Parenteral Nutrition in the Pediatric Oncologic Population: Are There Any Sex Differences?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Variables
2.3. Ethical Approval
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALL | Acute Lymphatic Leukemia |
ALT | Alanine Transaminase |
AST | Aspartate Transaminase |
CVC | Central Venous Catheter |
EAA | Essential Amino Acids |
GVHD | Graft-versus-Host Disease |
HSCT | Hematopoietic Stem Cell Transplantation |
INR | International Normalized Ratio |
LDL-C | Low-density Lipoprotein Cholesterol |
PNAC | Parenteral Nutrition-Associated Cholestasis |
SAA | Selective Amino Acids |
TG | Triglycerides |
TPN | Total Parenteral Nutrition |
References
- Regitz-Zagrosek, V.; Seeland, U. Sex and gender differences in clinical medicine. In Sex and Gender Differences in Pharmacology. Handbook of Experimental Pharmacology; Regitz-Zagrosek, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 214, pp. 3–22. [Google Scholar] [CrossRef]
- Lazarus, G.M. Gender-specific medicine in pediatrics. J. Gend. Specif. Med. 2001, 4, 50–53. [Google Scholar]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Moulton, V.R. Sex Hormones in Acquired Immunity and Autoimmune Disease. Front. Immunol. 2018, 9, 2279. [Google Scholar] [CrossRef]
- Wagner, A.; Oertelt-Prigione, S.; Adjei, A.; Buclin, T.; Cristina, V.; Csajka, C.; Coukos, G.; Dafni, U.; Dotto, G.-P.; Ducreux, M.; et al. Gender medicine and oncology: Report and consensus of an ESMO workshop. Ann. Oncol. 2019, 30, 1914–1924. [Google Scholar] [CrossRef]
- Haupt, S.; Caramia, F.; Klein, S.L.; Rubin, J.B.; Haupt, Y. Sex disparities matter in cancer development and therapy. Nat. Rev. Cancer 2021, 21, 393–407. [Google Scholar] [CrossRef]
- Tzschoppe, A.; Rauh, M.; Goecke, T.W.; Yazdi, B.; Hart, N.; Siemer, J.; Schild, R.L.; Dötsch, J. Sex-specific differences in the concentration of tubular parameters in the amniotic fluid of second trimester fetuses. Prenat. Diagn. 2012, 32, 476–479. [Google Scholar] [CrossRef]
- Challis, J.; Newnham, J.; Petraglia, F.; Yeganegi, M.; Bocking, A. Fetal sex and preterm birth. Placenta 2013, 34, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Kaltofen, T.; Haase, M.; Thome, U.H.; Laube, M. Male Sex is Associated with a Reduced Alveolar Epithelial Sodium Transport. PLoS ONE 2015, 10, e0136178. [Google Scholar] [CrossRef]
- Ruoppolo, M.; Scolamiero, E.; Caterino, M.; Mirisola, V.; Franconi, F.; Campesi, I. Female and male human babies have distinct blood metabolomic patterns. Mol. Biosyst. 2015, 11, 2483–2492. [Google Scholar] [CrossRef]
- Peacock, J.L.; Marston, L.; Marlow, N.; Calvert, S.A.; Greenough, A. Neonatal and infant outcome in boys and girls born very prematurely. Pediatr. Res. 2012, 71, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.B.; McGlynn, K.A.; Devesa, S.S.; Freedman, N.D.; Anderson, W.F. Sex disparities in cancer mortality and survival. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Dorak, M.T.; Karpuzoglu, E. Gender differences in cancer susceptibility: An inadequately addressed issue. Front. Genet. 2012, 3, 268. [Google Scholar] [CrossRef] [PubMed]
- Eden, O.B.; Harrison, G.; Richards, S.; Lilleyman, J.S.; Bailey, C.C.; Chessells, J.M.; Hann, I.M.; Hill, F.G.; BES Gibson on behalf of the Medical Research Council Childhood Leukaemia Working Party. Long-term follow-up of the United Kingdom Medical Research Council protocols for childhood acute lymphoblastic leukaemia, 1980–1997. Leukemia 2000, 14, 2307–2320. [Google Scholar] [CrossRef] [PubMed]
- Dalle, J.-H.; Balduzzi, A.; Bader, P.; Pieczonka, A.; Yaniv, I.; Lankester, A.; Bierings, M.; Yesilipek, A.; Sedlacek, P.; Ifversen, M.; et al. The impact of donor type on the outcome of pediatric patients with very high risk acute lymphoblastic leukemia. A study of the ALL SCT 2003 BFM-SG and 2007-BFM-International SG. Bone Marrow Transplant. 2021, 56, 257–266. [Google Scholar] [CrossRef]
- Lyskina, G.; Bockeria, O.; Shirinsky, O.; Torbyak, A.; Leontieva, A.; Gagarina, N.; Satyukova, A.; Kostina, J.; Vinogradova, O. Cardiovascular outcomes following Kawasaki disease in Moscow, Russia: A single center experience. Glob. Cardiol. Sci. Pract. 2017, 2017, e201723. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V.; Gebhard, C. Gender medicine: Effects of sex and gender on cardiovascular disease manifestation and outcomes. Nat. Rev. Cardiol. 2023, 20, 236–247. [Google Scholar] [CrossRef]
- Mihatsch, W.A.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; Desci, T.; Domellöf, M.; Embleton, N.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition. Clin. Nutr. 2018, 37 Pt B, 2303–2305. [Google Scholar] [CrossRef]
- Berlana, D. Parenteral Nutrition Overview. Nutrients 2022, 14, 4480. [Google Scholar] [CrossRef]
- McGrath, K.H. Parenteral nutrition use in children with cancer. Pediatr. Blood Cancer 2019, 66, e28000. [Google Scholar] [CrossRef]
- Majhail, N.S.; Farnia, S.H.; Carpenter, P.A.; Champlin, R.E.; Crawford, S.; Marks, D.I.; Omel, J.L.; Orchard, P.J.; Palmer, J.; Saber, W.; et al. Indications for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the American Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2015, 21, 1863–1869. [Google Scholar] [CrossRef]
- Maximova, N.; Schillani, G.; Simeone, R.; Maestro, A.; Zanon, D. Comparison of Efficacy and Safety of Caspofungin Versus Micafungin in Pediatric Allogeneic Stem Cell Transplant Recipients: A Retrospective Analysis. Adv. Ther. 2017, 34, 1184–1199. [Google Scholar] [CrossRef]
- McCurdy, S.R.; Kasamon, Y.L.; Kanakry, C.G.; Bolaños-Meade, J.; Tsai, H.-L.; Showel, M.M.; Kanakry, J.A.; Symons, H.J.; Gojo, I.; Smith, B.D.; et al. Comparable composite endpoints after HLA-matched and HLA-haploidentical transplantation with post-transplantation cyclophosphamide. Haematologica 2017, 102, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Lega, S.; Minute, M. Prontuario Pediatrico, 8th ed.; Medico e Bambino sas: Trieste, Italy, 2018; ISBN 8899236054. [Google Scholar]
- Plauth, M.; Cabré, E.; Riggio, O.; Assis-Camilo, M.; Pirlich, M.; Kondrup, J.; Ferenci, P.; Holm, E.; Dahl, S.V.; Müller, M.; et al. ESPEN Guidelines on Enteral Nutrition: Liver disease. Clin. Nutr. 2006, 25, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, G.; Burrin, D. Impact of Parenteral Lipid Emulsion Components on Cholestatic Liver Disease in Neonates. Nutrients 2021, 13, 508. [Google Scholar] [CrossRef] [PubMed]
- Orso, G.; Mandato, C.; Veropalumbo, C.; Cecchi, N.; Garzi, A.; Vajro, P. Pediatric parenteral nutrition-associated liver disease and cholestasis: Novel advances in pathomechanisms-based prevention and treatment. Dig. Liver Dis. 2016, 48, 215–222. [Google Scholar] [CrossRef]
- Diamond, I.R.; Sterescu, A.; Pencharz, P.B.; Kim, J.H.; Wales, P.W. Changing the Paradigm: Omegaven for the Treatment of Liver Failure in Pediatric Short Bowel Syndrome. J. Pediatr. Gastroenterol. Nutr. 2009, 48, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Allam-Ndoul, B.; Guénard, F.; Barbier, O.; Vohl, M.C. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Do-cosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages. Nutrients 2017, 9, 424. [Google Scholar] [CrossRef] [PubMed]
- Mateu-de Antonio, J.; Florit-Sureda, M. New Strategy to Reduce Hypertriglyceridemia During Parenteral Nutrition While Maintaining Energy Intake. J. Parenter Enter. Nutr. 2016, 40, 705–712. [Google Scholar] [CrossRef]
- The Italian Data Protection Authority. Authorisation no. 9/2014—General Authorisation to Process Personal Data for Scientific Research Purposes. Available online: https://www.garanteprivacy.it/web/guest/home/docweb/-/docweb-display/docweb/3786078 (accessed on 6 July 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 28 March 2023).
- Daniel, D.S.; Whiting, K.; Curry, M.; Jessica, A.L.; Larmarange, J. Reproducible summary tables with the gtsummary package. R J. 2021, 13, 570–580. [Google Scholar] [CrossRef]
- Chongsuvivatwong, V. epiDisplay: Epidemiological Data Display Package; R Package Version 3.5.0.2. 2022. Available online: https://CRAN.R-project.org/package=epiDisplay (accessed on 28 March 2023).
- Kutbi, H.A. Nutrient intake and gender differences among Saudi children. J. Nutr. Sci. 2021, 10, e99. [Google Scholar] [CrossRef]
- Berndt, T.; Kumar, R.; Oster, M.; Just, F.; Büsing, K.; Wolf, P.; Polley, C.; Vollmar, B.; Muráni, E.; Ponsuksili, S.; et al. Novel Mechanisms in the Regulation of Phosphorus Homeostasis. Physiology 2009, 24, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Pigon, J.; Lindholm, M.; Eklund, J.; Hagelbäck, A. Phosphate supplementation in parenteral nutrition. Acta Anaesthesiol. Scand. 1985, 29, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Hicks, W.; Hardy, G. Phosphate supplementation for hypophosphataemia and parenteral nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.J.; Montero, M.; Campelo, E.; Castro, I.; Inaraja, M.T. Hypophosphatemia in postoperative patients with total parenteral nutrition: Influence of nutritional support teams. Nutr. Hosp. 2006, 21, 657–660. [Google Scholar] [PubMed]
- Wierzbicka, A.; Oczkowicz, M. Sex differences in vitamin D metabolism, serum levels and action. Br. J. Nutr. 2022, 128, 2115–2130. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.E.; Paynter, A.S.; White, C.A.; Mazzetti, T.; Ward, E.C.; Norman, P.A.; Munroe, J.; Adams, M.A.; Holden, R.M. Sex Differences in Phosphate Homeostasis: Females Excrete More Phosphate and Calcium after an Oral Phosphate Challenge. J. Clin. Endocrinol. Metab. 2023, 108, 909–919. [Google Scholar] [CrossRef]
- Marvin, V.A.; Brown, D.; Portlock, J.; Livingstone, C. Factors contributing to the development of hypophosphataemia when refeeding using parenteral nutrition. Pharm. World Sci. 2008, 30, 329–335. [Google Scholar] [CrossRef]
- Seashore, J.H.; Seashore, M.R.; Riely, C.; Seashore, J.H.; Seashore, M.R.; Riely, C. Hyperammonemia during total parenteral nutrition in children. J. Parenter. Enter. Nutr. 1982, 6, 114–118. [Google Scholar] [CrossRef]
- Kapila, S.; Saba, M.; Lin, C.-H.; Bawle, E.V. Arginine deficiency-induced hyperammonemia in a home total parenteral nutrition-dependent patient: A case report. J. Parenter. Enter. Nutr. 2001, 25, 286–288. [Google Scholar] [CrossRef]
- Pillai, U.; Kahlon, R.; Sondheimer, J.; Cadnapaphorncai, P.; Bhat, Z. A rare case of hyperammonemia complication of high-protein parenteral nutrition. J. Parenter. Enter. Nutr. 2013, 37, 134–137. [Google Scholar] [CrossRef]
- Bis, G.; Szlasa, W.; Sondaj, K.; Zendran, I.; Mielcarek-Siedziuk, M.; Barg, E. Lipid Complications after Hematopoietic Stem Cell Transplantation (HSCT) in Pediatric Patients. Nutrients 2020, 12, 2500. [Google Scholar] [CrossRef] [PubMed]
- Finch, E.R.; Smith, C.A.; Yang, W.; Liu, Y.; Kornegay, N.M.; Panetta, J.C.; Crews, K.R.; Molinelli, A.R.; Cheng, C.; Pei, D.; et al. Asparaginase formulation impacts hypertriglyceridemia during therapy for acute lymphoblastic leukemia. Pediatr. Blood Cancer 2020, 67, e28040. [Google Scholar] [CrossRef] [PubMed]
- Gokcebay, D.G.; Azik, F.; Bayram, C.; Erdem, A.Y.; Fettah, A.; Isik, P.; Yarali, N.; Demirel, F.; Tunc, B.; Ozbek, N. Evaluation of endocrine and metabolic dysfunctions after hematopoietic stem cell transplantation in children: A study from Turkey. J. Pediatr. Endocrinol. Metab. 2017, 30, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Ozenen, G.G.; Aksoylar, S.; Goksen, D.; Gozmen, S.; Darcan, S.; Ozek, G.; Kansoy, S. Metabolic syndrome and risk factors after hematopoietic stem cell transplantation in children and adolescents. J. Pediatr. Endocrinol. Metab. 2021, 34, 485–493. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, D.; Pan, J.; Fang, X.; Ding, M.; Lu, K.; Ge, X.; Qu, H.; Ma, R.; Zhang, L.; et al. Dyslipidemia in the First 100 days and the Association with Acute Graft-versus-host Disease after Allogeneic Stem Cell Transplantation: A Single-center Retrospective Study in China. Transpl. Immunol. 2023, 78, 101829. [Google Scholar] [CrossRef]
- Samaddar, A.; van Nispen, J.; Armstrong, A.; Song, E.; Voigt, M.; Murali, V.; Krebs, J.; Manithody, C.; Denton, C.; Ericsson, A.C.; et al. Lower systemic inflammation is associated with gut firmicutes dominance and reduced liver injury in a novel ambulatory model of parenteral nutrition. Ann. Med. 2022, 54, 1701–1713. [Google Scholar] [CrossRef]
- Lauriti, G.; Zani, A.; Aufieri, R.; Cananzi, M.; Chiesa, P.L.; Eaton, S.; Pierro, A. Incidence, prevention, and treatment of parenteral nutrition–associated cholestasis and intestinal failure–associated liver disease in infants and children: A systematic review. J. Parenter. Enter. Nutr. 2014, 38, 70–85. [Google Scholar] [CrossRef]
- Albers, M.J.I.J.; de Gast-Bakker, D.-A.H.; van Dam, N.A.M.; Madern, G.C.; Tibboel, D. Male sex predisposes the newborn surgical patient to parenteral nutrition–associated cholestasis and to sepsis. Arch. Surg. 2002, 137, 789–793. [Google Scholar] [CrossRef]
- Yan, W.; Hong, L.; Wang, Y.; Feng, Y.; Lu, L.; Tao, Y.; Wu, J.; Ruan, H.; Tang, Q.; Cai, W. Retrospective Dual-Center Study of Parenteral Nutrition–Associated Cholestasis in Premature Neonates: 15 Years’ Experience. Nutr. Clin. Pract. 2017, 32, 407–413. [Google Scholar] [CrossRef]
- Takemoto, K.; Nakayama, A.; Ito, M.; Sato, Y.; Saito, A.; Torii, Y.; Kaneko, K.I.; Ando, H.; Hayakawa, M. Male gender is related to the development of parenteral nutri-tion-associated cholestasis in neonates. J. Neonatal-Perinat. Med. 2009, 2, 247–251. [Google Scholar] [CrossRef]
- Kubota, A.; Yonekura, T.; Hoki, M.; Oyanagi, H.; Kawahara, H.; Yagi, M.; Imura, K.; Iiboshi, Y.; Wasa, K.; Kamata, S.; et al. Total parenteral nutrition—Associated intrahepatic cholestasis in infants: 25 years’ experience. J. Pediatr. Surg. 2000, 35, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- De Nardi, L.; Simeone, R.; Torelli, L.; Maestro, A.; Zanon, D.; Barbi, E.; Maximova, N. Pediatric males receiving hematopoietic stem cell transplant lose their male disadvantage in disease risk after the procedure: A retrospective observational study. Int. J. Cancer 2022, 151, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Caterino, M.; Ruoppolo, M.; Costanzo, M.; Albano, L.; Crisci, D.; Sotgiu, G.; Saderi, L.; Montella, A.; Franconi, F.; Campesi, I. Sex Affects Human Premature Neonates’ Blood Metabolome According to Gestational Age, Parenteral Nutrition, and Caffeine Treatment. Metabolites 2021, 11, 158. [Google Scholar] [CrossRef] [PubMed]
Characteristic | M, N = 164 1 | F, N = 109 1 | p-Value 2 |
---|---|---|---|
Age (years) | 9.0 (4.0, 15.0) | 12.0 (8.0, 14.0) | 0.11 |
Age group | 0.5 | ||
>12 years | 59 (36%) | 44 (40%) | |
0–12 years | 105 (64%) | 65 (60%) | |
TPN duration (days) | 11 (6, 19) | 12 (6, 21) | 0.5 |
HSCT | 0.4 | ||
0—No | 38 (23%) | 30 (28%) | |
1—Yes | 126 (77%) | 79 (72%) | |
HSCT type | 0.3 | ||
0—No HSTC | 38 (23%) | 30 (28%) | |
1—Autologous | 42 (26%) | 22 (20%) | 0.3 |
2—Allogenic | 28 (17%) | 12 (11%) | 0.2 |
3—MUD | 47 (29%) | 36 (33%) | 0.4 |
4—Haploidentical | 8 (4.9%) | 9 (8.3%) | 0.3 |
Unknown | 1 | 0 | |
Weight (kg) | 32 (18, 54) | 41 (24, 51) | 0.6 |
Unknown | 19 | 14 | |
Total number of TPN bags | 11 (6, 19) | 13 (6, 20) | 0.6 |
Vol/die (mL) | 1800 (1184, 2400) | 1959 (1320, 2446) | 0.4 |
Magnesium/die (mg) | 200 (100, 316) | 202 (134, 311) | 0.5 |
(mmol) | 8.23 (4.11, 13.00) | 8.31 (5.51, 12.79) | |
Phosphorus/die (mg) | 300 (166, 502) | 400 (200, 571) | 0.057 |
(mmol) | 9.69 (5.36, 16.21) | 12.91 (6.46, 18.44) | |
Calcium/die (mg) | 335 (170, 600) | 210 (94, 500) | 0.033 |
(mmol) | 8.35 (4.24, 14.97) | 5.24 (2.34, 12.47) | |
Glucose/die (g) | 182 (118, 266) | 211 (127, 254) | 0.3 |
Lipids (g) | 17 (10, 32) | 23 (9, 33) | 0.3 |
Hypocalcemia before TPN | >0.9 | ||
0—No | 94 (72%) | 62 (72%) | |
1—Yes | 37 (28%) | 24 (28%) | |
Unknown | 33 | 23 | |
Hypomagnesemia before TPN | 0.8 | ||
0—No | 114 (87%) | 74 (86%) | |
1—Yes | 17 (13%) | 12 (14%) | |
Unknown | 33 | 23 | |
Hypophosphatemia before TPN | 0.2 | ||
0—No | 112 (85%) | 67 (78%) | |
1—Yes | 19 (15%) | 19 (22%) | |
Unknown | 33 | 23 | |
SAA supplementation | 0.5 | ||
0—No | 92 (56%) | 57 (52%) | |
1—Yes | 72 (44%) | 52 (48%) | |
EAA supplementation | 0.072 | ||
0—No | 151 (92%) | 92 (85%) | |
1—Si | 13 (7.9%) | 16 (15%) | |
Unknown | 0 | 1 |
Characteristic | Male (n = 164) 1 | Female (n = 109) 1 | p-Value 2 |
---|---|---|---|
Hypercalcemia after TPN | 0.4 | ||
0—No | 129 (100%) | 83 (99%) | |
1—Yes | 0 (0%) | 1 (1.2%) | |
Unknown | 35 | 25 | |
Hypermagnesemia after TPN | >0.9 | ||
0—No | 127 (98%) | 83 (99%) | |
1—Yes | 2 (1.6%) | 1 (1.2%) | |
Unknown | 35 | 25 | |
Hyperphosphatemia after TPN | 0.3 | ||
0—No | 75 (59%) | 55 (65%) | |
1—Yes | 53 (41%) | 29 (35%) | |
Unknown | 36 | 25 | |
Increased transaminases | 0.3 | ||
0—No | 38 (28%) | 31 (35%) | |
1—Yes | 97 (72%) | 57 (65%) | |
Unknown | 29 | 21 | |
Cholestasis | 0.07 | ||
0—No | 128 (79%) | 95 (87%) | |
1—Yes | 35 (21%) | 14 (13%) | |
Unknown | 1 | 0 | |
Hyperammonemia | 0.2 | ||
0—No | 150 (91%) | 103 (95%) | |
1—Yes | 14 (8.5%) | 5 (4.6%) | |
Unknown | 0 | 1 | |
Hypercholesterolemia | 0.3 | ||
0—No | 135 (82%) | 95 (87%) | |
1—Yes | 29 (18%) | 14 (13%) | |
Hypertriglyceridemia | 0.042 | ||
0—No | 125 (76%) | 94 (86%) | |
1—Yes | 39 (24%) | 15 (14%) | |
Hyperglycemia | 0.8 | ||
0—No | 132 (80%) | 89 (82%) | |
1—Yes | 32 (20%) | 20 (18%) | |
Liver injury | 0.7 | ||
0—No | 49 (30%) | 30 (28%) | |
1—Yes | 115 (70%) | 79 (72%) | |
Metabolic acidosis | 0.2 | ||
0—No | 157 (96%) | 108 (99%) | |
1—Yes | 7 (4.3%) | 1 (0.9%) | |
Metabolic alkalosis | 0.013 | ||
0—No | 155 (95%) | 109 (100%) | |
1—Yes | 9 (5.5%) | 0 (0%) | |
Respiratory alkalosis | 0.4 | ||
0—No | 164 (100%) | 108 (99%) | |
1—Yes | 0 (0%) | 1 (0.9%) | |
Sepsis | 0.4 | ||
0—No | 135 (82%) | 94 (86%) | |
1—Yes | 29 (18%) | 15 (14%) | |
CVC thrombosis | 0.7 | ||
0—No | 140 (85%) | 91 (83%) | |
1—Yes | 24 (15%) | 18 (17%) |
Characteristic 1 vs. 0 | OR (95% CI) | p-Value 1 | |
---|---|---|---|
Cholestasis | |||
Gender: F vs. M | 0.45 (0.22, 0.95) | 0.035 | |
Age * | 1.06 (0.99, 1.13) | 0.085 | |
TPN duration * | 1.02 (1, 1.04) | 0.078 | |
HSCT: 1 vs. 0 | 9.09 (2.08, 39.8) | 0.003 | |
Lipide/die (stand. 2) * | 2.66 (1.26 ,5.59) | 0.01 | |
Glucose/die (stand. 2) * | 0.32 (0.12, 0.89) | 0.028 | |
Hypertriglyceridemia | |||
Gender: F vs. M | 0.45 (0.23, 0.88) | 0.019 | |
Age * | 1.05 (0.99, 1.12) | 0.079 | |
TPN duration * | 1.02 (1, 1.04) | 0.075 | |
HSCT: 1 vs. 0 | 0.72 (0.35, 1.49) | 0.376 | |
Lipide/die (stand. 2) * | 1.38 (0.84, 2.26) | 0.198 | |
Glucose/die (stand. 2) * | 0.86 (0.46, 1.6) | 0.635 | |
Sepsis (not-HSCT) | |||
Gender: F vs. M | 0.26 (0.06, 1.09) | 0.065 | |
Age * | 1.11 (0.99, 1.24) | 0.07 | |
TPN duration * | 1.04 (0.96, 1.13) | 0.284 | |
Hyperphosphatemia (HSCT) | |||
Gender: F vs. M | 0.51 (0.25, 1.06) | 0.072 | |
Age * | 0.92 (0.87, 0.98) | 0.012 | |
TPN duration * | 0.99 (0.96, 1.01) | 0.306 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Nardi, L.; Sala, M.; Turoldo, F.; Zanon, D.; Maestro, A.; Barbi, E.; Faganel Kotnik, B.; Maximova, N. Parenteral Nutrition in the Pediatric Oncologic Population: Are There Any Sex Differences? Nutrients 2023, 15, 3822. https://doi.org/10.3390/nu15173822
De Nardi L, Sala M, Turoldo F, Zanon D, Maestro A, Barbi E, Faganel Kotnik B, Maximova N. Parenteral Nutrition in the Pediatric Oncologic Population: Are There Any Sex Differences? Nutrients. 2023; 15(17):3822. https://doi.org/10.3390/nu15173822
Chicago/Turabian StyleDe Nardi, Laura, Mariavittoria Sala, Federico Turoldo, Davide Zanon, Alessandra Maestro, Egidio Barbi, Barbara Faganel Kotnik, and Natalia Maximova. 2023. "Parenteral Nutrition in the Pediatric Oncologic Population: Are There Any Sex Differences?" Nutrients 15, no. 17: 3822. https://doi.org/10.3390/nu15173822
APA StyleDe Nardi, L., Sala, M., Turoldo, F., Zanon, D., Maestro, A., Barbi, E., Faganel Kotnik, B., & Maximova, N. (2023). Parenteral Nutrition in the Pediatric Oncologic Population: Are There Any Sex Differences? Nutrients, 15(17), 3822. https://doi.org/10.3390/nu15173822