The Role of Nutrition in the Treatment of Sarcopenia in Old Patients: From Restoration of Mitochondrial Activity to Improvement of Muscle Performance, a Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
- Participants: Adults aged 65 years and older affected by sarcopenia and/or malnutrition clinically diagnosed. Sarcopenia was defined using recognized diagnostic criteria, such as the European Working Group on Sarcopenia in Older People (EWGSOP-1 [3] and EWGSOP-2 [4]), FNIH [5], International Working Group [6] or Asian working group on sarcopenia (ASIA) [7,40]. The diagnosis of malnutrition or the presence of a malnutrition risk was defined according to a validated tool such as MNA, MNA-SF or NRS score [23].
- Intervention: BCAA and/or omega-3 PUFA and/or vitamin D supplementation, associated or not to physical exercise.
- Comparison: Standard clinical treatment, placebo, or physical exercise without nutritional supplementation.
- Outcomes: Measurement of the parameters of muscle mass and/or muscle strength and/or muscle performance or the mitochondrial activity and/or the oxidative stress.
- Studies: RCT and meta-analysis.
2.3. Search Strategy
2.4. Study Selection
2.5. Data Extraction
2.6. Quality Assessment
2.7. Data Synthesis and Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Quality Assessment
3.4. Outcomes of the Included RCT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cattaneo, F.; Buondonno, I.; Cravero, D.; Sassi, F.; D’Amelio, P. Musculoskeletal Diseases Role in the Frailty Syndrome: A Case–Control Study. Int. J. Environ. Res. Public Health 2022, 19, 11897. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global Prevalence of Sarcopenia and Severe Sarcopenia: A Systematic Review and Meta-Analysis. J. Cachexia. Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH Sarcopenia Project: Rationale, Study Description, Conference Recommendations, and Final Estimates. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Rom, O.; Kaisari, S.; Aizenbud, D.; Reznick, A.Z. Lifestyle and Sarcopenia—Etiology, Prevention and Treatment. Rambam Maimonides Med. J. 2012, 3, e0024. [Google Scholar] [CrossRef]
- Marzetti, E.; Calvani, R.; Tosato, M.; Cesari, M.; Di Bari, M.; Cherubini, A.; Broccatelli, M.; Savera, G.; D’Elia, M.; Pahor, M.; et al. Physical Activity and Exercise as Countermeasures to Physical Frailty and Sarcopenia. Aging Clin. Exp. Res. 2017, 29, 35–42. [Google Scholar] [CrossRef]
- Calvani, R.; Picca, A.; Coelho-Júnior, H.J.; Tosato, M.; Marzetti, E.; Landi, F. Diet for the Prevention and Management of Sarcopenia. Metabolism 2023, 146, 155637. [Google Scholar] [CrossRef]
- Alizadeh Pahlavani, H.; Laher, I.; Knechtle, B.; Zouhal, H. Exercise and Mitochondrial Mechanisms in Patients with Sarcopenia. Front. Physiol. 2022, 13, 1040381. [Google Scholar] [CrossRef]
- Hood, D.A.; Memme, J.M.; Oliveira, A.N.; Triolo, M. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging. Annu. Rev. Physiol. 2019, 81, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Cedikova, M.; Pitule, P.; Kripnerova, M.; Markova, M.; Kuncová, J. Multiple Roles of Mitochondria in Aging Processes. Physiol. Res. 2016, 65, S519–S531. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R. Keeping Older Muscle “Young” through Dietary Protein and Physical Activity. Adv. Nutr. 2014, 5, 599S–607S. [Google Scholar] [CrossRef]
- Romani, M.; Berger, M.M.; D’amelio, P. From the Bench to the Bedside: Branched Amino Acid and Micronutrient Strategies to Improve Mitochondrial Dysfunction Leading to Sarcopenia. Nutrients 2022, 14, 483. [Google Scholar] [CrossRef]
- Buondonno, I.; Sassi, F.; Cattaneo, F.; D’Amelio, P. Association between Immunosenescence, Mitochondrial Dysfunction and Frailty Syndrome in Older Adults. Cells 2023, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Landi, F.; Chew, S.T.H.; Atherton, P.J.; Molinger, J.; Ruck, T.; Gonzalez, M.C. Advances in Muscle Health and Nutrition: A Toolkit for Healthcare Professionals. Clin. Nutr. 2022, 41, 2244–2263. [Google Scholar] [CrossRef]
- Nelke, C.; Dziewas, R.; Minnerup, J.; Meuth, S.G.; Ruck, T. Skeletal Muscle as Potential Central Link between Sarcopenia and Immune Senescence. EBioMedicine 2019, 49, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM Criteria for the Diagnosis of Malnutrition—A Consensus Report from the Global Clinical Nutrition Community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Garry, P.J.; Vellas, B.J. Practical and Validated Use of the Mini Nutritional Assessment in Geriatric Evaluation. Nutr. Clin. Care 1999, 2, 146–154. [Google Scholar] [CrossRef]
- Rubenstein, L.Z.; Harker, J.O.; Salvà, A.; Guigoz, Y.; Vellas, B. Screening for Undernutrition in Geriatric Practice: Developing the Short-Form Mini-Nutritional Assessment (MNA-SF). J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, 366–372. [Google Scholar] [CrossRef]
- Kondrup, J.; Ramussen, H.H.; Hamberg, O.; Stanga, Z.; Camilo, M.; Richardson, R.; Elia, M.; Allison, S.; Meier, R.; Plauth, M. Nutritional Risk Screening (NRS 2002): A New Method Based on an Analysis of Controlled Clinical Trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic Criteria for Malnutrition—An ESPEN Consensus Statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in Older Adults—Recent Advances and Remaining Challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef] [PubMed]
- Atherton, P.J.; Smith, K.; Etheridge, T.; Rankin, D.; Rennie, M.J. Distinct Anabolic Signalling Responses to Amino Acids in C2C12 Skeletal Muscle Cells. Amino Acids 2010, 38, 1533–1539. [Google Scholar] [CrossRef]
- Rolland, Y.; Dupuy, C.; Abellan van Kan, G.; Gillette, S.; Vellas, B. Treatment Strategies for Sarcopenia and Frailty. Med. Clin. N. Am. 2011, 95, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein Ingestion to Stimulate Myofibrillar Protein Synthesis Requires Greater Relative Protein Intakes in Healthy Older versus Younger Men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015, 70, 57–62. [Google Scholar] [CrossRef]
- Le Couteur, D.G.; Solon-Biet, S.M.; Cogger, V.C.; Ribeiro, R.; de Cabo, R.; Raubenheimer, D.; Cooney, G.J.; Simpson, S.J. Branched Chain Amino Acids, Aging and Age-Related Health. Ageing Res. Rev. 2020, 64, 101198. [Google Scholar] [CrossRef]
- D’Antona, G.; Ragni, M.; Cardile, A.; Tedesco, L.; Dossena, M.; Bruttini, F.; Caliaro, F.; Corsetti, G.; Bottinelli, R.; Carruba, M.O.; et al. Branched-Chain Amino Acid Supplementation Promotes Survival and Supports Cardiac and Skeletal Muscle Mitochondrial Biogenesis in Middle-Aged Mice. Cell Metab. 2010, 12, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; Dedeyne, L.; Dalle, S.; Koppo, K.; Gielen, E. The Role of Omega-3 in the Prevention and Treatment of Sarcopenia. Aging Clin. Exp. Res. 2019, 31, 825–836. [Google Scholar] [CrossRef]
- Domingues-Faria, C.; Vasson, M.P.; Goncalves-Mendes, N.; Boirie, Y.; Walrand, S. Skeletal Muscle Regeneration and Impact of Aging and Nutrition. Ageing Res. Rev. 2016, 26, 22–36. [Google Scholar] [CrossRef]
- Lalia, A.Z.; Dasari, S.; Robinson, M.M.; Abid, H.; Morse, D.M.; Klaus, K.A.; Lanza, I.R. Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Metabolism and Mitochondrial Bioenergetics in Older Adults. Aging 2017, 9, 1096. [Google Scholar] [CrossRef] [PubMed]
- D’amelio, P.; Quacquarelli, L. Hypovitaminosis d and Aging: Is There a Role in Muscle and Brain Health? Nutrients 2020, 12, 628. [Google Scholar] [CrossRef]
- Bischoff-Ferrari, H.A.; Borchers, M.; Gudat, F.; Dürmüller, U.; Stähelin, H.B.; Dick, W. Vitamin D Receptor Expression in Human Muscle Tissue Decreases with Age. J. Bone Miner. Res. 2004, 19, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Ryan, Z.C.; Craig, T.A.; Folmes, C.D.; Wang, X.; Lanza, I.R.; Schaible, N.S.; Salisbury, J.L.; Nair, K.S.; Terzic, A.; Sieck, G.C.; et al. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells. J. Biol. Chem. 2016, 291, 1514–1528. [Google Scholar] [CrossRef] [PubMed]
- Salles, J.; Chanet, A.; Guillet, C.; Vaes, A.M.; Brouwer-Brolsma, E.M.; Rocher, C.; Giraudet, C.; Patrac, V.; Meugnier, E.; Montaurier, C.; et al. Vitamin D Status Modulates Mitochondrial Oxidative Capacities in Skeletal Muscle: Role in Sarcopenia. Commun. Biol. 2022, 5, 1288. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Rodgers, M.; Sowden, A.; Petticrew, M.; Arai, L.; Roberts, H.; Britten, N.; Popay, J. Testing Methodological Guidance on the Conduct of Narrative Synthesis in Systematic Reviews: Effectiveness of Interventions to Promote Smoke Alarm Ownership and Function. Evaluation 2009, 15, 49–73. [Google Scholar] [CrossRef]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; et al. Synthesis without Meta-Analysis (SWiM) in Systematic Reviews: Reporting Guideline. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus Report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Amasene, M.; Cadenas-Sanchez, C.; Echeverria, I.; Sanz, B.; Alonso, C.; Tobalina, I.; Irazusta, J.; Labayen, I.; Besga, A. Effects of Resistance Training Intervention along with Leucine-Enriched Whey Protein Supplementation on Sarcopenia and Frailty in Post-Hospitalized Older Adults: Preliminary Findings of a Randomized Controlled Trial. J. Clin. Med. 2022, 11, 97. [Google Scholar] [CrossRef]
- Cheng, H.; Kong, J.; Underwood, C.; Petocz, P.; Hirani, V.; Dawson, B.; O’Leary, F. Systematic Review and Meta-Analysis of the Effect of Protein and Amino Acid Supplements in Older Adults with Acute or Chronic Conditions. Br. J. Nutr. 2018, 119, 527–542. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, X.; Hu, Q.; Chen, L.; Zuo, H. The Effect of Leucine Supplementation on Sarcopenia-Related Measures in Older Adults: A Systematic Review and Meta-Analysis of 17 Randomized Controlled Trials. Front. Nutr. 2022, 9, 929891. [Google Scholar] [CrossRef]
- Ispoglou, T.; White, H.; Preston, T.; McElhone, S.; McKenna, J.; Hind, K. Double-Blind, Placebo-Controlled Pilot Trial of L-Leucine-Enriched Amino-Acid Mixtures on Body Composition and Physical Performance in Men and Women Aged 65–75 Years. Eur. J. Clin. Nutr. 2016, 70, 182–188. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.; Kojima, N.; Fujino, K.; Hosoi, E.; Kobayashi, H.; Somekawa, S.; Niki, Y.; Yamashiro, Y.; Yoshida, H. Exercise and Nutritional Supplementation on Community-Dwelling Elderly Japanese Women with Sarcopenic Obesity: A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2016, 17, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Suzuki, T.; Saito, K.; Yoshida, H.; Kobayashi, H.; Kato, H.; Katayama, M. Effects of Exercise and Amino Acid Supplementation on Body Composition and Physical Function in Community-Dwelling Elderly Japanese Sarcopenic Women: A Randomized Controlled Trial. J. Am. Geriatr. Soc. 2012, 60, 16–23. [Google Scholar] [CrossRef]
- Krzymińska-Siemaszko, R.; Czepulis, N.; Lewandowicz, M.; Zasadzka, E.; Suwalska, A.; Witowski, J.; Wieczorowska-Tobis, K. The Effect of a 12-Week Omega-3 Supplementation on Body Composition, Muscle Strength and Physical Performance in Elderly Individuals with Decreased Muscle Mass. Int. J. Environ. Res. Public Health 2015, 12, 10558–10574. [Google Scholar] [CrossRef]
- Kemmler, W.; Grimm, A.; Bebenek, M.; Kohl, M.; von Stengel, S. Effects of Combined Whole-Body Electromyostimulation and Protein Supplementation on Local and Overall Muscle/Fat Distribution in Older Men with Sarcopenic Obesity: The Randomized Controlled Franconia Sarcopenic Obesity (FranSO) Study. Calcif. Tissue Int. 2018, 103, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Arnau, F.M.; Fonfría-Vivas, R.; Buigues, C.; Castillo, Y.; Molina, P.; Hoogland, A.J.; van Doesburg, F.; Pruimboom, L.; Fernández-Garrido, J.; Cauli, O. Effects of Leucine Administration in Sarcopenia: A Randomized and Placebo-Controlled Clinical Trial. Nutrients 2020, 12, 932. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Shih, M.H.; Chen, C.D.; Yeh, S.L. Effects of Adequate Dietary Protein with Whey Protein, Leucine, and Vitamin D Supplementation on Sarcopenia in Older Adults: An Open-Label, Parallel-Group Study. Clin. Nutr. 2021, 40, 1323–1329. [Google Scholar] [CrossRef]
- Mathieu, L.; Maltais, J.P.; Ladouceur, A.I.J.D. Effect of Specific Resistance Training. J. Strength Cond. Res. 2016, 27, 229–235. [Google Scholar]
- Murphy, C.H.; Flanagan, E.M.; De Vito, G.; Susta, D.; Mitchelson, K.A.J.; De Marco Castro, E.; Senden, J.M.G.; Goessens, J.P.B.; Mikłosz, A.; Chabowski, A.; et al. Does Supplementation with Leucine-Enriched Protein Alone and in Combination with Fish-Oil-Derived n-3 PUFA Affect Muscle Mass, Strength, Physical Performance, and Muscle Protein Synthesis in Well-Nourished Older Adults? A Randomized, Double-Blind, Placebo. Am. J. Clin. Nutr. 2021, 113, 1411–1427. [Google Scholar] [CrossRef] [PubMed]
- Stow, R.; Ives, N.; Smith, C.; Rick, C.; Rushton, A. A Cluster Randomised Feasibility Trial Evaluating Nutritional Interventions in the Treatment of Malnutrition in Care Home Adult Residents. Trials 2015, 16, 433. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, I.; Yoshimura, Y.; Shimazu, S.; Jeong, S.; Yamaga, M.; Koga, H. Effects of Branched-Chain Amino Acids and Vitamin D Supplementation on Physical Function, Muscle Mass and Strength, and Nutritional Status in Sarcopenic Older Adults Undergoing Hospital-Based Rehabilitation: A Multicenter Randomized Controlled Trial. Geriatr. Gerontol. Int. 2019, 19, 12–17. [Google Scholar] [CrossRef]
- Dimori, S.; Leoni, G.; Fior, L.; Gasparotto, F. Clinical Nutrition and Physical Rehabilitation in a Long-Term Care Setting: Preliminary Observations in Sarcopenic Older Patients. Aging Clin. Exp. Res. 2018, 30, 951–958. [Google Scholar] [CrossRef]
- Englund, D.A.; Kirn, D.R.; Koochek, A.; Zhu, H.; Travison, T.G.; Reid, K.F.; Von Berens, Å.; Melin, M.; Cederholm, T.; Gustafsson, T.; et al. Nutritional Supplementation with Physical Activity Improves Muscle Composition in Mobility-Limited Older Adults, the VIVE2 Study: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018, 73, 95–101. [Google Scholar] [CrossRef]
- Grootswagers, P.; Smeets, E.; Oteng, A.B.; de Groot, L. A Novel Oral Nutritional Supplement Improves Gait Speed and Mitochondrial Functioning Compared to Standard Care in Older Adults with (or at Risk of) Undernutrition: Results from a Randomized Controlled Trial. Aging 2021, 13, 9398–9418. [Google Scholar] [CrossRef]
- Achison, M.; Adamson, S.; Akpan, A.; Aspray, T.; Avenell, A.; Band, M.M.; Bashir, T.; Burton, L.A.; Cvoro, V.; Donnan, P.T.; et al. Effect of Perindopril or Leucine on Physical Performance in Older People with Sarcopenia: The LACE Randomized Controlled Trial. J. Cachexia. Sarcopenia Muscle 2022, 13, 858–871. [Google Scholar] [CrossRef]
- Bo, Y.; Liu, C.; Ji, Z.; Yang, R.; An, Q.; Zhang, X.; You, J.; Duan, D.; Sun, Y.; Zhu, Y.; et al. A High Whey Protein, Vitamin D and E Supplement Preserves Muscle Mass, Strength, and Quality of Life in Sarcopenic Older Adults: A Double-Blind Randomized Controlled Trial. Clin. Nutr. 2019, 38, 159–164. [Google Scholar] [CrossRef]
- Rondanelli, M.; Klersy, C.; Terracol, G.; Talluri, J.; Maugeri, R.; Guido, D.; Faliva, M.A.; Solerte, B.S.; Fioravanti, M.; Lukaski, H.; et al. Whey Protein, Amino Acids, and Vitamin D Supplementation with Physical Activity Increases Fat-Free Mass and Strength, Functionality, and Quality of Life and Decreases Inflammation in Sarcopenic Elderly. Am. J. Clin. Nutr. 2016, 103, 830–840. [Google Scholar] [CrossRef]
- Rondanelli, M.; Cereda, E.; Klersy, C.; Faliva, M.A.; Peroni, G.; Nichetti, M.; Gasparri, C.; Iannello, G.; Spadaccini, D.; Infantino, V.; et al. Improving Rehabilitation in Sarcopenia: A Randomized-Controlled Trial Utilizing a Muscle-Targeted Food for Special Medical Purposes. J. Cachexia. Sarcopenia Muscle 2020, 11, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.M.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.T.; Mets, T.; Seal, C.; Wijers, S.L.; et al. Effects of a Vitamin D and Leucine-Enriched Whey Protein Nutritional Supplement on Measures of Sarcopenia in Older Adults, the PROVIDE Study: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Am. Med. Dir. Assoc. 2015, 16, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Kimura, Y.; Ishiyama, D.; Nishio, N.; Otobe, Y.; Tanaka, T.; Ohji, S.; Koyama, S.; Sato, A.; Suzuki, M.; et al. Synergistic Effect of Bodyweight Resistance Exercise and Protein Supplementation on Skeletal Muscle in Sarcopenic or Dynapenic Older Adults. Geriatr. Gerontol. Int. 2019, 19, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, O.; Yanlk, S.; Terzioǧlu Bebitoǧlu, B.; Yllmaz Akyüz, E.; Dokuyucu, A.; Erdem, Ş. Effect of Calcium β-Hydroxy-β-Methylbutyrate (CaHMB), Vitamin D, and Protein Supplementation on Postoperative Immobilization in Malnourished Older Adult Patients with Hip Fracture. Nutr. Clin. Pract. 2016, 31, 829–835. [Google Scholar] [CrossRef]
- Buondonno, I.; Sassi, F.; Carignano, G.; Dutto, F.; Ferreri, C.; Pili, F.G.; Massaia, M.; Nisoli, E.; Ruocco, C.; Porrino, P.; et al. From Mitochondria to Healthy Aging: The Role of Branched-Chain Amino Acids Treatment: MATeR a Randomized Study. Clin. Nutr. 2020, 39, 2080–2091. [Google Scholar] [CrossRef]
- VanDerVeer, S.; Markert, R.; Bickford, B.; Yuhas, J.; Pikman, P.; Wall, T.; Burtson, K. Increasing Exercise Adherence among Elderly Patients with Chronic Disease in Primary Care: A Prospective Cohort Study. BMC Geriatr. 2021, 21, 616. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper from the Prot-Age Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Pennings, B.; Groen, B.; de Lange, A.; Gijsen, A.P.; Zorenc, A.H.; Senden, J.M.G.; van Loon, L.J.C. Amino Acid Absorption and Subsequent Muscle Protein Accretion Following Graded Intakes of Whey Protein in Elderly Men. Am. J. Physiol. Endocrinol. Metab. 2012, 302, 992–999. [Google Scholar] [CrossRef]
- Wolfe, R.R. Branched-Chain Amino Acids and Muscle Protein Synthesis in Humans: Myth or Reality? J. Int. Soc. Sports Nutr. 2017, 14, 30. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Hossain, T.; Hill, D.S.; Phillips, B.E.; Crossland, H.; Williams, J.; Loughna, P.; Churchward-Venne, T.A.; Breen, L.; Phillips, S.M.; et al. Effects of Leucine and Its Metabolite β-Hydroxy-β-Methylbutyrate on Human Skeletal Muscle Protein Metabolism. J. Physiol. 2013, 591, 2911–2923. [Google Scholar] [CrossRef]
- Gielen, E.; Beckwée, D.; Delaere, A.; De Breucker, S.; Vandewoude, M.; Bautmans, I.; Bautmans, I.; Beaudart, C.; Beckwée, D.; Beyer, I.; et al. Nutritional Interventions to Improve Muscle Mass, Muscle Strength, and Physical Performance in Older People: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutr. Rev. 2021, 79, 121–147. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Choo, Y.J. Effects of Whey Protein, Leucine, and Vitamin D Supplementation in Patients with Sarcopenia: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 521. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Gasparri, C.; Barrile, G.C.; Battaglia, S.; Cavioni, A.; Giusti, R.; Mansueto, F.; Moroni, A.; Nannipieri, F.; Patelli, Z.; et al. Effectiveness of a Novel Food Composed of Leucine, Omega-3 Fatty Acids and Probiotic Lactobacillus Paracasei PS23 for the Treatment of Sarcopenia in Elderly Subjects: A 2-Month Randomized Double-Blind Placebo-Controlled Trial. Nutrients 2022, 14, 4566. [Google Scholar] [CrossRef] [PubMed]
- Dzik, K.P.; Kaczor, J.J. Mechanisms of Vitamin D on Skeletal Muscle Function: Oxidative Stress, Energy Metabolism and Anabolic State. Eur. J. Appl. Physiol. 2019, 119, 825–839. [Google Scholar] [CrossRef]
- Beaudart, C.; Dawson, A.; Shaw, S.C.; Harvey, N.C.; Kanis, J.A.; Binkley, N.; Reginster, J.Y.; Chapurlat, R.; Chan, D.C.; Bruyère, O.; et al. Nutrition and Physical Activity in the Prevention and Treatment of Sarcopenia: Systematic Review. Osteoporos. Int. 2017, 28, 1817–1833. [Google Scholar] [CrossRef]
- Chevalley, T.; Brandi, M.L.; Cashman, K.D.; Cavalier, E.; Harvey, N.C.; Maggi, S.; Cooper, C.; Al-Daghri, N.; Bock, O.; Bruyère, O.; et al. Role of Vitamin D Supplementation in the Management of Musculoskeletal Diseases: Update from an European Society of Clinical and Economical Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) Working Group. Aging Clin. Exp. Res. 2022, 34, 2603–2623. [Google Scholar] [CrossRef]
- Mantuano, P.; Boccanegra, B.; Bianchini, G.; Conte, E.; De Bellis, M.; Sanarica, F.; Camerino, G.M.; Pierno, S.; Cappellari, O.; Allegretti, M.; et al. BCAAs and Di-Alanine Supplementation in the Prevention of Skeletal Muscle Atrophy: Preclinical Evaluation in a Murine Model of Hind Limb Unloading. Pharmacol. Res. 2021, 171, 105798. [Google Scholar] [CrossRef]
- Baum, J.I.; Kim, I.Y.; Wolfe, R.R. Protein Consumption and the Elderly: What Is the Optimal Level of Intake? Nutrients 2016, 8, 359. [Google Scholar] [CrossRef]
Criteria | Muscle Mass | Muscle Strength | Muscle Performance | Summary Definition |
---|---|---|---|---|
European Working Group on Sarcopenia in Older People (EWGSOP1, 2010) [3] | 2 SD < mean reference value | Grip Strength: <30 kg | Gait Speed < 0.8 m/s. | Sarcopenia: Low muscle mass + low muscle strength OR low performance. Severe sarcopenia: All 3 criteria. |
European Working Group on Sarcopenia in Older People (EWGSOP2, 2019) [4] | ASM M < 20 kg; F < 15 kg ASM/height2 M < 7.0 kg/m2; F < 5.5 kg/m2 | Grip Strength: M < 27 kg, F < 16 kg Chair stand: >15 s for five rises | Gait Speed < 0.8 m/s SPPB < 8 TUG < 20 s 400 m walk test > 6 min or non-completion | Assess sarcopenia with low muscle strength confirmed sarcopenia with low muscle mass. Class Sarcopenia’s severity with performance. Severe sarcopenia: All 3 criteria. |
Foundation for the National Institutes of Health (FNIH, 2014) [5] | ALM/BMI M < 0.789; F < 0.512 | Grip Strength: M < 26 kg; F < 16 kg | Gait speed < 0.8 ms | Sarcopenia: Low muscle mass and low muscle strength. Class Sarcopenia’s severity with performance severe sarcopenia: All 3 criteria. |
International Working Group (2011) [6] | ALM//height2 M < 7.23 kg/m2 F < 5.67 kg/m2 | NA | Gait Speed < 1.0 m/s | Sarcopenia: Low muscle mass and low muscle performance. |
Asian Working Group for Sarcopenia (ASIA, 2019) [7] | ASM//height2 DXA: M < 7.0 kg/m2; F < 5.4 kg/m2 or BIA: M < 7.0 kg/m; F < 5.7 kg/m2 | Grip Strength: M < 28 kg; F < 18 kg | Gait Speed < 1 m/s. 6-metre walk < 1.0 m/s 5-time CST ≥ 12 s SPPB ≤ 9 | Sarcopenia: Low muscle mass + low muscle strength OR Low physical performance. Severe sarcopenia: All 3 criteria. |
Authors Year Location | Number of Participants | Mean Age (Years) | Gender (Women %) | Diagnosis (Used Criteria) | Duration of the Intervention | Type of Intervention | Control | Physical Exercice | Outcomes Measured |
---|---|---|---|---|---|---|---|---|---|
BCAA or Whey Protein with Vitamin D | |||||||||
Rondanelli 2016 [60] Italy | 130 | 80.4 | 59 | sarcopenia (EWGSOP1) | 12 weeks | Once daily EAA: Leucine 4 g, Isoleucine 1 g, Valine 1 g, L-Lysine, 1.5 g L-Threonine 1.1 g L-Tryptophane 0.3 g, L-Valine 1.0 g NEAA: DL-Met 0.6 g, L-Cys 0.4 g, L-Phe 0.5 g, L-Tyr 0.5 g, Asp 1.8 g, Ser 0.8 g, Glu 5.2 g, Pro 1.0 g, Gly 0.3 g, Ala 0.8 g, Arg 0.8 g Vitamin D3 312 IU Whey protein 68.9 g | Placebo | Yes (RT, gait and balance training) | MM: Relative skeletal muscle mass; MS: Hand grip |
Rondanelli 2020 [61] Italy | 140 | 81 | 63 | sarcopenia (EWGSOP1) | 8 weeks | Twice daily Leucine 2.8 g Vitamin D 800 IU Whey proteins 20 g | Placebo | Yes (RT, gait and balance training) | MM: Skeletal muscle index, appendicular muscle mass; MS: Hand grip; MP: Gait speed, chair stand test, TUG, SPPB |
Lin 2020 [50] Taiwan | 56 | 73.1 | 28.6 | sarcopenia (ASIA 2019) | 12-weeks | Once daily Leucine 1.2 g Vitamin D 120 IU Whey protein 8.5 g +Diet advice | Diet advice; instructed to consume 1.5 g protein/kg/BW/day | No | MM: Appendicular muscle mass index; MS: Hand grip; MP: Gait speed |
Bauer 2015 [62] Germany | 380 | 77.7 | 65.5 | sarcopenia (EWGSOP1) | 13 weeks | Twice daily Leucine 3 g Vitamin D3 800 IU Whey protein 20 g | Placebo | No | MM: Skeletal muscle index; MS: Hand grip; MP: SPPB |
Kim 2016 [45] Japan | 139 | 81.1 | NI | sarcopenic obesity | 3 months | Once daily EAA: Leucine 1.20 g, lysine HCL 0.50 g, valine 0.33 g, isoleucine 0.32 g, threonine 0.28 g, phenylalanine 0.20 g and other 0.17 g Vitamin D 800 IU Tea catechin 540 mg | Exercise Exercise + Nutrition Health education | Yes (RT and AT) | MM: Skeletal muscle mass index; MS: Hand grip, knee extension strength; MP: Gait speed |
Grootswagers 2021 [57] The Netherlands | 9 (malnourish) | 74.1 | 20.5 | malnutrition (MNA-sf) | 12 weeks | Twice daily free BCAA 7 g Vitamin D3 432 IU Urosalic acid 206 mg Whey protein 11 g Casein protein 11 g | Twice daily Oral standard nutritional supplementation (with Vit D3 172 IU) | No | MM: Appendicular muscle mass index; MS: Hand grip, knee extension and flexion; MP: SPPB mRNA expression of mitochondrial activity and biogenesis (PGC1- alpha, AMPK, TFAM, redox activity) |
Ekinci 2016 [64] Turkey | 62 | 82.6 | 100 | malnutrition (NRS) | 30 days | Twice daily Vitamin D 1000 IU CaHMB 3 g Protein 36 g (unknown origin) | Standard nutrition | No | MM: Calf and arm circumference, triceps skinfold thickness; MS: Hand grip |
Bo 2019 [59] China | 60 | 74 | 55 | sarcopenia (ASIA 2014) | 6 months | Twice daily Vitamin D 702 UI Whey proteins 22 g | Placebo | No | MM: Relative muscle mass index; MS: Hand grip; MP: Gait speed, TUG, chair stand test |
Yamada 2019 [63] Japan | 34 (sarcopenic) | No data for sarcopenic patient | No data for sarcopenic patient | sarcopenia and dynapenia (ASIA 2014) | 12 weeks | Once daily Vitamin D 800 IU Whey protein 10 g | Exercise Exercise + Nutrition Nothing | Yes (RT) | MM: Appendicular muscle mass, MS: Hand grip, knee extension; MP: Gait speed, chair stand test, one-leg stand test |
BCAA alone | |||||||||
Buondonno 2020 [65] Italy | 155 | 83 | 72.5 | malnutrition (MNA) | 2 months | Twice daily EAA:Leucine 1.25 g, Lysine 0.65 g, Isoleucine 0.625 g, Valine 0.625 g, Threonine 0.35 g, Histidine 0.15 g, Phenylalanine 0.01 g, Methionine 0.05 g, Tryptophan 0.02 g, NEAA: Cystine 0.15 g, Tyrosine 0.03 g Vitamin B 6 0.1 mg, Vitamin B1 0.15 mg | Nutritional conseilling | No | MM: Calf and arm circumference; MS: Hand grip; MP: Gait speed, TUG, Tinetti, chair stand test Mitochondrial activity (ATP, electron flux); Mitochondiral biogenesis (COX-1, COX-4, TFAM, NRF-1, MFN-1, MFN-2); redoc activity (TBARs) |
Achison 2022 [58] UK | 145 | 78.4 | 54 | sarcopenia (EWGSOP1) | 12 months | 3 times daily Leucine 2.5 g | Placebo | No | MM: Appendicular muscle mass index; MS: Hand grip, quadriceps strentgh; MP: Gait speed, SPPB, Chair stand test, 6 min walk |
Omega-3 | |||||||||
Krzymińska-Siemaszko 2015 [47] Poland | 27 | 75.8 | 59 | sarcopenia (EWGSOP1) | 12 weeks | Once daily n-3 PUFA 1.3 g with vitamine E | Once daily vitamin E 11 mg | No | MM: Appendicular muscle mass index; MS: Hand grip; MP: Gait speed, TUG |
Authors Year Location | Overall Risk of Bias | Mucsle Mass | Muscle Strength | Muscle Performance |
---|---|---|---|---|
BCAA or Whey Protein with Vitamin D | ||||
Rondanelli 2016 [60] Italy | Low | RSMM (kg/m2) Treatment effect (mean difference): 0.27, 95% CI (0.07–0.47), p 0.009 | Handgrip strength (kg) Treatment effect (mean difference): 3.68, 95% CI (2.55–4.81), p < 0.001 | NA |
Rondanelli 2020 [61] Italy | Low | SMMI (kg/m2/month) Crude between-group difference: 0.40, 95% CI (0.06 to 0.73), p 0.023 | Handgrip strength (kg/month) Crude between-group difference: 5.45, 95% CI (4.51 to 6.38), p < 0.001 | 4 m gait speed (m/s/month) Crude between-group difference: 0.062, 95% CI (0.043 to 0.082), p < 0.001 Chair stand test (s/month) Crude between-group difference: 12.64, 95% CI (10.84 to 14.44), p < 0.001 Timed up and go (s/month) Crude between-group difference: 3.71, 95% CI (3.09 to 4.33), p < 0.001 SPPB (score/month) crude Between-group difference: 2.27, 95% CI (1.88 to 2.68), p < 0.001 |
Lin 2020 [50] Taiwan | High | AMMI (kg/m2) Within group change in the intervention group from baseline (6.1 ± 0.64) to 12 weeks (6.56 ± 0.95), p < 0.001 Within group change in the control group from baseline (6.27 ± 0.68) to 12 weeks (6.61 ± 0.76), p < 0.001 | Handgrip strength (kg) Within group change in the intervention group from baseline (25.3 ± 10.1) to 12 weeks (26.1 ± 7.76), p 0.19 Within group change in the control group from baseline (26.3 ± 6.95) to 12 weeks (27.6 ± 7.0), p 0.03 | Gait speed (m/s) Within group change in the intervention group from baseline (0.98 ± 0.14) to 12 weeks (0.97 ± 0.13) p 0.016 Within group change in the control group from baseline (0.98 ± 0.14) to 12 weeks (0.97 ± 0.13), p 0.58 |
Bauer 2015 [62] Germany | High | SMI (kg) Treatment effect (mean difference): 0.17, 95% CI (0.004–0.338), p 0.045 | Handgrip strength (kg) Treatment effect (mean difference): 0.30, 95% CI (−0.46–1.05), p 0.44 | Gait speed (m/s) Treatment effect (mean difference): 0.01, 95% CI (−0.02–0.04), p 0.46 SPPB (score) Treatment effect (mean difference): 0.11, 95% CI (−0.21–0.42), p 0.51 Chair stand test (s) Treatment effect (mean difference): −1.01, 95% CI (−1.77–0.19), p 0.018 |
Kim 2016 [45] Japan | Low | SMI (kg/m2) Odds Ratio for Changes compared to HE group: NU: 0.78 (0.25–2.21) EX: 0.83 (0.29–2.41) EXNU: 0.67 (0.23–1.93) | Handgrip and knee extension strength (kg) Odds Ratio for changes compared to HE group: NU: 2.71 (0.96–7.64) EX: 3.72 (1.24–11.17) EXNU: 3.69 (1.28–10.71) | Gait speed (m/s) Odds Ratio for Changes compared to HE group: NU: 1.53 (0.52–4.55) EX: 2.06 (0.67–6.29) EXNU: 3.05 (1.01–9.19) |
Grootswagers 2021 [57] The Netherlands | Low | ALMI (kg/m2) Treatment*time interaction p > 0.05 | Non-dominant knee extension (Newton) Mean change in the intervention group: 8 ± 12, p 1.000 Mean change in the control group: 38 ± 10, p 0.003 Treatment*time interaction p 0.058 Dominant knee extension (Newton) Mean change in the intervention group: −2 ± 14, p 1.000 Mean change in the control group: 26 ± 21, p 1.000 Treatment*time interaction p 0.145 Dominant knee flexion (Newton) Mean change in the intervention group: 12 ± 9, p 1.000 Mean change in the control group: 23 ± 8, p 0.036 Treatment*time interaction p 0.351 Handgrip strength (dominant hand, kg) Mean change in the intervention group: 0 ± 1, p 1.000 Mean change in the control group: 0 ± 1, p 1.000 Treatment*time interaction p 0.948 | 400 m walk test (s) Mean change in the intervention group: −7.4 ± 8.7, p 1.000 Mean change in the control group: 17.6 ± 7.8, p 0.172 Treatment*time interaction p 0.038 4 m walk test (s) Mean change in the intervention group: −0.4 ± 0.1, p 0.047 Mean change in the control group: 0.0 ± 0.1, p 1.000 Treatment*time interaction p 0.048 Chair rise test (s) Mean change in the intervention group: 0.0 ± 0.5, p 1.000 Mean change in the control group: −0.3 ± 0.4, p 1.000 Treatment*time interaction p 0.634 SPPB (score) Mean change in the intervention group: 0.1 ± 0.2, p 1.000 Mean change in the control group: 0.3 ± 0.2, p 0.523 Treatment*time interaction p 0.355 |
Ekinci 2016 [64] Turkey | Some concerns | Arm circumference (cm) Change in the intervention group from baseline (24.00 ± 2.57) to 30 days (24.84 ± 2.00), p 0.001 Change in the control group from baseline (25.30 ± 2.53) to 30 days (24.87 ± 2.62), p 0.320 Difference between group p 0.969 Calf circumference (cm) Change in the intervention group from baseline (41.13 ± 4.19) to 30 days (40.56 ± 3.78), p 0.672 Change in the control group from baseline (41.40 ± 3.04) to 30 days (41.77 ± 3.15), p 0.986 Difference between group p 0.180 Triceps skinfold thickness (TST) (mm) Change in the intervention group from baseline (12.47 ± 3.89) to 30 days (13.94 ± 3.81), p < 0.001 Change in the control group from baseline (13.53 ± 3.01) to 30 days (13.13 ± 3.66), p 0.999 Difference between group p 0.400 | Handgrip strength (kg) Change in the intervention group from baseline (7.13 ± 4.01) to 30 days (8.63 ± 3.83), p 0.015 Change in the control group from baseline (5.53 ± 3.42) to 30 days (6.40 ± 3.86), p 0.157 Difference between group p 0.026 | NA |
Bo 2019 [59] China | Low | RSMi (kg/m2) Treatment effect (mean difference): 0.18, 95% CI (0.01–0.35), p 0.040 | Handgrip strength (kg) Treatment effect (mean difference): 2.68, 95% CI (0.71–4.65), p 0.009 | 6 m gait speed (walking at usual pace) (m/s) Mean change: Intervention group: 0.14 ± 0.15, p < 0.001 Control group: 0.08 ± 0.24, p 0.074 Treatment effect (mean difference): 0.05, 95% CI (−0.06 to 0.15), p 0.402 Timed up and go (s) Mean change: Intervention group: -1.36 ± 2.43, p < 0.001 Control group: −0.68 ± 3.29, p 0.267 Treatment effect (mean difference): −0.67, 95% CI (−2.20 to 0.86), p 0.383 Chair stand test (s) Mean change: Intervention group: −2.79 ± 3.73, p 0.005 Control group: −1.21 ± 6.28, p 0.507 Treatment effect (mean difference): −1.84, 95% CI (−4.53 to 0.85), p 0.176 |
Yamada 2019 [63] Japan | Low | Appendicular muscle mass (kg) Median change from baseline (IQR range): EXNU: 0.51 (0.04–1.24) EX: −0.30 (−0.64 to 1.07) NU: 0.11 (−0.29 to 0.40) Control group: −0.72 (−1.88 to 0.01) Differences between EXNU and control group p 0.02 | Maximal isometric knee extension strength (Newton) Median change from baseline (IQR range): EXNU: 39.20 (31.36–45.20) EX: 1.84 (−6.13 to 10.05) NU: −4.41 (−10.17 to 10.41) Control group: 3.92 (−7.60 to 9.43) Differences between EXNU group and control group p 0.46 Handgrip strength (kg) Median change from baseline (IQR range): EXNU: 1.70 (−0.20 to 2.70) EX: −0.05 (−2.45 to 1.08) NU: −0.40 (−1.90 to 0.95) Control group: −0.67 (−3.18 to 0.73) Differences between EXNU group and control group p 0.07 | 5 m maximum walking time (s) Median change from baseline (IQR range): EXNU: −0.82 (−1.28 to −0.52) EX: −0.57 (−2.05–0.47) NU: −0.04 (−0.88 to 0.41) Control group: 0.44 (−0.26 to 1.11) Differences between EXNU group and control group p 0.01 Five-repetition chair stand test (s) Median change from baseline (IQR range): EXNU: −1.15 (−2.48 to −0.26) EX: −0.27 (−1.92 to 0.00) NU: −0.41 (−1.46 to 0.06) Control group: −0.37 (−1.68 to 0.77) Differences between EXNU group and control group p 0.47 |
BCAA alone | ||||
Buondonno 2020 [65] Italy | Low | Calf circumference (cm) Mean in intervention group at baseline 30.4 ± 0.35, 95% CI (−1.14 to −0.04) and 2 months 31.3 ± 0.39, 95% CI (−1.45 to −0.36) Mean in control group at baseline 30.7 ± 0.43, 95% CI (−1.08 to 0.02) and 2 months 31.19 ± 0.39, 95% CI (−1.07 to 0.03) Time difference p 0.0004, treatment difference p 0.8560, interaction difference p 0.4521 Arm circumference (cm) Mean in intervention group at baseline 22.7 ± 0.36, 95% CI (−0.75 to 0.23) and 2 months 23.3 ± 0.38, 95% CI (−1.03 to −0.04) Mean in control group at baseline 23.0 ± 0.40, 95% CI (−0.83 to 0.15) and 2 months 23.4 ± 0.44, 95% CI (−0.88 to −0.10) Time difference p 0.0045, treatment difference p 0.6754, interaction difference p 0.7351 | Handgrip strength (kg) Mean in intervention group at baseline 17.9 ± 1.0, 95% CI (−2.01 to 0.47) and 2 months 18.3 ± 1.0, 95% CI (−2.4 to 0.10) Mean in control group at baseline 17.9 ± 1.0, 95% CI (−1.84 to 0.65) and 2 months 19.1 ± 1.0, 95% CI (−1.59 to 0.90) Time mean difference p 0.0474, treatment mean difference p 0.7796, Interaction mean difference p 0.5231 | 4 m gait speed (s) Mean in intervention group at baseline 8.2 ± 0.6, 95% CI (−0.3 to 1.7) and 2 months 7.2 ± 0.6, 95% CI (0.04 to 2.0) Mean in control group at baseline 9.8 ± 0.7, 95% CI (0.4 to 2.3) and 2 months 8.0 ± 0.7, 95% CI (0.8 to 2.8) Time mean difference p < 0.001, treatment mean difference: p 0.1685, Interaction mean difference p 0.3955 Timed up and go (s) Mean in intervention group at baseline 19.8 ± 2.14, 95% CI (1.5 to 7.6) and 2 months 15.1 ± 1.1, 95% CI (1.6 to 7.8) Mean in control group at baseline 20.5 ± 1.5, 95% CI (−1.2 to 4.9) and 2 months 17.7 ± 1.7, 95% CI (−0.3 to 5.9) Time mean difference p 0.0001, treatment mean difference) p 0.2780, interaction mean difference p 0.3215 30-s Chair to stand test (s) Mean in intervention group at baseline 6.8 ± 0.5, 95% CI (−2.6 to −0.7) and 2 months 8.5 ± 0.7, 95% CI (−2.7 to −0.7) Mean in control group at baseline 6.0 ± 0.5, 95% CI (−2.4 to −0.5) and 2 months 8.1 ± 0.6, 95% CI (−3.0 to −1.1) Time mean difference p < 0.0001, treatment mean difference p 0.3328, Interaction mean difference p 0.5810 Balance test (Tinetti) Mean in intervention group at baseline 20.4 ± 0.8, 95% CI (−2.1 to −0.1) and 2 months 22.2 ± 0.7, 95% CI (−2.8–−0.8) Mean in control group at baseline 18.3± 0.8, 95% CI (−3.2 to −1.1) and 2 months 20.7 ± 0.9, 95% CI (−3.4 to −1.4) Time mean difference < 0.0001, treatment mean difference: p 0.1503, interaction mean difference p 0.2076 |
Achison 2022 [58] UK | Low | RSMI (kg/m2) Between-group difference over 12 months follow up: −0.3, 95% CI (−1.0, 0.4), p 0.47 | Handgrip Strength (kg) Between-group difference over 12 months follow up: −0.3, 95% CI (−1.2, 0.7), p 0.55 Quadriceps strength (kg) Between-group difference over 12 months follow up: −1.0, 95% CI (−4.4, 2.4), p 0.55 | 4-m gait speed (m/s): Between-group difference over 12-month follow-up: 0.01, 95% CI (−0.18, 0.19), p 0.96 Six min walk (m): Between-group difference over 12-month follow-up: 17, 95% CI (−25, 59), p 0.43 SPPB (score) Between-group difference over 12-month follow-up: 0.1, 95% CI (−1.0, 1.1), p 0.90 Chair stand test (s) Between-group difference over 12-month follow-up: −3.1, 95% CI (−9.5, 3.3), p 0.34 |
Omega-3 | ||||
Krzymińska-Siemaszko 2015 [47] Poland | High | ALMI (kg/m2) Change in the intervention group from the baseline: 0.00 ± 0.30 Change in the control group from the baseline: 0.03 ± 0.36 Between-group difference p 0.53 | Handgrip strength (kg) Change in the intervention group from the baseline: 0.68 ± 1.43 Change in the control group from the baseline: 0.54 ± 2.77 Between-group difference p 0.12 | 4-m walking test (s) Change in the intervention group from the baseline: 0.11 ± 0.26 Change in the control group from the baseline: 0.09 ± 0.13 Between-group difference p 0.06 Timed up and go (s) Change in the intervention group from the baseline: 0.05 ± 1.50 Change in the control group from the baseline: 0.42 ± 1.18 Between-group difference p 0.11 |
Authors Year Location | Overall Risk of Bias | Mitochondrial Bioenergetics | Mitochondrial Dynamics | Redox Activity |
---|---|---|---|---|
BCAA and Whey Protein with Vitamin D | ||||
Grootswagers 2021 [57] The Netherlands | Low | NA | mRNA PGC-1 alpha (Peroxisome proliferator-activated receptor-γ coactivator-1α) Fold change expression: Intervention group: 4.7 +/− 1.8; Control group: 2.2 +/− 0.6 Between treatment difference p 0.685 AMPK (5′adenosine monophosphate-activated protein kinase) Within-treatment difference baseline vs. 12 weeks in intervention group p 0.031 Within-treatment difference baseline vs. 12 weeks in control group p 0.125 TFAM (Mitochondrial Transcription Factor A) Between treatment difference p 0.603 | NA |
BCAA alone | ||||
Buondonno 2020 [65] Italy | Low | ATP Mean in intervention group at baseline:1.0 ± 0.0, 95% CI (−0.45 to −0.15) and 2 months:1.43 ± 0.10, 95% CI (−0.58 to −0.28) Mean in control group at baseline 1.0 ± 0.0, 95% CI (−0.13 to 0.17) and 2 months 0.99 ± 0.02, 95% CI (−0.14 to 0.16) Time difference p 0.0001, Treatment difference p 0.0005, Interaction difference p 0.0001 Electron flux Mean in intervention group at baseline 1.0 ± 0.0, 95% CI (−0.38 to −0.13) and 2 months 1.50 ± 0.09, 95% CI (−0.62 to −0.38) Mean in control group at baseline 1.0 ± 0.0, 95% CI (−0.13 to 0.13) and 2 months 1.01 ± 0.04, 95% CI (−0.14 to 0.12) Time difference p < 0.0001, Treatment difference p < 0.0001, Interaction difference p < 0.0001 | COX-1 (Cytochrome C oxidase -1) Mean in intervention group at baseline 1.0 ± 0.0, 95% CI (−23.8 to −1.9) and 2 months 7.3 ± 3.6, 95% CI (−17.3 to 4.7); Mean in control group at baseline 1.0 ± 0.0, 95% CI (−11.4 to 10.6) and 2 months 3.7 ± 1.2, 95% CI (−13.6 to 8.3) Time difference p 0.1155, Treatment difference p 0.1967, Interaction difference p 0.1409 COX-4 (Cytochrome C oxidase-4) Mean in intervention group at baseline 1.0 ± 0.0, 95% CI (−2.3 to −0.10) and 2 months: 1.8 ± 0.5, 95% CI (−1.9 to 0.3); Mean in control group at baseline 1.0 ± 0.0, 95% CI (−1.39 to 0.76) and 2 months 1.3 ± 0.19, 95% CI (−1.4 to 0.73) Time difference p 0.0459, Treatment difference p 0.2373, Interaction difference p 0.3786 TFAM (Mitochondrial Transcription Factor A) Mean in intervention group at baseline 1.0 ± 0.0, 95% CI (−6.9 to −0.6) and 2 months 4.2 ± 1.15, 95% CI (−6.2 to 0.1); Mean in control group at baseline 1.0 ± 0.0, 95% CI (−3.8 to 2.5) and 2 months: 3.0 ± 1.5, 95% CI (−5.1 to 1.2) Time difference p 0.0178, Treatment difference p 0.0932, Interaction difference p 0.2235 NRF-1 (Nuclear Respiratory Factor-1) Mean in intervention group at baseline 1.0 ± 0.0, 95% CI (−20.2 to 3.5) and 2 months 11.6 ± 9.5, 95% CI (−22.4 to 1.3); Mean in control group at baseline 1.0 ± 0.0, 95% CI (−13.5 to 10.2) and 2 months:3.6 ± 1.2, 95% CI (−14.4 to 9.3) Time difference 0.6599, Treatment difference p 0.3507, Interaction difference p 0.2055 MFN-1 (Mitofusin-1) Mean in intervention group at baseline 1.0 ± 0.0, 95% CI (−22.4 to −2.1) and 2 months 10.1 ± 6.1, 95% CI (−19.3 to 1.0); Mean in control group at baseline 1.0 ± 0.0, 95% CI (−10.8 to 9.4) and 2 months 1.8 ± 0.3, 95% CI (−11.0 to 9.3) Time difference 0.0746, Treatment difference p 0.1648, Interaction difference p 0.1320 MFN-2 (Mitofusin-2) Mean in intervention group at baseline 1.0 ± 0.0 95% CI (−11.6 to −1.1) and 2 months 3.9 ± 1.6, 95% CI (−8.2 to 2.3); Mean in control group at baseline 1.0 ± 0.0, 95% CI (−6.0 to 4.5) and 2 months 2.4 ± 0.5, 95% CI (−6.6 to 3.9) Time difference p 0.0772, Treatment difference p 0.2046, Interaction difference p 0.1810 | Thiobarbituric Acid Reactiv Substances (TBARs) mcg/M Mean in intervention group at baseline 2.3 ± 0.4, 95% CI (−2.8 to 1.2) and 2 months 3.2 ± 0.70, 95% CI (−3.1 to 0.85) Mean in control group at baseline 4.1 ± 0.7, 95% CI (−3.02 to 0.97) and 2 months 6.7 ± 1.3, 95% CI (−5.64 to −1.64) Time difference p 0.0007, Treatment difference p 0.0289, Interaction difference p 0.0332 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cochet, C.; Belloni, G.; Buondonno, I.; Chiara, F.; D’Amelio, P. The Role of Nutrition in the Treatment of Sarcopenia in Old Patients: From Restoration of Mitochondrial Activity to Improvement of Muscle Performance, a Systematic Review. Nutrients 2023, 15, 3703. https://doi.org/10.3390/nu15173703
Cochet C, Belloni G, Buondonno I, Chiara F, D’Amelio P. The Role of Nutrition in the Treatment of Sarcopenia in Old Patients: From Restoration of Mitochondrial Activity to Improvement of Muscle Performance, a Systematic Review. Nutrients. 2023; 15(17):3703. https://doi.org/10.3390/nu15173703
Chicago/Turabian StyleCochet, Camille, Giulia Belloni, Ilaria Buondonno, Francesco Chiara, and Patrizia D’Amelio. 2023. "The Role of Nutrition in the Treatment of Sarcopenia in Old Patients: From Restoration of Mitochondrial Activity to Improvement of Muscle Performance, a Systematic Review" Nutrients 15, no. 17: 3703. https://doi.org/10.3390/nu15173703
APA StyleCochet, C., Belloni, G., Buondonno, I., Chiara, F., & D’Amelio, P. (2023). The Role of Nutrition in the Treatment of Sarcopenia in Old Patients: From Restoration of Mitochondrial Activity to Improvement of Muscle Performance, a Systematic Review. Nutrients, 15(17), 3703. https://doi.org/10.3390/nu15173703