VDR, SOD-2, and CYP24A1 Gene Expression in Different Genotypes of BsmI SNP of the Vitamin D Receptor Gene in Individuals with Hypovitaminosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Study Population and Design
2.3. Genetic-Molecular Analysis
2.3.1. DNA Extraction
2.3.2. Gene Amplification
2.4. Gene Expression by qRT-PCR
Anthropometric and Physiological Assays
2.5. Biochemical Assays
2.6. Vitamin D Analysis
2.7. Statistical Analysis
2.8. Ethics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Durak, S.; Gheybi, A.; Demirkol, S.; Arıkan, S.; Zeybek, Ş.Ü.; Akyüz, F.; Yaylım, İ.; Küçükhüseyin, Ö. The effects of serum levels, and alterations in the genes of binding protein and receptor of vitamin D on gastric câncer. Mol. Biol. Rep. 2019, 46, 6413–6420. [Google Scholar] [CrossRef] [PubMed]
- Saponaro, F.; Saba, A.; Zucchi, R. An Update on Vitamin D Metabolism. Int. J. Mol. Sci. 2020, 21, 6573. [Google Scholar] [CrossRef] [PubMed]
- Oczkowicz, M.; Szymczyk, B.; Swiątkiewicz, M.; Furgał-Dzierzuk, I.; Koseniuk, A.; Wierzbicka, A.; Steg, A. Analysis of the effect of vitamin D supplementation and sex on Vdr, Cyp2r1 and Cyp27b1 gene expression in Wistar rats’ tissues. J. Steroid Biochem. Mol. Biol. 2021, 212, 105918. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.E.S.; Maeda, S.S.; Batista, M.C.; Lazaretti-Castro, M.; Vasconcellos, L.S.; Madeira, M.; Soares, L.M.; Borba, V.Z.C.; Moreira, C.A. Consensus—Reference ranges of vitamin D [25(OH)D] from the Brazilian medical societies. Brazilian Society of Clinical Pathology/Laboratory Medicine (SBPC/ML) and Brazilian Society of Endocrinology and Metabolism (SBEM). J. Bras. Patol. Med. Lab. 2017, 53, 377–381. [Google Scholar] [CrossRef]
- Zhumina, A.; Konstantin, L.; Konovalova, A.; Li, Y.A.; Ishmuratova, M.Y.; Pogossyan, G.P.; Danilenko, M. Plasma 25-Hydroxyvitamin D Levels and VDR Gene Expression in Peripheral Blood Mononuclear Cells of Leukemia Patients and Healthy Subjects in Central Kazakhstan. Nutrients 2020, 12, 1229. [Google Scholar] [CrossRef]
- Maeda, S.S.; Borba, V.Z.C.; Camargo, M.B.R.; Silva, D.M.W.; Borges, J.L.C.; Bandeira, F.; Lazaretti-Castro, M. Brazilian Society of Endocrinology and Metabology (SBEM). Recommendations of the Brazilian Society of Endocrinology and Metabology (SBEM) for the diagnosis and treatment of hypovitaminosis D. Arq. Bras. Endocrinol. Metabol. 2014, 58, 411–433. [Google Scholar] [CrossRef] [Green Version]
- Quigley, M.; Rieger, S.; Capobianco, E.; Wang, Z.; Zhao, H.; Hewison, M.; Lisse, T.S. Vitamin D Modulation of Mitochondrial Oxidative Metabolism and mTOR Enforces Stress Adaptations and Anticancer Responses. JBMR Plus 2021, 6, e10572. [Google Scholar] [CrossRef]
- Mailhot, G.; White, J.H. Vitamin D and Immunity in Infants and Children. Nutrients 2020, 12, 1233. [Google Scholar] [CrossRef]
- Usategui-Martín, R.; De Luis-Román, D.-A.; Fernández-Gómez, J.M.; Ruiz-Mambrilla, M.; Pérez-Castrillón, J.-L. Os polimorfismos do gene do receptor de vitamina D (VDR) modificam a resposta à suplementação de vitamina D: Uma revisão sistemática e meta-análise. Nutrientes 2022, 14, 360. [Google Scholar] [CrossRef]
- Schuch, N.J. Relação Entre Concentração Sérica de Vitamina D, Polimorfismos do Gene VDR e Síndrome Metabólica em Indivíduos Adultos. Ph.D. Thesis, Universidade de São Paulo, Faculdade de Saúde Pública, São Paulo, Brazil, 2011. [Google Scholar]
- Li, H.-M.; Liu, Y.; Zhang, R.-J.; Ding, J.-Y.; Shen, C.-L. Vitamin D receptor gene polymorphisms and osteoarthritis: A meta-analysis. Rheumatology 2021, 60, 538–548. [Google Scholar] [CrossRef]
- Shahbazi, S.; Alavi, S.; Majidzadeh-A, K.; GhaffarPour, M.; Soleimani, A.; Mahdian, R. BsmI but not FokI polymorphism of VDR gene is contributed in breast cancer. Med. Oncol. 2013, 30, 393. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Song, G.G. Vitamin D receptor FokI, BsmI, TaqI, ApaI, and EcoRV polymorphisms and susceptibility to melanoma: A meta-analysis. J. Buon. 2015, 20, 235–243. [Google Scholar] [PubMed]
- Issa, C.T.M.I.; Silva, A.S.; Toscano, L.T.; Medeiros, M.S.; Persuhn, D.C.; Diniz, A.d.S.; Costa, M.J.d.C.; Gonçalves, M.d.C.R. Relationship between cardiometabolic profile, vitamin D status and BsmI polymorphism of the VDR gene in non-institutionalized elderly subjects: Cardiometabolic profile, vitamin D status and BsmI polymorphism of the VDR gene in non-institutionalized elderly subjects. Exp. Gerontol. 2016, 81, 56–64. [Google Scholar] [CrossRef]
- Retamoso, V.R.; Feijóo, L.B.; Rubio, D.A.V.; dos Santos, L.A.F.V.; Barcelos, A.L.V.; Piccoli, J.d.C.E. Black skin color but not VDR gene represent a risk factor for low serum levels of vitamin D in self-declared black individuals. Clin. Nutr. Espen 2023, 55, 230–237. [Google Scholar] [CrossRef]
- Khalid, N.; Mahjabeen, I.; Kayani, M.A.; Akram, Z. Association of arsenic-related AS3MT gene and antioxidant SOD2 gene expression in industrial workers occupationally exposed to arsenic. Toxicol. Ind. Health 2020, 36, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Duarte, T.; Barbisan, F.; do Prado-Lima, P.A.S.; Azzolin, V.F.; da Cruz Jung, I.E.; Duarte, M.M.M.F.; Teixeira, C.F.; Mastella, M.H.; da Cruz, I.B.M. Ziprasidone, a second-generation antipsychotic drug, triggers a macrophage inflammatory response in vitro. Cytokine 2018, 106, 101–107. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Report of a World Health Organization Consultation; World Health Organization: Geneva, Switzerland, 2000; p. 256. [Google Scholar]
- Brazilian Institute of Geography and Statistics (IBGE). Brazilian Census 2022; IBGE: Rio de Janeiro, Brazil, 2023.
- Brazilian Institute of Geography and Statistics (IBGE). Household Budget Survey (POF); Ministry of Economy: Rio de Janeiro, Brazil, 2019.
- Rolizola, P.; Freiria, C.; Silva, G.; Brito, T.; Borim, F.S.A.; Corona, L.P. Insuficiência de vitamina D e fatores associados: Um estudo com idosos assistidos por serviços de atenção básica à saúde. Ciênc. Saúde Coletiva 2022, 27, 653–663. [Google Scholar] [CrossRef]
- Cheong, W.F.; Ji, S.; Cazenave-Gassiot, A.; Thu, W.P.P.; Logan, S.; Cauley, J.; Kramer, M.S.; Yong, E.-L. Predictors of Circulating Vitamin D Levels in Healthy Mid-Life Singaporean Women. Archives of Osteoporosis; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Hemida, M.A.; AbdElmoneim, N.A.; Hewala, T.I.; Rashad, M.M.; Abdaallah, S. Vitamin D Receptor in Breast Cancer Tissues and Its Relation to Estrogen Receptor Alpha (ER-α) Gene Expression and Serum 25-hydroxyvitamin D Levels in Egyptian Breast Cancer Patients: A Case-control Study. Clin. Breast Cancer 2019, 19, e407–e414. [Google Scholar] [CrossRef]
- de Oliveira, A.C.R.; Magalhães, C.A.; Loures, C.M.G.; Fraga, V.G.; de Souza, L.C.; Guimarães, H.C.; Cintra, M.T.G.; Bicalho, M.A.; Sousa, M.C.R.; Silveira, J.N.; et al. BsmI polymorphism in the vitamin D receptor gene is associated with 25-hydroxy vitamin D levels in individuals with cognitive decline. Arq. Neuro-Psiquiatr. 2018, 76, 11. [Google Scholar] [CrossRef] [Green Version]
- Júnior, F.M.; Mandarino, N.; Santos, E.; Santos, A.; Salgado, J.; Brito, D.; Salgado, B.; Lages, J.; Branco, G.C.; Filho, N.S. Correlation between serum 25-hydroxyvitamin D levels and carotid intima-media thickness in a Brazilian population descended from African slaves. Braz. J. Med. Biol. Res. 2018, 51, e7185. [Google Scholar] [CrossRef] [Green Version]
- Negri, M.; Gentile, A.; de Angelis, C.; Montò, T.; Patalano, R.; Colao, A.; Pivonello, R.; Pivonello, C. Vitamin D-Induced Molecular Mechanisms to Potentiate Cancer Therapy and to Reverse Drug-Resistance in Cancer Cells. Nutrients 2020, 12, 1798. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, R.; Manger, P.T.; Khare, R.K. Fok I and Bsm I gene polymorphism of vitamin D receptor and essential hypertension: A mechanistic link. Clin. Hypertens. 2023, 29, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Dauletbaev, N.; Herscovitch, K.; Das, M.; Chen, H.; Bernier, J.; Matouk, E.; Bérubé, J.; Rousseau, S.; Lands, L.C. Down-regulation of IL-8 by high-dose vitamin D is specific to hyperinflammatory macrophages and involves mechanisms beyond up-regulation of DUSP1. Br. J. Pharmacol. 2015, 172, 4757–4771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlberg, C. Vitamin D and Its Target Genes. Nutrients 2022, 14, 1354. [Google Scholar] [CrossRef]
- Gasperini, B.; Visconti, V.V.; Ciccacci, C.; Falvino, A.; Gasbarra, E.; Iundusi, R.; Brandi, M.L.; Botta, A.; Tarantino, U. Role of the Vitamin D Receptor (VDR) in the Pathogenesis of Osteoporosis: A Genetic, Epigenetic and Molecular Pilot Study. Genes 2023, 14, 542. [Google Scholar] [CrossRef]
- Uitterlinden, A.G.; Fang, Y.; van Meurs, J.B.; Pols, H.A.; van Leeuwen, J.P. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef] [Green Version]
Gene and Gene ID | NCBI Reference Sequence | Location | Size (pb) | Primers |
---|---|---|---|---|
VDR-7421 | NG_008731.1 | 12q13.11 | 4.738 | F-5′CCTTCACCATGGACGACATG3′ R-5′CGGCTTTGGTCACGTCACT3′ |
CYP24A1-1591 | NG_008334 | 20q12 | 37449 | F-5′CTCATGCTAAATACCCAGGTG-3′ R-5′TCGCTGGCAAAACGCGATGGG3′ |
SOD-2-6648 | NG_008729 | 6q11 | 100,213 | F-5′GCCCTGGAACCTCACATCAA-3′ R-5′GGTACTTCTCCTCGGTGACGTT3′ |
Characteristic | N (98) | (%) |
---|---|---|
Sex | ||
Female | 53 | 54.1 |
Male | 45 | 45.9 |
Self-declaration of color | ||
Black | 20 | 20.4 |
Brown | 25 | 25.5 |
White | 53 | 54.1 |
Education | ||
Primary education (i) | 5 | 5.1 |
Primary education (c) | 1 | 1.0 |
Secondary education (i) | 1 | 1.0 |
Secondary education (c) | 16 | 16.3 |
Higher education (i) | 53 | 54.1 |
Higher education (c) | 20 | 20.4 |
Other (graduate degree) | 2 | 2.0 |
Marital status | ||
Single | 66 | 67.3 |
Married | 25 | 25.5 |
Common-law marriage | 6 | 6.1 |
Widowed | 1 | 1.0 |
Performs physical activity | ||
Yes | 48 | 49 |
No | 50 | 51 |
Smokes | ||
Yes | 10 | 10.2 |
No | 87 | 88.8 |
Ex-smoker | 1 | 1.0 |
Drinks alcohol | ||
Yes | 63 | 63.3 |
No | 35 | 35.7 |
Marker | Mean | ±SD |
---|---|---|
Weight (kg) | 77.8 | 19.0 |
Height (m) | 1.8 | 0.16 |
BMI (kg/m2) | 27.1 | 5.4 |
CC (cm) | 88.2 | 14.7 |
QC (cm) | 103.6 | 9.8 |
Total cholesterol (mg/dL) | 177 | 47 |
HDL-C (mg/dL) | 55.2 | 22.2 |
LDL-C (mg/dL) | 94.9 | 41.2 |
Triglycerides (mg/dL) | 146.1 | 142.2 |
Vitamin D (ng/mL) | 17.03 | 4.04 |
BsmI SNP | Participants (n = 98) | (%) | * p-Value |
---|---|---|---|
Genotypic frequency | |||
GG | 40 | 40.8 | 0.4 |
GA | 44 | 44.9 | 0.46 |
AA | 14 | 14.3 | 0.13 |
Allelic frequency | |||
Allele G | 102 | 67.1 | |
Allele A | 50 | 32.9 | |
Model | |||
AA + GA | 54 | 55.1 | |
GG | 40 | 44.9 |
Genotype Group BsmI VDR | ||||
---|---|---|---|---|
GG (40) | GA (44) | AA (14) | p | |
Age | 29.8 ± 10.2 | 32.3 ± 11.4 | 29.8 ± 11.3 | 0.80 |
BMI (kg/m2) | 26.8 ± 5.2 | 26.8 ± 5.3 | 28.6 ± 6.2 | 0.51 |
CC (cm) | 87.46 ± 15.3 | 87.5 ± 12.7 | 92.6 ± 18.7 | 0.49 |
QC (cm) | 103.36 ± 9 | 102.7 ± 9.6 | 107.36 ± 12.2 | 0.29 |
%fat | 12.26 ± 10.9 | 12.6 ± 9.96 | 13.7 ± 11.0 | 0.90 |
Glucose (mg/dL) | 91.24 ± 21.9 | 84.07 ± 22.1 | 92.6 ± 24.12 | 0.25 |
Total cholesterol (mg/dL) | 182.5 ± 51.6 | 174.4 ± 47.3 | 169.8 ± 47.2 | 0.63 |
HDL-C (mg/dL) | 58.16 ± 22.7 | 55.1 ± 22.6 | 45.34 ± 17.7 | 0.17 |
LDL-C (mg/dL) | 95 ± 40.8 | 94.4 ± 44.8 | 96.17 ± 41.6 | 0.99 |
Triglycerides (mg/dL) | 151.03 ± 149 | 135.91 ± 148.4 | 164.3 ± 104.8 | 0.78 |
Vitamin D (ng/mL) | 17.45 ± 2.2 | 16.88 ± 4.3 | 16.34 ± 2.4 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retamoso, V.R.; Barbisan, F.; Moro, G.M.; Maurer, P.; Rubio, D.V.; dos Santos, L.F.V.; Feijóo, L.B.; Frizzo, M.N.; Mânica da Cruz, I.B.; Manfredini, V.; et al. VDR, SOD-2, and CYP24A1 Gene Expression in Different Genotypes of BsmI SNP of the Vitamin D Receptor Gene in Individuals with Hypovitaminosis. Nutrients 2023, 15, 3565. https://doi.org/10.3390/nu15163565
Retamoso VR, Barbisan F, Moro GM, Maurer P, Rubio DV, dos Santos LFV, Feijóo LB, Frizzo MN, Mânica da Cruz IB, Manfredini V, et al. VDR, SOD-2, and CYP24A1 Gene Expression in Different Genotypes of BsmI SNP of the Vitamin D Receptor Gene in Individuals with Hypovitaminosis. Nutrients. 2023; 15(16):3565. https://doi.org/10.3390/nu15163565
Chicago/Turabian StyleRetamoso, Vanessa Rosa, Fernanda Barbisan, Graziele Meira Moro, Patricia Maurer, Débora Vasquez Rubio, Lauren Flores Viera dos Santos, Lyana Berro Feijóo, Matias Nunes Frizzo, Ivana Beatrice Mânica da Cruz, Vanusa Manfredini, and et al. 2023. "VDR, SOD-2, and CYP24A1 Gene Expression in Different Genotypes of BsmI SNP of the Vitamin D Receptor Gene in Individuals with Hypovitaminosis" Nutrients 15, no. 16: 3565. https://doi.org/10.3390/nu15163565
APA StyleRetamoso, V. R., Barbisan, F., Moro, G. M., Maurer, P., Rubio, D. V., dos Santos, L. F. V., Feijóo, L. B., Frizzo, M. N., Mânica da Cruz, I. B., Manfredini, V., Barcelos, A. L. V., & Piccoli, J. d. C. E. (2023). VDR, SOD-2, and CYP24A1 Gene Expression in Different Genotypes of BsmI SNP of the Vitamin D Receptor Gene in Individuals with Hypovitaminosis. Nutrients, 15(16), 3565. https://doi.org/10.3390/nu15163565