The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene
Abstract
:1. Lycopene
2. Antioxidant Effects of Lycopene
3. Antioxidant Activity of Lycopene in Cardiovascular Diseases
4. Antioxidant Activity of Lycopene in Liver Diseases
5. Antioxidant Activity of Lycopene in Ulcerative Colitis
6. Antioxidant Activity of Lycopene in Nervous System Disorders
7. Activity of Lycopene in Type 2 Diabetes Mellitus
Disease | Model/Participants/Type | Period | Lycopene Dosage and Administration | Main Results | Year Published | Reference |
---|---|---|---|---|---|---|
Diabetes mellitus, diabetic nephropathy | Streptozotocin-induced diabetic nephropathy male Kunming mice | 8 weeks | Lycopene dissolved in the vehicle, 40 and 80 mg/kg, three times a week, intragastrically administration | 1. Decreased FBG, | 2015 | [154] |
2. Increased the body weight, | ||||||
3. Increased SOD and GSH-Px levels, | ||||||
4. Decreased MDA level, | ||||||
5. Reduced proteinuria, | ||||||
6. Upregulated intrarenal HO-1 level, | ||||||
7. Attenuated NF-κB and TNF-α expressions in kidney, | ||||||
8. Increased HDL level, | ||||||
9. Decreased LDL level | ||||||
Diabetes mellitus | Streptozotocin-induced diabetic Sprague-Dawley rats | 30 days | Lycopene in sunflower oil, 10 mg/kg/day, oral gavage | 1. Decreased blood and urine glucose levels, | 2016 | [136] |
2. Decreased vacuolization in the pancreas, | ||||||
3. Increased serum insulin levels | ||||||
Diabetes mellitus | Streptozotocin-induced diabetic male Wistar rats | 28 days | Lycopene in corn oil, 4 mg/kg/day, oral gavage | 1. Decreased blood glucose levels, | 2016 | [150] |
2. Increased GSH-Px, SOD, GST, and CAT levels in liver, | ||||||
3. Decreased MDA level in liver, | ||||||
4. No significant changes in the levels of hemoglobin, RBC, hematocrit, MCHC, MCV, and MCH, | ||||||
5. Mitigated histopathological changes in the liver, | ||||||
6. Increased AST, LDH, ALT, and ALP activities, | ||||||
7. No significant changes in TGL and total cholesterol levels | ||||||
Diabetes mellitus | Alloxan monohydrate-induced diabetic male and female Wistar rats | 14 days | Lycopene niosomes, 100 and 200 mg/kg/day, lycopene extract 200 mg/kg/day, oral administration | 1. Decreased blood glucose levels, | 2017 | [151] |
2. Decreased total cholesterol, TGL, LDL, and VLDL | ||||||
Diabetes mellitus | Streptozotocin-induced diabetic male and female Wistar rats | 4 weeks | Lycopene in olive oil, 10, 20, and 40 mg/kg/day, oral administration | 1. Decreased erythrocyte osmotic fragility, | 2017 | [152] |
2. Decreased erythrocyte MDA concentration | ||||||
Diabetes mellitus | Streptozotocin-induced diabetic male Wistar rats | 50 days | Tomato extract mixed with plain yogurt (4.5 mg/kg/day lycopene), oral gavage | 1. Decreased glycemia, | 2017 | [155] |
2. Decreased serum ox-LDL and liver TBARS, | ||||||
3. Increased CAT and SOD levels, | ||||||
4. Increased NPSH groups level, | ||||||
5. No significant changes in GSH-Px level, | ||||||
6. Decreased triacylglycerol and total-cholesterol, | ||||||
7. Increased HDL | ||||||
Diabetes mellitus | Streptozotocin-induced diabetic female Wistar rats | 28 days | Lycopene, 4 mg/kg/day, oral gavage | 1. Increased CAT, SOD, GSH-Px, and GST activity, | 2017 | [149] |
2. Decreased MDA level | ||||||
Diabetes mellitus | Streptozotocin-induced diabetic male Wistar rats | 8 weeks | Lycopene, 4 mg/kg/day, oral administration | 1. Increased TAC level, | 2018 | [153] |
2. Decreased MDA level | ||||||
Diabetes mellitus | Streptozotocin-induced diabetic male Sprague Dawley rats | 10 weeks | Lycopene oil solution, 10 and 20 mg/kg/day, oral administration | 1. Decreased FBG, | 2019 | [147] |
2. Decreased lipid in blood and liver, | ||||||
3. Decreased GHb level, | ||||||
4. Decreased HOMA-IR, | ||||||
5. Increased insulin level, | ||||||
6. Increased GSH-Px and SOD levels in pancreas, | ||||||
7. Decreased MDA level in pancreas | ||||||
Diabetes mellitus | Streptozotocin-induced diabetic male Sprague-Dawley rats | 10 weeks | Lycopene, 5, 10, and 15 mg/kg/day, intragastric gavage | 1. Decreased FBG, | 2019 | [148] |
2. Decreased HOMA-IR, | ||||||
3. Increased FINS, | ||||||
4. Decreased GHb, ox-LDL, and MDA levels, | ||||||
5. Increased CAT, SOD, and GSH-Px activity, | ||||||
6. Decreased CRP and TNF-α | ||||||
Diabetes mellitus, diabetic retinopathy | Diabetic retinopathy: 272 patients, diabetes mellitus without retinopathy: 190 patients, control: 285 patients, cross-sectional study | No data | Dietary intake | 1. No significant association between HbA1c and lycopene | 2017 | [159] |
Diabetes mellitus | Type II diabetes mellitus: 87 patients, control: 122 patients, case–control study | 12 months | Dietary intake, 0.04 mg/kg/day | 1. HbA1c and fasting plasma glucose levels decreased significantly with higher lycopene intake | 2021 | [156] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bin-Jumah, M.N.; Nadeem, M.S.; Gilani, S.J.; Mubeen, B.; Ullah, I.; Alzarea, S.I.; Ghoneim, M.M.; Alshehri, S.; Al-Abbasi, F.A.; Kazmi, I. Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants 2022, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, M.; Wawrzyniak, D.; Rolle, K.; Chomczyński, P.; Oziewicz, S.; Jurga, S.; Barciszewski, J. Let Food Be Your Medicine: Nutraceutical Properties of Lycopene. Food Funct. 2019, 10, 3090–3102. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Ghorat, F.; Ul-Haq, I.; Ur-Rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; et al. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants 2020, 9, 706. [Google Scholar] [CrossRef] [PubMed]
- Numan, N.; Jeyaram, S.; Kaviyarasu, K.; Neethling, P.; Sackey, J.; Kotsedi, C.L.; Akbari, M.; Morad, R.; Mthunzi-Kufa, P.; Sahraoui, B.; et al. On the Remarkable Nonlinear Optical Properties of Natural Tomato Lycopene. Sci. Rep. 2022, 12, 9078. [Google Scholar] [CrossRef]
- Hedayati, N.; Naeini, M.B.; Nezami, A.; Hosseinzadeh, H.; Wallace Hayes, A.; Hosseini, S.; Imenshahidi, M.; Karimi, G. Protective Effect of Lycopene against Chemical and Natural Toxins: A Review: Lycopene against Chemical and Natural Toxins. BioFactors 2019, 45, 5–23. [Google Scholar] [CrossRef]
- Park, H.; Kim, Y.-J.; Shin, Y. Estimation of Daily Intake of Lycopene, Antioxidant Contents and Activities from Tomatoes, Watermelons, and Their Processed Products in Korea. Appl. Biol. Chem. 2020, 63, 50. [Google Scholar] [CrossRef]
- Chen, J.; Cao, X.; Huang, Z.; Chen, X.; Zou, T.; You, J. Research Progress on Lycopene in Swine and Poultry Nutrition: An Update. Animals 2023, 13, 883. [Google Scholar] [CrossRef]
- Hsieh, M.-J.; Huang, C.-Y.; Kiefer, R.; Lee, S.-D.; Maurya, N.; Velmurugan, B.K. Cardiovascular Disease and Possible Ways in Which Lycopene Acts as an Efficient Cardio-Protectant against Different Cardiovascular Risk Factors. Molecules 2022, 27, 3235. [Google Scholar] [CrossRef]
- Xie, B.; Wei, J.; Zhang, Y.; Song, S.; Su, W.; Sun, G.; Hao, Y.; Liu, H. Supplemental Blue and Red Light Promote Lycopene Synthesis in Tomato Fruits. J. Integr. Agric. 2019, 18, 590–598. [Google Scholar] [CrossRef]
- Song, Y.; Teakle, G.; Lillywhite, R. Unravelling Effects of Red/Far-Red Light on Nutritional Quality and the Role and Mechanism in Regulating Lycopene Synthesis in Postharvest Cherry Tomatoes. Food Chem. 2023, 414, 135690. [Google Scholar] [CrossRef]
- Woodside, J.V.; McGrath, A.J.; Lyner, N.; McKinley, M.C. Carotenoids and Health in Older People. Maturitas 2015, 80, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Low, D.Y.; D’Arcy, B.; Gidley, M.J. Mastication Effects on Carotenoid Bioaccessibility from Mango Fruit Tissue. Food Res. Int. 2015, 67, 238–246. [Google Scholar] [CrossRef]
- Cervantes-Paz, B.; de Jesús Ornelas-Paz, J.; Ruiz-Cruz, S.; Rios-Velasco, C.; Ibarra-Junquera, V.; Yahia, E.M.; Gardea-Béjar, A.A. Effects of Pectin on Lipid Digestion and Possible Implications for Carotenoid Bioavailability during Pre-Absorptive Stages: A Review. Food Res. Int. 2017, 99, 917–927. [Google Scholar] [CrossRef]
- Arballo, J.; Amengual, J.; Erdman, J.W. Lycopene: A Critical Review of Digestion, Absorption, Metabolism, and Excretion. Antioxidants 2021, 10, 342. [Google Scholar] [CrossRef] [PubMed]
- Borel, P.; Desmarchelier, C.; Dumont, U.; Halimi, C.; Lairon, D.; Page, D.; Sébédio, J.L.; Buisson, C.; Buffière, C.; Rémond, D. Dietary Calcium Impairs Tomato Lycopene Bioavailability in Healthy Humans. Br. J. Nutr. 2016, 116, 2091–2096. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.M.; Althagafy, H.S.; Abd-alhameed, E.K.; Al-Thubiani, W.S.; Hassanein, E.H.M. Promising Hepatoprotective Effects of Lycopene in Different Liver Diseases. Life Sci. 2022, 310, 121131. [Google Scholar] [CrossRef]
- Rowles, J.L.; Erdman, J.W. Carotenoids and Their Role in Cancer Prevention. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2020, 1865, 158613. [Google Scholar] [CrossRef]
- Raghuvanshi, S.; Reed, V.; Blaner, W.S.; Harrison, E.H. Cellular Localization of β-Carotene 15,15’ Oxygenase-1 (BCO1) and β-Carotene 9’,10’ Oxygenase-2 (BCO2) in Rat Liver and Intestine. Arch. Biochem. Biophys. 2015, 572, 19–27. [Google Scholar] [CrossRef]
- von Lintig, J.; Moon, J.; Lee, J.; Ramkumar, S. Carotenoid Metabolism at the Intestinal Barrier. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2020, 1865, 158580. [Google Scholar] [CrossRef]
- Borel, P.; Desmarchelier, C.; Nowicki, M.; Bott, R. Lycopene Bioavailability Is Associated with a Combination of Genetic Variants. Free Radic. Biol. Med. 2015, 83, 238–244. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, A.K. Lycopene; Chemistry, Biosynthesis, Metabolism and Degradation under Various Abiotic Parameters. J. Food Sci. Technol. 2015, 52, 41–53. [Google Scholar] [CrossRef]
- van Steenwijk, H.P.; Bast, A.; de Boer, A. The Role of Circulating Lycopene in Low-Grade Chronic Inflammation: A Systematic Review of the Literature. Molecules 2020, 25, 4378. [Google Scholar] [CrossRef] [PubMed]
- Petyaev, I.M. Lycopene Deficiency in Ageing and Cardiovascular Disease. Oxidative Med. Cell. Longev. 2016, 2016, 3218605. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.M. Lycopene: Implications for Human Health–A Review. Adv. Food Technol. Nutr. Sci. Open J. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Wu, S.; Guo, X.; Shang, J.; Li, Y.; Dong, W.; Peng, Q.; Xie, Z.; Chen, C. Effects of Lycopene Attenuating Injuries in Ischemia and Reperfusion. Oxidative Med. Cell. Longev. 2022, 2022, 9309327. [Google Scholar] [CrossRef]
- Macar, O.; Kalefetoğlu Macar, T.; Çavuşoğlu, K.; Yalçın, E.; Yapar, K. Lycopene: An Antioxidant Product Reducing Dithane Toxicity in Allium cepa L. Sci. Rep. 2023, 13, 2290. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Zhang, R.-R.; Yin, Y.; Tan, G.-F.; Wang, G.-L.; Liu, H.; Zhuang, J.; Zhang, J.; Zhuang, F.-Y.; Xiong, A.-S. Advances in Engineering the Production of the Natural Red Pigment Lycopene: A Systematic Review from a Biotechnology Perspective. J. Adv. Res. 2023, 46, 31–47. [Google Scholar] [CrossRef]
- Abenavoli, L.; Procopio, A.C.; Paravati, M.R.; Costa, G.; Milić, N.; Alcaro, S.; Luzza, F. Mediterranean Diet: The Beneficial Effects of Lycopene in Non-Alcoholic Fatty Liver Disease. J. Clin. Med. 2022, 11, 3477. [Google Scholar] [CrossRef]
- Martínez, A.; Melendez-Martínez, A.J. Lycopene, Oxidative Cleavage Derivatives and Antiradical Activity. Comput. Theor. Chem. 2016, 1077, 92–98. [Google Scholar] [CrossRef]
- Cámara, M.; De Cortes Sánchez-Mata, M.; Fernández-Ruiz, V.; Cámara, R.M.; Manzoor, S.; Caceres, J.O. Lycopene. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2013; Volume 40, pp. 383–426. ISBN 978-0-444-59603-1. [Google Scholar]
- Przybylska, S. Lycopene—A Bioactive Carotenoid Offering Multiple Health Benefits: A Review. Int. J. Food Sci. Technol. 2020, 55, 11–32. [Google Scholar] [CrossRef]
- Song, X.; Luo, Y.; Ma, L.; Hu, X.; Simal-Gandara, J.; Wang, L.-S.; Bajpai, V.K.; Xiao, J.; Chen, F. Recent Trends and Advances in the Epidemiology, Synergism, and Delivery System of Lycopene as an Anti-Cancer Agent. Semin. Cancer Biol. 2021, 73, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.C.; Sábio, R.M.; Chorilli, M. An Overview of Properties and Analytical Methods for Lycopene in Organic Nanocarriers. Crit. Rev. Anal. Chem. 2020, 51, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Campos-Lozada, G.; Pérez-Marroquín, X.A.; Callejas-Quijada, G.; Campos-Montiel, R.G.; Morales-Peñaloza, A.; León-López, A.; Aguirre-Álvarez, G. The Effect of High-Intensity Ultrasound and Natural Oils on the Extraction and Antioxidant Activity of Lycopene from Tomato (Solanum lycopersicum) Waste. Antioxidants 2022, 11, 1404. [Google Scholar] [CrossRef] [PubMed]
- Pu, C.; Tang, W. Encapsulation of Lycopene in Chlorella Pyrenoidosa: Loading Properties and Stability Improvement. Food Chem. 2017, 235, 283–289. [Google Scholar] [CrossRef]
- Kessy, H.N.; Zhang, L.; Zhang, H. Lycopene (Z)—Isomers Enrichment and Separation. Int. J. Food Sci. Technol. 2013, 48, 2050–2056. [Google Scholar] [CrossRef]
- Leh, H.E.; Lee, L.K. Lycopene: A Potent Antioxidant for the Amelioration of Type II Diabetes Mellitus. Molecules 2022, 27, 2335. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Z.; Hu, L. Recent Technological Strategies for Enhancing the Stability of Lycopene in Processing and Production. Food Chem. 2023, 405, 134799. [Google Scholar] [CrossRef]
- Liang, X.; Ma, C.; Yan, X.; Liu, X.; Liu, F. Advances in Research on Bioactivity, Metabolism, Stability and Delivery Systems of Lycopene. Trends Food Sci. Technol. 2019, 93, 185–196. [Google Scholar] [CrossRef]
- Papaioannou, E.H.; Liakopoulou-Kyriakides, M.; Karabelas, A.J. Natural Origin Lycopene and Its “Green” Downstream Processing. Crit. Rev. Food Sci. Nutr. 2016, 56, 686–709. [Google Scholar] [CrossRef]
- Górecka, D.; Wawrzyniak, A.; Jędrusek-Golińska, A.; Dziedzic, K.; Hamułka, J.; Kowalczewski, P.Ł.; Walkowiak, J. Lycopene in Tomatoes and Tomato Products. Open Chem. 2020, 18, 752–756. [Google Scholar] [CrossRef]
- Ozkan, G.; Günal-Köroğlu, D.; Karadag, A.; Capanoglu, E.; Cardoso, S.M.; Al-Omari, B.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. A Mechanistic Updated Overview on Lycopene as Potential Anticancer Agent. Biomed. Pharmacother. 2023, 161, 114428. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hernández, G.B.; Boluda-Aguilar, M.; Taboada-Rodríguez, A.; Soto-Jover, S.; Marín-Iniesta, F.; López-Gómez, A. Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content. Food Eng. Rev. 2016, 8, 52–75. [Google Scholar] [CrossRef]
- Ashraf, W.; Latif, A.; Lianfu, Z.; Jian, Z.; Chenqiang, W.; Rehman, A.; Hussain, A.; Siddiquy, M.; Karim, A. Technological Advancement in the Processing of Lycopene: A Review. Food Rev. Int. 2022, 38, 857–883. [Google Scholar] [CrossRef]
- Amorim, A.D.G.N.; Vasconcelos, A.G.; Souza, J.; Oliveira, A.; Gullón, B.; de Souza de Almeida Leite, J.R.; Pintado, M. Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting. Antioxidants 2022, 11, 360. [Google Scholar] [CrossRef]
- Mehta, N.; Patani, P.; Singhvi, I. A Review on Tomato Lycopene. Int. J. Pharm. Sci. Res. 2018, 9, 916–923. [Google Scholar] [CrossRef]
- Müller, L.; Caris-Veyrat, C.; Lowe, G.; Böhm, V. Lycopene and Its Antioxidant Role in the Prevention of Cardiovascular Diseases—A Critical Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1868–1879. [Google Scholar] [CrossRef]
- Costa-Rodrigues, J.; Pinho, O.; Monteiro, P.R.R. Can Lycopene Be Considered an Effective Protection against Cardiovascular Disease? Food Chem. 2018, 245, 1148–1153. [Google Scholar] [CrossRef]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.; Siervo, M.; Lara, J. Tomato and Lycopene Supplementation and Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. Atherosclerosis 2017, 257, 100–108. [Google Scholar] [CrossRef]
- Sluijs, I.; Cadier, E.; Beulens, J.W.J.; van der A, D.L.; Spijkerman, A.M.W.; van der Schouw, Y.T. Dietary Intake of Carotenoids and Risk of Type 2 Diabetes. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 376–381. [Google Scholar] [CrossRef]
- Ratto, F.; Franchini, F.; Musicco, M.; Caruso, G.; Di Santo, S.G. A Narrative Review on the Potential of Tomato and Lycopene for the Prevention of Alzheimer’s Disease and Other Dementias. Crit. Rev. Food Sci. Nutr. 2022, 62, 4970–4981. [Google Scholar] [CrossRef]
- Prema, A.; Janakiraman, U.; Manivasagam, T.; Justin Thenmozhi, A. Neuroprotective Effect of Lycopene against MPTP Induced Experimental Parkinson’s Disease in Mice. Neurosci. Lett. 2015, 599, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Rengasamy, K.R.R.; Mahomoodally, F.M.; Keum, Y.-S. Protective Effects of Lycopene in Cancer, Cardiovascular, and Neurodegenerative Diseases: An Update on Epidemiological and Mechanistic Perspectives. Pharmacol. Res. 2020, 155, 104730. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Huang, C.; Chen, Z. A Review for the Pharmacological Effect of Lycopene in Central Nervous System Disorders. Biomed. Pharmacother. 2019, 111, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Kashef, S.M.; Yassien, R.I.; El-Ghazouly, D.E.-S. The Possible Effect of Lycopene in Ameliorating Experimentally Induced Ulcerative Colitis in Adult Male Albino Rats (A Histological, Immunohistochemical, and Ultrastructural Study). Ultrastruct. Pathol. 2023, 47, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Korovesis, D.; Rubio-Tomás, T.; Tavernarakis, N. Oxidative Stress in Age-Related Neurodegenerative Diseases: An Overview of Recent Tools and Findings. Antioxidants 2023, 12, 131. [Google Scholar] [CrossRef]
- Varela, E.L.P.; Gomes, A.R.Q.; da Silva Barbosa dos Santos, A.; de Carvalho, E.P.; Vale, V.V.; Percário, S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022, 14, 5303. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- York-Duran, M.J.; Godoy-Gallardo, M.; Jansmanung, M.M.T.; Hosta-Rigau, L. A Dual-Component Carrier with Both Non-Enzymatic and Enzymatic Antioxidant Activity towards ROS Depletion. Biomater. Sci. 2019, 7, 4813–4826. [Google Scholar] [CrossRef]
- Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal Prospects of Antioxidants: A Review. Eur. J. Med. Chem. 2019, 178, 687–704. [Google Scholar] [CrossRef]
- Rives, C.; Fougerat, A.; Ellero-Simatos, S.; Loiseau, N.; Guillou, H.; Gamet-Payrastre, L.; Wahli, W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020, 10, 1702. [Google Scholar] [CrossRef]
- Farzanegi, P.; Dana, A.; Ebrahimpoor, Z.; Asadi, M.; Azarbayjani, M.A. Mechanisms of Beneficial Effects of Exercise Training on Non-Alcoholic Fatty Liver Disease (NAFLD): Roles of Oxidative Stress and Inflammation. Eur. J. Sport Sci. 2019, 19, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Grácio, D.; Teixeira, J.P.; Magro, F. Oxidative Stress and DNA Damage: Implications in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 2403–2417. [Google Scholar] [CrossRef] [PubMed]
- Krzystek-Korpacka, M.; Kempiński, R.; Bromke, M.A.; Neubauer, K. Oxidative Stress Markers in Inflammatory Bowel Diseases: Systematic Review. Diagnostics 2020, 10, 601. [Google Scholar] [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Wu, H.; Wu, Y.; Cui, Z.; Hu, L. Nutraceutical Delivery Systems to Improve the Bioaccessibility and Bioavailability of Lycopene: A Review. Crit. Rev. Food Sci. Nutr. 2023; 1–19, online ahead of print. [Google Scholar] [CrossRef]
- Caseiro, M.; Ascenso, A.; Costa, A.; Creagh-Flynn, J.; Johnson, M.; Simões, S. Lycopene in Human Health. LWT 2020, 127, 109323. [Google Scholar] [CrossRef]
- Khan, U.M.; Sevindik, M.; Zarrabi, A.; Nami, M.; Ozdemir, B.; Kaplan, D.N.; Selamoglu, Z.; Hasan, M.; Kumar, M.; Alshehri, M.M.; et al. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative Med. Cell. Longev. 2021, 2021, 2713511. [Google Scholar] [CrossRef]
- Marzocco, S.; Singla, R.K.; Capasso, A. Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer. Molecules 2021, 26, 5333. [Google Scholar] [CrossRef]
- Przybylska, S.; Tokarczyk, G. Lycopene in the Prevention of Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 1957. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.; Kar, S.K.; Yadav, P.K.; Yadav, S.; Shrestha, L.; Bera, T.K. Therapeutic and Medicinal Uses of Lycopene: A Systematic Review. Int. J. Res. Med. Sci. 2020, 8, 1195. [Google Scholar] [CrossRef]
- Sun, X.; Jia, H.; Xu, Q.; Zhao, C.; Xu, C. Lycopene Alleviates H2O2 -Induced Oxidative Stress, Inflammation and Apoptosis in Bovine Mammary Epithelial Cells via the NFE2L2 Signaling Pathway. Food Funct. 2019, 10, 6276–6285. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Wu, C.; Rao, Z.; Du, L.; Zhao, R.; Yi, M.; et al. Tomato and Lycopene and Multiple Health Outcomes: Umbrella Review. Food Chem. 2021, 343, 128396. [Google Scholar] [CrossRef] [PubMed]
- Pataro, G.; Carullo, D.; Falcone, M.; Ferrari, G. Recovery of Lycopene from Industrially Derived Tomato Processing By-Products by Pulsed Electric Fields-Assisted Extraction. Innov. Food Sci. Emerg. Technol. 2020, 63, 102369. [Google Scholar] [CrossRef]
- Amorim, A.G.N.; Souza, J.M.T.; Santos, R.C.; Gullón, B.; Oliveira, A.; Santos, L.F.A.; Virgino, A.L.E.; Mafud, A.C.; Petrilli, H.M.; Mascarenhas, Y.P.; et al. HPLC-DAD, ESI–MS/MS, and NMR of Lycopene Isolated From P. Guajava L. and Its Biotechnological Applications. Eur. J. Lipid Sci. Technol. 2018, 120, 1700330. [Google Scholar] [CrossRef]
- Stinco, C.M.; Heredia, F.J.; Vicario, I.M.; Meléndez-Martínez, A.J. In Vitro Antioxidant Capacity of Tomato Products: Relationships with Their Lycopene, Phytoene, Phytofluene and Alpha-Tocopherol Contents, Evaluation of Interactions and Correlation with Reflectance Measurements. LWT-Food Sci. Technol. 2016, 65, 718–724. [Google Scholar] [CrossRef]
- Alvi, S.S.; Iqbal, D.; Ahmad, S.; Khan, M.S. Molecular Rationale Delineating the Role of Lycopene as a Potent HMG-CoA Reductase Inhibitor: In Vitro and in Silico Study. Nat. Prod. Res. 2016, 30, 2111–2114. [Google Scholar] [CrossRef]
- Wang, H.; Lin, Y.; Liu, Q.; Zhou, A.; Bian, H.; Zhang, W.; Hui, A.; Wu, Z. Antioxidant, Anticancer Activity and Molecular Docking Study of Lycopene with Different Ratios of Z-Isomers. Curr. Res. Food Sci. 2023, 6, 100455. [Google Scholar] [CrossRef]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxid. Med. Cell. Longev. 2019, 2019, 7092151. [Google Scholar] [CrossRef]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhao, J.; Dong, B.; Cai, X.; Jiang, J.; Xue, R.; Yao, F.; Dong, Y.; Liu, C. Lycopene Protects against Pressure Overload-Induced Cardiac Hypertrophy by Attenuating Oxidative Stress. J. Nutr. Biochem. 2019, 66, 70–78. [Google Scholar] [CrossRef]
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Liu, K.; Gao, Y.; Zhao, L.; Fang, H.; Li, Y.; Pei, L.; Xu, Y. Lycopene and Risk of Cardiovascular Diseases: A Meta-Analysis of Observational Studies. Mol. Nutr. Food Res. 2017, 61, 1601009. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Liu, L.; Li, M.-Z.; Wang, H.-R.; Zhao, Y.; Li, J.-L. Lycopene Prevents Di-(2-Ethylhexyl) Phthalate-Induced Mitophagy and Oxidative Stress in Mice Heart via Modulating Mitochondrial Homeostasis. J. Nutr. Biochem. 2023, 115, 109285. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Aparicio, R.; Carrón, R.; Sevilla, M.Á.; Monroy-Ruiz, J.; Montero, M.J. Lycopene-Supplemented Diet Ameliorates Cardiovascular Remodeling and Oxidative Stress in Rats with Hypertension Induced by Angiotensin II. J. Funct. Foods 2018, 47, 279–287. [Google Scholar] [CrossRef]
- James, A.S.; Ugbaja, R.N.; Ugwor, E.I.; Thomas, F.C.; Akamo, A.J.; Akinloye, D.I.; Eteng, O.E.; Salami, S.K.; Emmanuel, E.A.; Ugbaja, V.C. Lycopene Abolishes Palmitate-Mediated Myocardial Inflammation in Female Wistar Rats via Modulation of Lipid Metabolism, NF-ΚB Signalling Pathway, and Augmenting the Antioxidant Systems. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 671–681. [Google Scholar] [CrossRef]
- He, Q.; Zhou, W.; Xiong, C.; Tan, G.; Chen, M. Lycopene Attenuates Inflammation and Apoptosis in Post-Myocardial Infarction Remodeling by Inhibiting the Nuclear Factor-ΚB Signaling Pathway. Mol. Med. Rep. 2015, 11, 374–378. [Google Scholar] [CrossRef]
- Li, X.-N.; Lin, J.; Xia, J.; Qin, L.; Zhu, S.-Y.; Li, J.-L. Lycopene Mitigates Atrazine-Induced Cardiac Inflammation via Blocking the NF-ΚB Pathway and NO Production. J. Funct. Foods 2017, 29, 208–216. [Google Scholar] [CrossRef]
- Albrahim, T. Lycopene Modulates Oxidative Stress and Inflammation in Hypercholesterolemic Rats. Pharmaceuticals 2022, 15, 1420. [Google Scholar] [CrossRef] [PubMed]
- Alvi, S.S.; Ansari, I.A.; Ahmad, M.K.; Iqbal, J.; Khan, M.S. Lycopene Amends LPS Induced Oxidative Stress and Hypertriglyceridemia via Modulating PCSK-9 Expression and Apo-CIII Mediated Lipoprotein Lipase Activity. Biomed. Pharmacother. 2017, 96, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- da Silva Brito, A.K.; de Morais Lima, G.; de Farias, L.M.; Rodrigues, L.A.R.L.; de Carvalho, V.B.L.; de Carvalho Pereira, C.F.; de Macedo Gonçalves Frota, K.; Conde-Júnior, A.M.; Moura, A.M.O.; dos Santos Rizzo, M.; et al. Lycopene-Rich Extract from Red Guava (Psidium guajava L.) Decreases Plasma Triglycerides and Improves Oxidative Stress Biomarkers on Experimentally-Induced Dyslipidemia in Hamsters. Nutrients 2019, 11, 393. [Google Scholar] [CrossRef] [PubMed]
- Colmán-Martínez, M.; Martínez-Huélamo, M.; Valderas-Martínez, P.; Arranz-Martínez, S.; Almanza-Aguilera, E.; Corella, D.; Estruch, R.; Lamuela-Raventós, R.M. Trans-Lycopene from Tomato Juice Attenuates Inflammatory Biomarkers in Human Plasma Samples: An Intervention Trial. Mol. Nutr. Food Res. 2017, 61, 1600993. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.-M.; Chen, H.-Z.; Huang, Y.-T.; Hsieh, C.-W.; Wung, B.-S. Lycopene Inhibits NF-ΚB Activation and Adhesion Molecule Expression through Nrf2-Mediated Heme Oxygenase-1 in Endothelial Cells. Int. J. Mol. Med. 2017, 39, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.-B.; Hu, E.-D.; Xu, L.-M.; Chen, L.; Wu, J.-L.; Li, H.; Chen, D.-Z.; Chen, Y.-P. The Relationship between Obesity and the Severity of Non-Alcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 491–502. [Google Scholar] [CrossRef]
- Ni, Y.; Zhuge, F.; Nagashimada, M.; Ota, T. Novel Action of Carotenoids on Non-Alcoholic Fatty Liver Disease: Macrophage Polarization and Liver Homeostasis. Nutrients 2016, 8, 391. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD Development and Therapeutic Strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- Schuster, S.; Cabrera, D.; Arrese, M.; Feldstein, A.E. Triggering and Resolution of Inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 349–364. [Google Scholar] [CrossRef]
- de Carvalho Ribeiro, M.; Szabo, G. Role of the Inflammasome in Liver Disease. Annu. Rev. Pathol. Mech. Dis. 2022, 17, 345–365. [Google Scholar] [CrossRef]
- Hwangbo, H.; Kim, M.Y.; Ji, S.Y.; Kim, S.Y.; Lee, H.; Kim, G.-Y.; Park, C.; Keum, Y.-S.; Hong, S.H.; Cheong, J.; et al. Auranofin Attenuates Non-Alcoholic Fatty Liver Disease by Suppressing Lipid Accumulation and NLRP3 Inflammasome-Mediated Hepatic Inflammation In Vivo and In Vitro. Antioxidants 2020, 9, 1040. [Google Scholar] [CrossRef] [PubMed]
- Handa, P.; Morgan-Stevenson, V.; Maliken, B.D.; Nelson, J.E.; Washington, S.; Westerman, M.; Yeh, M.M.; Kowdley, K.V. Iron Overload Results in Hepatic Oxidative Stress, Immune Cell Activation, and Hepatocellular Ballooning Injury, Leading to Nonalcoholic Steatohepatitis in Genetically Obese Mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G117–G127. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Li, L.; Deng, Y.; Song, G.; Wang, Y. Protective Effects of Lycopene on TiO2 Nanoparticle-induced Damage in the Liver of Mice. J. Appl. Toxicol. 2023, 43, 913–928. [Google Scholar] [CrossRef]
- Bandeira, A.C.B.; da Silva, T.P.; de Araujo, G.R.; Araujo, C.M.; da Silva, R.C.; Lima, W.G.; Bezerra, F.S.; Costa, D.C. Lycopene Inhibits Reactive Oxygen Species Production in SK-Hep-1 Cells and Attenuates Acetaminophen-Induced Liver Injury in C57BL/6 Mice. Chem. Biol. Interact. 2017, 263, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Zhuge, F.; Nagashimada, M.; Nagata, N.; Xu, L.; Yamamoto, S.; Fuke, N.; Ushida, Y.; Suganuma, H.; Kaneko, S.; et al. Lycopene Prevents the Progression of Lipotoxicity-Induced Nonalcoholic Steatohepatitis by Decreasing Oxidative Stress in Mice. Free Radic. Biol. Med. 2020, 152, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Piña-Zentella, R.M.; Rosado, J.L.; Gallegos-Corona, M.A.; Madrigal-Pérez, L.A.; García, O.P.; Ramos-Gomez, M. Lycopene Improves Diet-Mediated Recuperation in Rat Model of Nonalcoholic Fatty Liver Disease. J. Med. Food 2016, 19, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Róvero Costa, M.; Leite Garcia, J.; Cristina Vágula de Almeida Silva, C.; Junio Togneri Ferron, A.; Valentini Francisqueti-Ferron, F.; Kurokawa Hasimoto, F.; Schmitt Gregolin, C.; Henrique Salomé de Campos, D.; Roberto de Andrade, C.; dos Anjos Ferreira, A.L.; et al. Lycopene Modulates Pathophysiological Processes of Non-Alcoholic Fatty Liver Disease in Obese Rats. Antioxidants 2019, 8, 276. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, X.; Liu, M.; Zhao, H.; Sun, Y. Lycopene Prevents Non-Alcoholic Fatty Liver Disease through Regulating Hepatic NF-ΚB/NLRP3 Inflammasome Pathway and Intestinal Microbiota in Mice Fed with High-Fat and High-Fructose Diet. Front. Nutr. 2023, 10, 1120254. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, R.; Shen, Z.; Cai, G. Combination of Luteolin and Lycopene Effectively Protect against the “Two-Hit” in NAFLD through Sirt1/AMPK Signal Pathway. Life Sci. 2020, 256, 117990. [Google Scholar] [CrossRef]
- Mustra Rakic, J.; Liu, C.; Veeramachaneni, S.; Wu, D.; Paul, L.; Ausman, L.M.; Wang, X.-D. Dietary Lycopene Attenuates Cigarette Smoke-Promoted Nonalcoholic Steatohepatitis by Preventing Suppression of Antioxidant Enzymes in Ferrets. J. Nutr. Biochem. 2021, 91, 108596. [Google Scholar] [CrossRef]
- Ahmedy, O.A.; Ibrahim, S.M.; Salem, H.H.; Kandil, E.A. Antiulcerogenic Effect of Melittin via Mitigating TLR4/TRAF6 Mediated NF-ΚB and P38MAPK Pathways in Acetic Acid-Induced Ulcerative Colitis in Mice. Chem. Biol. Interact. 2020, 331, 109276. [Google Scholar] [CrossRef]
- Dziąbowska-Grabias, K.; Sztanke, M.; Zając, P.; Celejewski, M.; Kurek, K.; Szkutnicki, S.; Korga, P.; Bulikowski, W.; Sztanke, K. Antioxidant Therapy in Inflammatory Bowel Diseases. Antioxidants 2021, 10, 412. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Wang, Q.; Cheng, H. Synergistic Protective Effect of Interactions of Quercetin with Lycopene Against Ochratoxin A-Induced Ulcerative Colitis. Appl. Biochem. Biotechnol. 2023, 195, 5253–5266. [Google Scholar] [CrossRef]
- Gul Baykalir, B.; Aksit, D.; Dogru, M.S.; Hanım Yay, A.; Aksit, H.; Seyrek, K.; Attesahin, A. Lycopene Ameliorates Experimental Colitis in Rats via Reducing Apoptosis and Oxidative Stress. Int. J. Vitam. Nutr. Res. 2016, 86, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Ren, B.; Guo, R.; Zhang, W.; Ma, S.; Yao, Y.; Yuan, T.; Liu, Z.; Liu, X. Supplementation of Lycopene Attenuates Oxidative Stress Induced Neuroinflammation and Cognitive Impairment via Nrf2/NF-ΚB Transcriptional Pathway. Food Chem. Toxicol. 2017, 109, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Jurcau, A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int. J. Mol. Sci. 2021, 22, 11847. [Google Scholar] [CrossRef]
- Mecocci, P.; Boccardi, V.; Cecchetti, R.; Bastiani, P.; Scamosci, M.; Ruggiero, C.; Baroni, M. A Long Journey into Aging, Brain Aging, and Alzheimer’s Disease Following the Oxidative Stress Tracks. J. Alzheimer’s Dis. 2018, 62, 1319–1335. [Google Scholar] [CrossRef]
- Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative Stress and Its Significant Roles in Neurodegenerative Diseases and Cancer. Int. J. Mol. Sci. 2014, 16, 193–217. [Google Scholar] [CrossRef]
- Gandla, K.; Babu, A.K.; Unnisa, A.; Sharma, I.; Singh, L.P.; Haque, M.A.; Dashputre, N.L.; Baig, S.; Siddiqui, F.A.; Khandaker, M.U.; et al. Carotenoids: Role in Neurodegenerative Diseases Remediation. Brain Sci. 2023, 13, 457. [Google Scholar] [CrossRef]
- Manochkumar, J.; Doss, C.G.P.; El-Seedi, H.R.; Efferth, T.; Ramamoorthy, S. The Neuroprotective Potential of Carotenoids in Vitro and in Vivo. Phytomedicine 2021, 91, 153676. [Google Scholar] [CrossRef]
- Kapoor, B.; Gulati, M.; Rani, P.; Kochhar, R.S.; Atanasov, A.G.; Gupta, R.; Sharma, D.; Kapoor, D. Lycopene: Sojourn from Kitchen to an Effective Therapy in Alzheimer’s Disease. BioFactors 2023, 49, 208–227. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, D.; Yin, K.; Liu, Y.; Lu, H.; Zhao, H.; Xing, M. Lycopene Attenuates Oxidative Stress, Inflammation, and Apoptosis by Modulating Nrf2/NF-ΚB Balance in Sulfamethoxazole-Induced Neurotoxicity in Grass Carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2022, 121, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Fu, Y.; Zhou, X.; Pan, W.; Shi, Y.; Wang, M.; Zhang, X.; Qi, D.; Li, L.; Ma, K.; et al. Depression-like Behaviors and Heme Oxygenase-1 Are Regulated by Lycopene in Lipopolysaccharide-Induced Neuroinflammation. J. Neuroimmunol. 2016, 298, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Liu, R.; Dai, W.; Jie, Y.; Yu, G.; Fan, X.; Huang, Q. Lycopene Attenuates Early Brain Injury and Inflammation Following Subarachnoid Hemorrhage in Rats. Int. J. Clin. Exp. Med. 2015, 8, 14316. [Google Scholar]
- Yu, L.; Wang, W.; Pang, W.; Xiao, Z.; Jiang, Y.; Hong, Y. Dietary Lycopene Supplementation Improves Cognitive Performances in Tau Transgenic Mice Expressing P301L Mutation via Inhibiting Oxidative Stress and Tau Hyperphosphorylation. J. Alzheimer’s Dis. 2017, 57, 475–482. [Google Scholar] [CrossRef]
- Lim, S.; Hwang, S.; Yu, J.H.; Lim, J.W.; Kim, H. Lycopene Inhibits Regulator of Calcineurin 1-Mediated Apoptosis by Reducing Oxidative Stress and down-Regulating Nucling in Neuronal Cells. Mol. Nutr. Food Res. 2017, 61, 1600530. [Google Scholar] [CrossRef]
- Qu, M.; Jiang, Z.; Liao, Y.; Song, Z.; Nan, X. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons. Neurochem. Res. 2016, 41, 1354–1364. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Wang, Z.; Cui, Y.; Tan, X.; Yuan, T.; Liu, Q.; Liu, Z.; Liu, X. Supplementation of Lycopene Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Cognitive Impairments via Mediating Neuroinflammation and Oxidative Stress. J. Nutr. Biochem. 2018, 56, 16–25. [Google Scholar] [CrossRef]
- Sachdeva, A.K.; Chopra, K. Lycopene Abrogates Aβ(1–42)-Mediated Neuroinflammatory Cascade in an Experimental Model of Alzheimer’s Disease. J. Nutr. Biochem. 2015, 26, 736–744. [Google Scholar] [CrossRef]
- Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.-F. Global, Regional, and National Burden and Trend of Diabetes in 195 Countries and Territories: An Analysis from 1990 to 2025. Sci. Rep. 2020, 10, 14790. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Ansari, P.; Akther, S.; Hannan, J.M.A.; Seidel, V.; Nujat, N.J.; Abdel-Wahab, Y.H.A. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022, 27, 4278. [Google Scholar] [CrossRef] [PubMed]
- Ozmen, O.; Topsakal, S.; Haligur, M.; Aydogan, A.; Dincoglu, D. Effects of Caffeine and Lycopene in Experimentally Induced Diabetes Mellitus. Pancreas 2016, 45, 579. [Google Scholar] [CrossRef] [PubMed]
- Aouacheri, O.; Saka, S.; Krim, M.; Messaadia, A.; Maidi, I. The Investigation of the Oxidative Stress-Related Parameters in Type 2 Diabetes Mellitus. Can. J. Diabetes 2015, 39, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Casoinic, F.; Sampelean, D.; Buzoianu, A.D.; Hancu, N.; Baston, D. Serum Levels of Oxidative Stress Markers in Patients with Type 2 Diabetes Mellitus and Non-Alcoholic Steatohepatitis. Rom. J. Intern. Med. 2016, 54, 228–236. [Google Scholar] [CrossRef]
- Al-Jiffri, E.H. Association between Adipocytokines, Systemic Inflammation and Oxidative Stress Biomarkers among Obese Type 2 Diabetic Patients. Adv. Res. Gastroenterol. Hepatol. 2017, 5, 80–85. [Google Scholar] [CrossRef]
- Lasisi, I.A.; Adedokun, K.A.; Oyenike, M.A.; Muhibi, M.A.; Kamorudeen, R.T.; Oluogun, W.A. Glycemic Control and Its Impact on Oxidative Stress Biomarkers in Type 2 Diabetic Patients Treated with Metformin: A Cross-Sectional Analysis. Sci. Med. 2019, 29, 33630. [Google Scholar] [CrossRef]
- Mandal, M.; Varghese, A.; Gaviraju, V.K.; Talwar, S.N.; Malini, S.S. Impact of Hyperglycaemia on Molecular Markers of Oxidative Stress and Antioxidants in Type 2 Diabetes Mellitus. Clin. Diabetol. 2019, 8, 215–222. [Google Scholar] [CrossRef]
- Picu, A.; Petcu, L.; Ştefan, S.; Mitu, M.; Lixandru, D.; Ionescu-Tîrgovişte, C.; Pîrcălăbioru, G.G.; Ciulu-Costinescu, F.; Bubulica, M.-V.; Chifiriuc, M.C. Markers of Oxidative Stress and Antioxidant Defense in Romanian Patients with Type 2 Diabetes Mellitus and Obesity. Molecules 2017, 22, 714. [Google Scholar] [CrossRef]
- Zhang, P.; Li, T.; Wu, X.; Nice, E.C.; Huang, C.; Zhang, Y. Oxidative Stress and Diabetes: Antioxidative Strategies. Front. Med. 2020, 14, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, J.S.; Sehrawat, A.; Mishra, J.; Sidhu, I.S.; Navik, U.; Khullar, N.; Kumar, S.; Bhatti, G.K.; Reddy, P.H. Oxidative Stress in the Pathophysiology of Type 2 Diabetes and Related Complications: Current Therapeutics Strategies and Future Perspectives. Free Radic. Biol. Med. 2022, 184, 114–134. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, H.H.; Ramasamy, R.; Schmidt, A.M. Advanced Glycation End Products: Building on the Concept of the “Common Soil” in Metabolic Disease. Endocrinology 2020, 161, bqz006. [Google Scholar] [CrossRef] [PubMed]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Mel’nikova, T.I.; Porozov, Y.B.; Terentiev, A.A. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxidative Med. Cell. Longev. 2019, 2019, 3085756. [Google Scholar] [CrossRef]
- Yin, Y.; Zheng, Z.; Jiang, Z. Effects of Lycopene on Metabolism of Glycolipid in Type 2 Diabetic Rats. Biomed. Pharmacother. 2019, 109, 2070–2077. [Google Scholar] [CrossRef]
- Zheng, Z.; Yin, Y.; Lu, R.; Jiang, Z. Lycopene Ameliorated Oxidative Stress and Inflammation in Type 2 Diabetic Rats. J. Food Sci. 2019, 84, 1194–1200. [Google Scholar] [CrossRef]
- Uçar, S.; Pandir, D. Furan Induced Ovarian Damage in Non-Diabetic and Diabetic Rats and Cellular Protective Role of Lycopene. Arch. Gynecol. Obs. 2017, 296, 1027–1037. [Google Scholar] [CrossRef]
- Baş, H.; Pandır, D.; Kalender, S. Furan-Induced Hepatotoxic and Hematologic Changes in Diabetic Rats: The Protective Role of Lycopene. Arch. Ind. Hyg. Toxicol. 2016, 67, 194–203. [Google Scholar] [CrossRef]
- Sharma, P.; Saxena, P.; Jaswanth, A.; Chalamaiah, M.; Balasubramaniam, A. Anti-Diabetic Activity of Lycopene Niosomes: Experimental Observation. J. Pharm. Drug Dev. 2017, 4, 1. [Google Scholar] [CrossRef]
- Eze, E.D.; Tanko, Y.; Abubakar, A.; Sulaiman, S.O.; Rabiu, K.M.; Mohammed, A. Lycopene Ameliorates Diabetic-Induced Changes in Erythrocyte Osmotic Fragility and Lipid Peroxidation in Wistar Rats. J. Diabetes Mellit. 2017, 7, 71–85. [Google Scholar] [CrossRef]
- Malekiyan, R.; Abdanipour, A.; Sohrabi, D.; Jafari Anarkooli, I. Antioxidant and Neuroprotective Effects of Lycopene and Insulin in the Hippocampus of Streptozotocin-induced Diabetic Rats. Biomed. Rep. 2018, 10, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, Y.; Wang, Y. Beneficial Effect of Lycopene on Anti-Diabetic Nephropathy through Diminishing Inflammatory Response and Oxidative Stress. Food Funct. 2015, 6, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Assis, R.; Arcaro, C.; Gutierres, V.; Oliveira, J.; Costa, P.; Baviera, A.; Brunetti, I. Combined Effects of Curcumin and Lycopene or Bixin in Yoghurt on Inhibition of LDL Oxidation and Increases in HDL and Paraoxonase Levels in Streptozotocin-Diabetic Rats. Int. J. Mol. Sci. 2017, 18, 332. [Google Scholar] [CrossRef] [PubMed]
- Leh, H.E.; Mohd Sopian, M.; Abu Bakar, M.H.; Lee, L.K. The Role of Lycopene for the Amelioration of Glycaemic Status and Peripheral Antioxidant Capacity among the Type II Diabetes Mellitus Patients: A Case–Control Study. Ann. Med. 2021, 53, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Motta, B.P.; Pinheiro, C.G.; Figueiredo, I.D.; Cardoso, F.N.; Oliveira, J.O.; Machado, R.T.A.; da Silva, P.B.; Chorilli, M.; Brunetti, I.L.; Baviera, A.M. Combined Effects of Lycopene and Metformin on Decreasing Oxidative Stress by Triggering Endogenous Antioxidant Defenses in Diet-Induced Obese Mice. Molecules 2022, 27, 8503. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, B.; Bai, Y.; Miao, T.; Rui, L.; Zhang, H.; Xia, B.; Li, Y.; Gao, S.; Wang, X.-D.; et al. Lycopene in Protection against Obesity and Diabetes: A Mechanistic Review. Pharmacol. Res. 2020, 159, 104966. [Google Scholar] [CrossRef]
- She, C.; Shang, F.; Zhou, K.; Liu, N. Serum Carotenoids and Risks of Diabetes and Diabetic Retinopathy in a Chinese Population Sample. Curr. Mol. Med. 2017, 17, 287–297. [Google Scholar] [CrossRef]
Disease | Model | Period | Lycopene Dosage and Administration | Main Results | Year Published | Reference |
---|---|---|---|---|---|---|
Neuroinflammation | CD-1 mice with D-galactose-induced neuroinflammation | 8 weeks | 50 mg/kg lycopene per day in diet | 1. Corrected the amounts of brain-derived neurotrophic factor, | 2017 | [117] |
2. Favored the repair of histopathological damage, | ||||||
3. Increased the activity of antioxidant enzymes NAD(P)H quinone dehydrogenase 1 (NQO-1), | ||||||
4. increased the activity of heme oxygenase 1 (HO-1), | ||||||
5. Lowered the level of IL-1β and TNF-α, | ||||||
6. Increased the Iba-1 and GFAP expression | ||||||
Neuroinflammation | SH-SY5Y cells treated with H2O2 | 6 h | 50 µM lycopene | 1. Activated Nrf2 translocation, | 2017 | [117] |
2. Inactivated NF-κB translocation | ||||||
Neurotoxicity | Grass carps with sulfamethoxazole-induced neurotoxicity | 30 days | basal diet supplemented with 10 mg/kg lycopene | 1. Returned normal SOD activity, MDA, 8-hydroxy-2 deoxyguanosine (8-OHdG) levels, GSH content, | 2022 | [124] |
2. Restored acetylcholinesterase activity, | ||||||
3. Decreased the expression of IL-1β, IL-6, IL-8, and TNF-α, | ||||||
4. Restored the NF-κB/Nrf2 pathway balance | ||||||
Neuroinflammation | ICR male mice with lipopolysaccharide-induced neuroinflammation | 7 days | 60 mg/kg lycopene dissolved in 1% CMC as vehicle (carboxymethylcellulose sodium), oral gavage | 1. Decreased expression of IL-1β and HO-1 in the hippocampus, | 2016 | [125] |
2. Decreased level of IL-6 and TNF-α in the plasma, | ||||||
3. Relieved neuronal cell injury in hippocampal CA1 regions, | ||||||
4. Pretreatment with lycopene ameliorated depression-like behaviors | ||||||
Early brain injury and inflammation following subarachnoid hemorrhage | Male Sprague-Dawley rats | 1 day | 40 mg/kg lycopene (dissolved in tetrahydrofuran), intraperitoneal injections | 1. Ameliorated neurological deficits, neuronal apoptosis, cerebral edema, and impairment of the blood–brain barrier, | 2015 | [126] |
2. Decreased TNF-α, IL-1β, and ICAM-1 levels | ||||||
Alzheimer′s disease | Male P301L transgenic mice | 8 weeks | 5 mg/kg lycopene, oral gavage | 1. Ameliorated the memory deficits, | 2017 | [127] |
2. Decreased MDA level, | ||||||
3. Increased GSH-Px activity, | ||||||
4. Attenuated tau hyperphosphorylation at multiple AD-related sites | ||||||
Alzheimer′s disease | Human neuroblastoma (SH-SY5Y) cells transfected with pcDNA containing HA-tagged human wild-type RCAN1 | 6 h | Lycopene dissolved in tetrahydrofuran, final concentration: 1 or 2 µM | 1. Decreased intracellular and mitochondrial ROS levels, | 2017 | [128] |
2. Decreased NF-κB activity and Nucling expression, | ||||||
3. Decreased in mitochondrial membrane potential, mitochondrial respiration, and glycolytic function in RCAN1-overexpressing cells, | ||||||
4. Inhibited cell death, DNA fragmentation, caspase-3 activation, and cytochrome c release in RCAN1-overexpressing cells | ||||||
Alzheimer′s disease | Primary cultured Sprague-Dawley rat cortical neurons | 24 h | Lycopene dissolved in tetrahydrofuran containing 0.025% butylated hydroxytoluene, added to culture medium, concentration of lycopene: 0.1, 0.5, 1, 2 or 5 µM | 1. Decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production, | 2016 | [129] |
2. Ameliorated Ab-induced mitochondrial morphological alteration, | ||||||
3. Opened of the mitochondrial permeability transition pores, | ||||||
4. Released cytochrome c, | ||||||
5. Improved mitochondrial complex activities, | ||||||
6. Restored ATP levels, | ||||||
7. Prevented mitochondrial DNA damages, | ||||||
8. Improved the protein level of mitochondrial transcription factor A | ||||||
Alzheimer′s disease | Male C57BL/6J mice treated via intraperitoneal injection of LPS | 5 weeks (35 days) | Lycopene (0.03%, w/w) mixed with standard diet | 1. Prevented accumulation of Aβ, | 2018 | [130] |
2. Decreased levels of amyloid precursor protein, | ||||||
3. Suppressed neuronal β-secretase BACE1, | ||||||
4. Elevated the expressions of α-secretase ADAM10, | ||||||
5. Downregulated the expression of IBA-1, | ||||||
6. Reduced the expression of iNOS, COX-2, and IL-1β, | ||||||
7. Increased the expression of the anti-inflammatory cytokine IL-10, | ||||||
8. Increased the level of GSH, SOD, and CAT activity | ||||||
Alzheimer′s disease | BV2 microglial cells treated with LPS | 8 h | Lycopene dissolved in dimethylsulfoxide concentration of lycopene: 12.5, 25, 50 µM | 1. Suppressed the phosphorylation of MAPKs and NFκB, | 2018 | [130] |
2. Activated Nrf2 signaling pathways | ||||||
Alzheimer′s disease | Male Wistar rats | 14 days | 1 mg/kg, 2 mg/kg, and 4 mg/kg lycopene, oral gavage | 1. Decreased activity of caspase-3, | 2015 | [131] |
2. Decreased the level of IL-1β, TNF-α, TGF-β, and NF-κB, | ||||||
3. Remediated Aβ-induced learning and memory deficits, | ||||||
4. Reduced Aβ1–42-induced mitochondrial dysfunction | ||||||
Parkinson′s disease | Male C57bL/6 mice injected intraperitoneally with MPTP | 7 days | 5, 10, and 20 mg/kg/day lycopene, orally | 1. Protected against a decrease in the level of dopamine and its metabolites, | 2015 | [52] |
2. Attenuated MPTP-induced oxidative stress, | ||||||
3. Attenuated motor abnormalities | ||||||
4. Increased the level of GSH and the activity of GPx, | ||||||
5. Decreased the activity of SOD and CAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulawik, A.; Cielecka-Piontek, J.; Zalewski, P. The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene. Nutrients 2023, 15, 3821. https://doi.org/10.3390/nu15173821
Kulawik A, Cielecka-Piontek J, Zalewski P. The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene. Nutrients. 2023; 15(17):3821. https://doi.org/10.3390/nu15173821
Chicago/Turabian StyleKulawik, Anna, Judyta Cielecka-Piontek, and Przemysław Zalewski. 2023. "The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene" Nutrients 15, no. 17: 3821. https://doi.org/10.3390/nu15173821
APA StyleKulawik, A., Cielecka-Piontek, J., & Zalewski, P. (2023). The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene. Nutrients, 15(17), 3821. https://doi.org/10.3390/nu15173821