Early Energy Intake and Amino Acid Profile in Preterm Newborns: A Quasi-Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Matching
2.2. Data Collection and Laboratory Sampling
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, R.K.; Singhal, A.; Vaidya, U.; Banerjee, S.; Anwar, F.; Rao, S. Optimizing Nutrition in Preterm Low Birth Weight Infants-Consensus Summary. Front. Nutr. 2017, 4, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joosten, K.; Embleton, N.; Yan, W.; Senterre, T.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; et al. ESPGHAN/ESPEN/ESPR/CSPEN Guidelines on Pediatric Parenteral Nutrition: Energy. Clin. Nutr. 2018, 37, 2309–2314. [Google Scholar] [CrossRef] [PubMed]
- Berni Canani, R.; Passariello, A.; Buccigrossi, V.; Terrin, G.; Guarino, A. The Nutritional Modulation of the Evolving Intestine. J. Clin. Gastroenterol. 2008, 42, S197–S200. [Google Scholar] [CrossRef] [PubMed]
- van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; Sainz de Pipaon, M.; ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN Guidelines on Pediatric Parenteral Nutrition: Amino Acids. Clin. Nutr. 2018, 37, 2315–2323. [Google Scholar] [CrossRef] [Green Version]
- Embleton, N.D.; Moltu, S.J.; Lapillonne, A.; Van Den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; Van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2022, 76, 248–268. [Google Scholar] [CrossRef]
- van Lingen, R.A.; van Goudoever, J.B.; Luijendijk, I.H.T.; Wattimena, J.L.D.; Sauer, P.J.J. Effects of Early Amino Acid Administration during Total Parenteral Nutrition on Protein Metabolism in Pre-Term Infants. Clin. Sci. 1992, 82, 199–203. [Google Scholar] [CrossRef]
- Te Braake, F.W.; van den Akker, C.H.P.; Wattimena, D.J.L.; Huijmans, J.G.M.; van Goudoever, J.B. Amino Acid Administration to Premature Infants Directly After Birth. J. Pediatr. 2005, 147, 457–461. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Jeroudi, M.A.; Baier, R.J.; Dhanireddy, R.; Krouskop, R.W. Aggressive Early Total Parental Nutrition in Low-Birth-Weight Infants. J. Perinatol. 2004, 24, 482–486. [Google Scholar] [CrossRef] [Green Version]
- Boscarino, G.; Conti, M.G.; Gasparini, C.; Onestà, E.; Faccioli, F.; Dito, L.; Regoli, D.; Spalice, A.; Parisi, P.; Terrin, G. Neonatal Hyperglycemia Related to Parenteral Nutrition Affects Long-Term Neurodevelopment in Preterm Newborn: A Prospective Cohort Study. Nutrients 2021, 13, 1930. [Google Scholar] [CrossRef]
- De Nardo, M.C.; Mario, C.D.; Laccetta, G.; Boscarino, G.; Terrin, G. Enteral and Parenteral Energy Intake and Neurodevelopment in Preterm Infants: A Systematic Review. Nutrition 2022, 97, 111572. [Google Scholar] [CrossRef]
- Terrin, G.; Coscia, A.; Boscarino, G.; Faccioli, F.; Di Chiara, M.; Greco, C.; Onestà, E.; Oliva, S.; Aloi, M.; Dito, L.; et al. Long-Term Effects on Growth of an Energy-Enhanced Parenteral Nutrition in Preterm Newborn: A Quasi-Experimental Study. PLoS ONE 2020, 15, e0235540. [Google Scholar] [CrossRef]
- Osborn, D.A.; Schindler, T.; Jones, L.J.; Sinn, J.K.; Bolisetty, S. Higher versus Lower Amino Acid Intake in Parenteral Nutrition for Newborn Infants. Cochrane Database Syst. Rev. 2018, 3, CD005949. [Google Scholar] [CrossRef]
- Munro, H.N. Energy and Protein Intakes as Determinants of Nitrogen Balance. Kidney Int. 1978, 14, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, S.; Schulze, K.F.; Ramakrishnan, R.; Dell, R.B.; Heird, W.C. Evaluation of a Mathematical Model for Predicting the Relationship between Protein and Energy Intakes of Low-Birth-Weight Infants and the Rate and Composition of Weight Gain. Pediatr. Res. 1994, 35, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Duffy, B.; Gunn, T.; Collinge, J.; Pencharz, P. The Effect of Varying Protein Quality and Energy Intake on the Nitrogen Metabolism of Parenterally Fed Very Low Birthweight (<1600 g) Infants. Pediatr. Res. 1981, 15, 1040–1044. [Google Scholar] [CrossRef] [Green Version]
- Stensvold, H.J.; Strommen, K.; Lang, A.M.; Abrahamsen, T.G.; Steen, E.K.; Pripp, A.H.; Ronnestad, A.E. Early Enhanced Parenteral Nutrition, Hyperglycemia, and Death Among Extremely Low-Birth-Weight Infants. JAMA Pediatr. 2015, 169, 1003. [Google Scholar] [CrossRef] [Green Version]
- Terrin, G.; Boscarino, G.; Gasparini, C.; Di Chiara, M.; Faccioli, F.; Onestà, E.; Parisi, P.; Spalice, A.; De Nardo, M.C.; Dito, L.; et al. Energy-Enhanced Parenteral Nutrition and Neurodevelopment of Preterm Newborns: A Cohort Study. Nutrition 2021, 89, 111219. [Google Scholar] [CrossRef]
- Boscarino, G.; Conti, M.G.; De Luca, F.; Di Chiara, M.; Deli, G.; Bianchi, M.; Favata, P.; Cardilli, V.; Di Nardo, G.; Parisi, P.; et al. Intravenous Lipid Emulsions Affect Respiratory Outcome in Preterm Newborn: A Case-Control Study. Nutrients 2021, 13, 1243. [Google Scholar] [CrossRef]
- Bonsante, F.; Gouyon, J.-B.; Robillard, P.-Y.; Gouyon, B.; Iacobelli, S. Early Optimal Parenteral Nutrition and Metabolic Acidosis in Very Preterm Infants. PLoS ONE 2017, 12, e0186936. [Google Scholar] [CrossRef] [Green Version]
- Bonsante, F.; Iacobelli, S.; Latorre, G.; Rigo, J.; De Felice, C.; Robillard, P.Y.; Gouyon, J.B. Initial Amino Acid Intake Influences Phosphorus and Calcium Homeostasis in Preterm Infants—It Is Time to Change the Composition of the Early Parenteral Nutrition. PLoS ONE 2013, 8, e72880. [Google Scholar] [CrossRef]
- Ferreira, C.R.; van Karnebeek, C.D.M. Inborn Errors of Metabolism. Handb. Clin. Neurol. 2019, 162, 449–481. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.G.; Angelidou, A.; Diray-Arce, J.; Smolen, K.K.; Lasky-Su, J.; De Curtis, M.; Levy, O. Immunometabolic Approaches to Prevent, Detect, and Treat Neonatal Sepsis. Pediatr. Res. 2020, 87, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.; Terrin, G.; Elce, A.; Pezzella, V.; Heinz-Erian, P.; Pedrolli, A.; Centenari, C.; Amato, F.; Tomaiuolo, R.; Calignano, A.; et al. Genotype-Dependency of Butyrate Efficacy in Children with Congenital Chloride Diarrhea. Orphanet J. Rare Dis. 2013, 8, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocerino, R.; Granata, V.; Di Costanzo, M.; Pezzella, V.; Leone, L.; Passariello, A.; Terrin, G.; Troncone, R.; Berni Canani, R. Atopy Patch Tests Are Useful to Predict Oral Tolerance in Children with Gastrointestinal Symptoms Related to Non-IgE-Mediated Cow’s Milk Allergy. Allergy 2013, 68, 246–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeem, A.; Ahmed, I.; Silveyra, P. Bronchopulmonary Dysplasia: An Update on Experimental Therapeutics. Eur. Med. J. 2019, 4, 20–29. [Google Scholar] [CrossRef]
- Terrin, G.; Di Chiara, M.; Boscarino, G.; Versacci, P.; Di Donato, V.; Giancotti, A.; Pacelli, E.; Faccioli, F.; Onestà, E.; Corso, C.; et al. Echocardiography-Guided Management of Preterms with Patent Ductus Arteriosus Influences the Outcome: A Cohort Study. Front. Pediatr. 2020, 8, 582735. [Google Scholar] [CrossRef]
- Terrin, G.; Di Chiara, M.; Boscarino, G.; Metrangolo, V.; Faccioli, F.; Onestà, E.; Giancotti, A.; Di Donato, V.; Cardilli, V.; De Curtis, M. Morbidity Associated with Patent Ductus Arteriosus in Preterm Newborns: A Retrospective Case-Control Study. Ital. J. Pediatr. 2021, 47, 9. [Google Scholar] [CrossRef]
- Terrin, G.; Scipione, A.; De Curtis, M. Update in Pathogenesis and Prospective in Treatment of Necrotizing Enterocolitis. BioMed Res. Int. 2014, 2014, 179691. [Google Scholar] [CrossRef] [Green Version]
- Terrin, G.; Boscarino, G.; Di Chiara, M.; Iacobelli, S.; Faccioli, F.; Greco, C.; Onestà, E.; Sabatini, G.; Pietravalle, A.; Oliva, S.; et al. Nutritional Intake Influences Zinc Levels in Preterm Newborns: An Observational Study. Nutrients 2020, 12, 529. [Google Scholar] [CrossRef] [Green Version]
- Boscarino, G.; Conti, M.G.; Di Chiara, M.; Bianchi, M.; Onestà, E.; Faccioli, F.; Deli, G.; Repole, P.; Oliva, S.; Cresi, F.; et al. Early Enteral Feeding Improves Tolerance of Parenteral Nutrition in Preterm Newborns. Nutrients 2021, 13, 3886. [Google Scholar] [CrossRef]
- Chace, D.H.; Millington, D.S.; Terada, N.; Kahler, S.G.; Roe, C.R.; Hofman, L.F. Rapid Diagnosis of Phenylketonuria by Quantitative Analysis for Phenylalanine and Tyrosine in Neonatal Blood Spots by Tandem Mass Spectrometry. Clin. Chem. 1993, 39, 66–71. [Google Scholar] [CrossRef]
- Blanco, C.L.; Gong, A.K.; Green, B.K.; Falck, A.; Schoolfield, J.; Liechty, E.A. Early Changes in Plasma Amino Acid Concentrations during Aggressive Nutritional Therapy in Extremely Low Birth Weight Infants. J. Pediatr. 2011, 158, 543–548. [Google Scholar] [CrossRef]
- Clark, R.H.; Chace, D.H.; Spitzer, A.R. Pediatrix Amino Acid Study Group Effects of Two Different Doses of Amino Acid Supplementation on Growth and Blood Amino Acid Levels in Premature Neonates Admitted to the Neonatal Intensive Care Unit: A Randomized, Controlled Trial. Pediatrics 2007, 120, 1286–1296. [Google Scholar] [CrossRef]
- Bulbul, A.; Okan, F.; Bulbul, L.; Nuhoglu, A. Effect of Low versus High Early Parenteral Nutrition on Plasma Amino Acid Profiles in Very Low Birth-Weight Infants. J. Matern. Fetal Neonatal Med. 2012, 25, 770–776. [Google Scholar] [CrossRef]
- Morgan, C.; Burgess, L. High Protein Intake Does Not Prevent Low Plasma Levels of Conditionally Essential Amino Acids in Very Preterm Infants Receiving Parenteral Nutrition. JPEN J. Parenter. Enter. Nutr. 2017, 41, 455–462. [Google Scholar] [CrossRef]
- Dauncey, M.; Ramsden, D.; Kapadi, A.; Macari, M.; Ingram, D. Increase in Plasma Concentrations of 3,5,3′-Triiodothyronine and Thyroxine after a Meal, and Its Dependence on Energy Intake. Horm. Metab. Res. 1983, 15, 499–502. [Google Scholar] [CrossRef]
- Kashyap, S.; Towers, H.M.; Sahni, R.; Ohira-Kist, K.; Abildskov, K.; Schulze, K.F. Effects of Quality of Energy on Substrate Oxidation in Enterally Fed, Low-Birth-Weight Infants. Am. J. Clin. Nutr. 2001, 74, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, S.; Ohira-Kist, K.; Abildskov, K.; Towers, H.M.; Sahni, R.; Ramakrishnan, R.; Schulze, K. Effects of Quality of Energy Intake on Growth and Metabolic Response of Enterally Fed Low-Birth-Weight Infants. Pediatr. Res. 2001, 50, 390–397. [Google Scholar] [CrossRef] [Green Version]
Cohort A (Energy Enhanced PN) n = 40 | Cohort B (Energy Standard PN) n = 40 | |
---|---|---|
Gestational age, weeks | 29.9 (29.2–30.7) | 29.4 (28.7–30.2) |
<29 weeks, No (%) | 10 (25.0) | 11 (27.5) |
Birth weight, g | 1262 (1163–1362) | 1321 (1211–1430) |
Extremely low birth weight, No (%) | 6 (15.0) | 6 (15.0) |
Small for gestational age at birth, No. (%) | 7 (17.5) | 5 (12.5) |
Male sex, No. (%) | 22 (55.0) | 27 (67.5) |
Cesarean section, No. (%) | 37 (92.5) | 35 (87.5) |
Antenatal corticosteroids a, No. (%) | 29 (72.5) | 30 (75.0) |
Intrauterine growth restriction, No (%) | 3 (7.5) | 3 (7.5) |
Twins, No. (%) | 7 (17.5) | 13 (32.5) |
5-min Apgar score | 8 (7–8) | 8 (7–8) |
pH at birth | 7.26 (7.23–7.29) | 7.25 (7.22–7.29) |
CRIB II score | 6 (5–7) | 6 (5–8) |
Start of EN, days of life | 2 (1–3) | 1 (1–2) |
Start of EN before to 72 h, No (%) | 34 (85.0) | 36 (90.0) |
FEF before 7 days of life, No (%) | 13 (32.5) | 13 (32.5) |
Duration of PN, days | 13 (9–17) | 12 (9–15) |
PN more than 70% 0–7 DOL, No (%) | 18 (45.0) | 23 (57.5) |
Necrotizing enterocolitis (Bell Stage ≥ 3), No (%) | 1 (2.5) | 0 (0) |
Intraventricular hemorrhage, No (%) | 1 (2.5) | 4 (10.0) |
Periventricular leukomalacia, No (%) | 1 (2.5) | 1 (2.5) |
Sepsis proven by positive culture, No (%) | 3 (7.5) | 3 (7.5) |
Retinopathy of prematurity (Stage ≥ 2), No (%) | 3 (7.5) | 5 (12.5) |
Bronchopulmonary dysplasia, No (%) | 2 (5.0) | 3 (7.5) |
Overall Morbidity b, No (%) | 10 (25.0) | 9 (22.5) |
Respiratory support, No (%) | 30 (75.0) | 31 (77.5) |
Survival, No (%) | 39 (97.5) | 39 (97.5) |
Length of hospital stay, days | 59 (48–70) | 57 (48–67) |
Cohort A (Energy Enhanced PN) n = 40 | Cohort B (Energy Standard PN) n = 40 | |
---|---|---|
Total energy intake via PN in the first week of life (kcal/kg/week) | 485.0 (416.6–553.5) * | 326.9 (260.3–393.6) |
Non-protein energy intake via PN in the first week of life (kcal/kg/week) | 418.2 (359.8–476.5) * | 275.6 (220.4–330.8) |
Protein intake via PN in the first week of life (g/kg/week) | 16.7 (14.1–19.3) | 12.8 (9.9–15.8) |
Dextrose intake via PN in the first week of life (g/kg/week) | 66.1 (57.3–74.8) * | 44.5 (35.6–53.4) |
Lipids intake via PN in the first week of life (g/kg/week) | 16.3 (13.7–18.8) * | 10.5 (8.3–12.7) |
Non-protein energy intake: Protein intake via PN in the first week of life | 25.4 (24.9–25.9) * | 22.7 (21.7–23.8) |
Energy intake via EN (HM + PF) in the first week of life (kcal/kg/week) | 178.1 (122.5–233.7) | 183.4 (129.9–236.8) |
Protein intake via EN (HM + PF) in the first week of life (g/kg/week) | 6.0 (4.1–7.9) | 6.1 (4.3–7.9) |
Dextrose intake via EN (HM + PF) in the first week of life (g/kg/week) | 18.2 (12.5–23.9) | 18.6 (13.2–24.1) |
Lipids intake via EN (HM + PF) in the first week of life (g/kg/week) | 9.1 (6.2–11.9) | 9.4 (6.7–12.2) |
Energy intake via HM in the first week of life (kcal/kg/week) | 55.0 (27.5–82.4) | 62.7 (30.1–95.3) |
Protein intake via HM in the first week of life (g/kg/week) | 1.5 (0.7–2.2) | 1.7 (0.8–2.6) |
Dextrose intake via HM in the first week of life (g/kg/week) | 5.3 (2.7–8.0) | 6.1 (2.9–9.2) |
Lipids intake via HM in the first week of life (g/kg/week) | 3.1 (1.6–4.7) | 3.6 (1.7–5.4) |
Energy intake via PF in the first week of life (kcal/kg/week) | 135.5 (835–187.5) | 130.1 (86.6–173.6) |
Protein intake via PF in the first week of life (g/kg/week) | 4.9 (3.0–6.7) | 4.7 (3.1–6.2) |
Dextrose intake via PF in the first week of life (g/kg/week) | 14.1 (8.7–19.4) | 13.5 (9.0–18.0) |
Lipids intake via PF in the first week of life (g/kg/week) | 6.7 (4.1–9.3) | 6.4 (4.3–8.6) |
Variables | B | S.E. | ß | p Value | 95 CI for OR | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Leucine, Isoleucine (T1) | Leucine, Isoleucine (T0) | 0.224 | 0.146 | 0.241 | 0.132 | −0.070 | 0.518 |
Non-protein energy intake via PN in the first week of life | −0.112 | 0.161 | −0.415 | 0.491 | −0.435 | 0.212 | |
Protein intake via PN in the first week of life | −1.539 | 4.175 | −0.248 | 0.714 | −9.948 | 6.870 | |
Energy intake via EN in the first two weeks of life | −0.028 | 0.029 | −0.282 | 0.328 | −0.086 | 0.029 | |
Duration of PN | 0.887 | 1.191 | 0.186 | 0.460 | −1.511 | 3.285 | |
Gestational age | 3.566 | 5.307 | 0.141 | 0.505 | −7.122 | 14.254 | |
Birth weight | −0.059 | 0.038 | −0.351 | 0.125 | −0.135 | 0.017 | |
Proline (T1) | Proline (T0) | 0.199 | 0.167 | 0.190 | 0.238 | −0.137 | 0.535 |
Non-protein energy intake via PN in the first week of life | −0.161 | 0.253 | −0.386 | 0.529 | −0.671 | 0.350 | |
Protein intake via PN in the first week of life | −2.532 | 6.367 | −0.264 | 0.693 | −15.355 | 10.291 | |
Energy intake via EN in the first two weeks of life | −0.083 | 0.046 | −0.536 | 0.076 | −0.176 | 0.009 | |
Duration of PN | −1.053 | 1.880 | −0.142 | 0.578 | −4.840 | 2.734 | |
Gestational age | 0.769 | 7.958 | 0.020 | 0.923 | −15.259 | 16.796 | |
Birth weight | −0.113 | 0.059 | −0.433 | 0.063 | −0.232 | 0.006 | |
Tyrosine (T1) | Tyrosine (T0) | −0.047 | 0.138 | −0.049 | 0.737 | −0.325 | 0.232 |
Non-protein energy intake via PN in the first week of life | 0.118 | 0.347 | 0.197 | 0.736 | −0.580 | 0.816 | |
Protein intake via PN in the first week of life | 0.386 | 8.981 | 0.028 | 0.966 | −17.702 | 18.475 | |
Energy intake via EN in the first two weeks of life | 0.068 | 0.061 | 0.304 | 0.274 | −0.056 | 0.192 | |
Duration of PN | 1.535 | 2.627 | 0.145 | 0.562 | −3.756 | 6.826 | |
Gestational age | 25.956 | 12.126 | 0.462 | 0.038 | 1.533 | 50.379 | |
Birth weight | −0.102 | 0.088 | −0.274 | 0.253 | −0.280 | 0.075 | |
Leucine, Isoleucine (T1) | Leucine, Isoleucine (T0) | 0.202 | 0.149 | 0.217 | 0.183 | −0.099 | 0.502 |
Non-protein energy intake via PN in the first two weeks of life | −0.097 | 0.113 | −0.851 | 0.392 | −0.324 | 0.130 | |
Protein intake via PN in the first two weeks of life | 1.457 | 2.808 | 0.552 | 0.606 | −4.199 | 7.112 | |
Energy intake via EN in the first two weeks of life | −0.013 | 0.037 | −0.129 | 0.726 | −0.087 | 0.061 | |
Duration of PN | 1.184 | 1.255 | 0.248 | 0.350 | −1.344 | 3.713 | |
Gestational age | 4.813 | 5.503 | 0.190 | 0.386 | −6.271 | 15.898 | |
Birth weight | −0.021 | 0.043 | −0.123 | 0.629 | −0.106 | 0.065 | |
Proline (T1) | Proline (T0) | 0.210 | 0.170 | 0.200 | 0.224 | −0.133 | 0.553 |
Non-protein energy intake via PN in the first two weeks of life | −0.157 | 0.177 | −0.883 | 0.380 | −0.512 | 0.199 | |
Protein intake via PN in the first two weeks of life | 1.696 | 4.304 | 0.415 | 0.695 | −6.972 | 10.364 | |
Energy intake via EN in the first two weeks of life | −0.074 | 0.058 | −0.477 | 0.209 | −0.192 | 0.043 | |
Duration of PN | −0.430 | 1.937 | −0.058 | 0.825 | −4.330 | 3.471 | |
Gestational age | 2.443 | 8.214 | 0.062 | 0.768 | −14.101 | 18.987 | |
Birth weight | −0.074 | 0.065 | −0.283 | 0.266 | −0.206 | 0.058 | |
Tyrosine (T1) | Tyrosine (T0) | −0.047 | 0.141 | −0.049 | 0.743 | −0.332 | 0.238 |
Non-protein energy intake via PN in the first two weeks of life | 0.041 | 0.241 | 0.161 | 0.866 | −0.445 | 0.527 | |
Protein intake via PN in the first two weeks of life | −0.595 | 5.986 | −0.102 | 0.921 | −12.651 | 11.461 | |
Energy intake via EN in the first two weeks of life | 0.048 | 0.076 | 0.215 | 0.531 | −0.105 | 0.201 | |
Duration of PN | 1.304 | 2.648 | 0.123 | 0.625 | −4.030 | 6.639 | |
Gestational age | 25.756 | 12.200 | 0.458 | 0.040 | 1.183 | 50.329 | |
Birth weight | −0.139 | 0.096 | −0.371 | 0.155 | −0.332 | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boscarino, G.; Carducci, C.; Conti, M.G.; Podagrosi, M.; Gigliello, A.; Di Chiara, M.; Bartolucci, M.; Brunelli, R.; Parisi, P.; Angeloni, A.; et al. Early Energy Intake and Amino Acid Profile in Preterm Newborns: A Quasi-Experimental Study. Nutrients 2023, 15, 2917. https://doi.org/10.3390/nu15132917
Boscarino G, Carducci C, Conti MG, Podagrosi M, Gigliello A, Di Chiara M, Bartolucci M, Brunelli R, Parisi P, Angeloni A, et al. Early Energy Intake and Amino Acid Profile in Preterm Newborns: A Quasi-Experimental Study. Nutrients. 2023; 15(13):2917. https://doi.org/10.3390/nu15132917
Chicago/Turabian StyleBoscarino, Giovanni, Claudia Carducci, Maria Giulia Conti, Maria Podagrosi, Annamaria Gigliello, Maria Di Chiara, Monica Bartolucci, Roberto Brunelli, Pasquale Parisi, Antonio Angeloni, and et al. 2023. "Early Energy Intake and Amino Acid Profile in Preterm Newborns: A Quasi-Experimental Study" Nutrients 15, no. 13: 2917. https://doi.org/10.3390/nu15132917
APA StyleBoscarino, G., Carducci, C., Conti, M. G., Podagrosi, M., Gigliello, A., Di Chiara, M., Bartolucci, M., Brunelli, R., Parisi, P., Angeloni, A., & Terrin, G. (2023). Early Energy Intake and Amino Acid Profile in Preterm Newborns: A Quasi-Experimental Study. Nutrients, 15(13), 2917. https://doi.org/10.3390/nu15132917