI 32.6 ± 7.8 kg/m2 FBG: 98.5 ± 9.0 mg/dL Insulin: 12.6 ± 3.8 mU/L | EVOO: 38% fat, EVOO 73 g 47% CHO LF h: 65% CHO, 20% fat SAT: 38% fat, 23% SFA, 47% CHO Food provided Crossover 4 wks. | Comparison by intervention: EVOO 90.4 ± 2.5 mg/dL* vs. LF 90.0 ± 2.3 mg/dL * vs. SAT 99.0 ± 18.0 mg/dL; p < 0.05 Insulin (mU/L): EVOO 8.7 ± 1.8 mU/L vs. LF 10.8 ± 1.8 mU/L vs. SAT 9.2 ± 1.4 mU/L; p = 0.30 HOMA-IR: EVOO 2.3 ± 0.3 * vs. LF 2.5 ± 0.4 vs. SAT 2.7 ± 0.4; p < 0.05 * EVOO vs. LF |
Flynn, M.M. J Women’s Health 2010 [49] USA | N = 28; f Breast cancer survivors 59.2 ± 6.1 yrs BMI 27.9 ± 2.8 kg/m2 FBG: NA | EVOO vs. <30% fat (NCI j diet) 3 tbs./day EVOO Crossover 8 wks. | Comparison by intervention: FBG: EVOO 91.0 ± 7.7 mg/dL vs. NCI: 90.0 ± 7.0 mg/dL; p = 0.87 Insulin: EVOO 10.4 ± 3.8 vs. NCI 9.9 ± 3.4 uU/mL; p = 0.40 |
Domenech, M. Hypertension 2014 [43] Spain | PREDIMED N = 235 m/f Type 2 DM or ≥3 CHD risk factors EVOO (n = 78) 66.2 ± 5.8 yrs BMI: 29.5 ± 3.9 kg/m2 FBG: 123.1 mg/dL (95% CI 114.6 to 131.6) Nuts (n = 78) 67.2 ± 5.3 yrs BMI: 29.5 ± 3.9 kg/m2 FBG: 119.6 mg/dL (95% CI 111.8 to 127.4) LF (n = 75) 66.2 ± 6.2 yrs BMI 30.4 ± 3.5 kg/m2 FBG: 113.8 mg/dL (95% CI 106.2 to 121.5) | EVOO vs. nuts vs. LF EVOO = 50 mL/day 1 year | Change in FBG by intervention: EVOO: −6.13 mg/dL * (95% CI −11.62 to −0.64) vs. Nuts: −4.61 mg/dL (95% CI −9.82 to 0.60) vs. LF: 3.51 mg/dL (95% CI −0.51 to 7.54); p= 0.016 * Significantly different vs. LF |
Flynn, M.M. J Cancer Therapy 2017 [50] USA | N = 18; m Prostate cancer on surveillance 66.6 ± 5.9 yrs BMI: 30.9 ± 2.7 kg/m2 FBG: NA | EVOO (625 mg/kg) vs. Prostate Cancer Foundation (PCF) diet 3 tbs./day EVOO Crossover 8 wks. | Comparison by intervention: FBG: EVOO 99.1 ± 9.6 vs. PCF 104.9 ± 9.9 mg/dL; p = 0.01 Insulin: EVOO 11.5 ± 4.4 mU/L vs. PCF 13.7 ± 7.0 mU/L; p = 0.02 HOMA-IR: EVOO 2.9 ± 1.2 vs. 3.6 ± 2.1; p = 0.02 |
Dos Santos, J.L. Eur J Clin Nutr 2022 [44] Brazil | N = 204 Control = 67 Nuts = 68 Olive oil = 69 40–60 yrs. | Control diet = 25% fat Nuts, pecans = 30 g/day Olive oil:172 mg/kg 30 mL/day 12 weeks of study | Comparison between groups for FBG, A1c, and fasting insulin: NS difference |
Refined olive oil | |||
Kozic, D.S. Med Sci Monit 2015 [57] Croatia | N = 35; m HIV + 18–75 ys EVOO → refined Mean (CI 25–75%) BMI: 25.2 kg/m2 (23.3–27.9) FBG: 95.4 (91.8–90) Refined → EVOO Mean (CI 25–75%) BMI: 24.3 kg/m2 (23.0–26.0) FBG: 102.6 mg/dL (93.6–116) | EVOO vs. refined 50 mL/day Crossover 20 days | FBG comparison by intervention: EVOO 99 ± 1.8 mg/dL vs. refined 99 ± 1.8 mg/dL; p = 0.894 |
Total phenol | |||
Fito, M. Atherosclerosis 2005 [48] Spain | N= 40; m Stable CHD Refined → EVOO 69.8+ 8.4 yrs BMI: 28.0 + 3.0 kg/m2 FBG: 122.6 + 43.9 mg/dL EVOO → refined 66.0 + 8.9 yrs BMI: 27.0 + 3/1 kg/m2 FBG: 114.8 + 34.6 mg/dL | EVOO 161 mg/kg vs. 14.7 (refined) 50 mL/day Crossover 3 wks. | Comparison by phenol content: 161 mg/kg 119.7 ± 40.1 mg/dL vs. refined 116.3 ± 36.9 mg/dL; p = 0.171 |
Castaner, O. Am J Clin Nutr 2012 [41] Spain | N = 18; m Healthy 38.2 ± 11.5 yrs BMI 24.7 ± 2.9 kg/m2 FBG 87 ± 14 mg/dL | 366 vs. 2.7 mg/kg 25 mL/day Crossover 3 wks. | FBG comparison by phenol content: 366 mg/kg 88 ± 11 mg/dL vs. 2.7 mg/kg 87 ± 11 mg/dL; p = 0.44 |
Martin-Pelaez, S. Eur J Nutr 2017 [62] Spain | N = 18; m Healthy 36 ± 11.1 yrs BMI 24.3 ± 3.2 kg/m2 FBG 88 ± 14 mg/dL | 2.7 vs. 366 mg/kg 25 mL/day 65% oleuropein Crossover Double blind 3 wks. | FBG comparison by phenol content: 366 mg/kg: 1.00 ± 2.21 mg/dL vs. 2.7 mg/kg: 0.72 ± 2.21 mg/dL; p = 0.56 |
First Author, Journal, Year, Country | Population | Intervention/Design | Outcomes |
---|---|---|---|
Other fats | |||
Galvao, C.F. Eur J Nutr 2018 [51] Brazil | N = 41; f a Normotensive EVOO b: 26.8 ± 5.0 yrs BMI c 30.5 ± 0.60 kg/m2 Control: 27.2 ± 6.1 yrs BMI 29.7 ± 0.6 kg/m2 | EVOO d vs. soybean (control) 25 mL/day Double blind 9 wks. | Change by intervention: Body weight: EVOO −2.75 ± 0.38 kg vs. control −1.7 ± 0.47 kg; p = 0.09 Body fat (DXA e): EVOO −2.4 ± 0.3 kg vs. control −1.3 ± 0.4 kg; p = 0.037 |
Low-fat diet | |||
Flynn, M.M. J Women’s Health 2010 [49] USA | N = 28; f Breast cancer survivors 59.2 ± 6.1 yrs BMI 27.9 ± 2.8 kg/m2 | EVOO vs. <30% fat (NCI f diet) EVOO 3 tbs./day Crossover 8 wk. wt. loss 6-month FU | Percent of baseline weight lost by order of diets: EVOO first: −6.5 ± 1.6% vs. NCI first 4.6 ± 1.5%; p < 0.01 |
Flynn, M.M. J Cancer Therapy 2017 [50] USA | N = 18; m g Prostate cancer on surveillance 66.6 ± 5.9 yrs BMI 30.9 ± 2.7 kg/m2 | EVOO 625 mg/kg vs. Prostate Cancer Foundation (PCF) diet EVOO 3 tbs./day Crossover 8 wk. wt. loss 6-month FU | Percent weight loss by diet: EVOO: −2.8 ± 3.7% vs. PCF −2.5 ± 3.1%; p = 0.86 |
Estruch, R. Ann Intern Med 2019 [45] Spain | PREDIMED N= 7447; m/f EVOO (n = 2543) 67.0 ± 6.2 yrs BMI 29.9 ± 3.7 kg/m2 LF (n = 2450) 67.3 ± 6.3 yrs BMI 30.2 ± 4.0 kg/m2 | EVOO vs. nuts vs. (control) LF h EVOO = 50 mL/day 4.8 yrs. | EVOO compared with LF: Body weight (kg): −0.43; p = 0.044 Waist (cm): −0.55 cm; p = 0.048 |
Total phenol | |||
Castaner, O. Am J Clin Nutr 2012 [41] Spain | N = 18; m Healthy 38.2 ± 11.5 yrs BMI 24.7 ± 2.9 kg/m2 | 366 vs. 2.7 mg/kg 25 mL/day Crossover 3 wks. | BMI (kg/m2) comparison by phenol content: 2.7 mg/kg: 24.8 ± 2.8 kg/m2 (+0.13 ± 0.05) vs. 366 mg/kg: 24.7 ± 2.9 kg/m2 (−0.09 ± 0.08); p = 0.033 |
Martin-Pelaez, S. Eur J Nutr 2017 [62] Spain | N = 18; m Healthy 36 ± 11.1 yrs BMI 24.3 ± 3.2 kg/m2 | 2.7 vs. 366 mg/kg 25 mL/day 65% oleuropein Crossover Double blind 3 wks. | BMI changes by phenol content: 2.7 mg/kg: 0.11 ± 0.07 kg vs. 366 mg/kg: −0.06 ± 0.07 kg; p = 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flynn, M.M.; Tierney, A.; Itsiopoulos, C. Is Extra Virgin Olive Oil the Critical Ingredient Driving the Health Benefits of a Mediterranean Diet? A Narrative Review. Nutrients 2023, 15, 2916. https://doi.org/10.3390/nu15132916
Flynn MM, Tierney A, Itsiopoulos C. Is Extra Virgin Olive Oil the Critical Ingredient Driving the Health Benefits of a Mediterranean Diet? A Narrative Review. Nutrients. 2023; 15(13):2916. https://doi.org/10.3390/nu15132916
Chicago/Turabian StyleFlynn, Mary M., Audrey Tierney, and Catherine Itsiopoulos. 2023. "Is Extra Virgin Olive Oil the Critical Ingredient Driving the Health Benefits of a Mediterranean Diet? A Narrative Review" Nutrients 15, no. 13: 2916. https://doi.org/10.3390/nu15132916
APA StyleFlynn, M. M., Tierney, A., & Itsiopoulos, C. (2023). Is Extra Virgin Olive Oil the Critical Ingredient Driving the Health Benefits of a Mediterranean Diet? A Narrative Review. Nutrients, 15(13), 2916. https://doi.org/10.3390/nu15132916