Vindoline Exhibits Anti-Diabetic Potential in Insulin-Resistant 3T3-L1 Adipocytes and L6 Skeletal Myoblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Biochemicals and Cell Lines
2.2. Plant Material and Extraction Procedure
2.3. Isolation of Vindoline
2.4. 3T3-L1 Cell Culture, Differentiation and Induction of Dysfunction in Adipocytes
2.5. L6-Myoblast Cell Culture and Induction of Insulin Resistance
2.6. Evaluation of Cell Viability
2.7. Evaluation of Glucose Consumption Activity
2.8. Evaluation of Intracellular Lipid Accumulation
2.9. Evaluation of Glycogen Content
2.10. gGene Expression Studies
2.11. Statistical Analysis
3. Results
3.1. Isolation of Vindoline
3.2. Effect of Vindoline on 3T3-L1 Adipocyte and L6 Myotube Viability
3.3. Effect of Vindoline on Adipocyte Dysfunction
3.3.1. Effect of Vindoline on Glucose Consumption in Dysfunctional Adipocytes
3.3.2. Effect of Vindoline on Lipid Accumulation in Dysfunctional Adipocytes
3.3.3. Effect of Vindoline on GLUT-4, IRS-1 and Adiponectin Expression in Dysfunctional Adipocytes
3.4. Effect of Vindoline on IR-L6 Myotubes
3.4.1. Effect of Vindoline on Glucose Consumption in IR-Myotubes
3.4.2. Effect of Vindoline on Glycogen Content in IR Myotubes
3.4.3. Effect of Vindoline on GLUT-4 and IRS-1 Expression in IR-Myotubes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Freeman, A.M.; Pennings, N. Insulin Resistance; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kim, J.N.; Han, S.N.; Kim, H.K. Anti-Inflammatory and Anti-Diabetic Effect of Black Soybean Anthocyanins: Data from a Dual Cooperative Cellular System. Molecules 2021, 26, 3363. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Cui, S.C.; Zheng, T.N.; Ma, H.J.; Xie, Z.F.; Jiang, H.W.; Li, Y.F.; Zhu, K.X.; Huang, C.G.; Li, J.; et al. Sarsasapogenin improves adipose tissue inflammation and ameliorates insulin resistance in high-fat diet-fed C57BL/6J mice. Acta Pharmacol. Sin. 2021, 42, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.C.; Hsieh, P.S. The role of adipocyte hypertrophy and hypoxia in the development of obesity-associated adipose tissue inflammation and insulin resistance. In Adiposity—Omics and Molecular Understanding; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Rosa, S.C.; Nayak, N.; Caymo, A.M.; Gordon, J.W. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol. Rep. 2020, 8, e14607. [Google Scholar] [CrossRef] [PubMed]
- Marisol, M.M.; Celeste, T.M.; Laura, M.M.; Fernando, E.G.; José, P.C.; Alejandro, Z.; Omar, M.C.; Francisco, A.A.; Julio César, A.P.; Erika, C.N.; et al. Effect of Cucumis sativus on Dysfunctional 3T3-L1 Adipocytes. Sci. Rep. 2019, 9, 13372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Leto, D.; Saltiel, A.R. Regulation of glucose transport by insulin: Traffic control of GLUT4. Nature Reviews. Mol. Cell. Biol. 2012, 13, 383–396. [Google Scholar]
- Goboza, M.; Aboua, Y.G.; Chegou, N.; Oguntibeju, O.O. Vindoline effectively ameliorated diabetes-induced hepatotoxicity by docking oxidative stress, inflammation and hypertriglyceridemia in type 2 diabetes-induced male Wistar rats. Biomed. Pharm. 2019, 112, 108638. [Google Scholar] [CrossRef]
- Yao, X.G.; Chen, F.; Li, P.; Quan, L.; Chen, J.; Yu, L.; Ding, H.; Li, C.; Chen, L.; Gao, Z.; et al. Natural product vindoline stimulates insulin secretion and efficiently ameliorates glucose homeostasis in diabetic murine models. J. Ethnopharmacol. 2013, 150, 285–297. [Google Scholar] [CrossRef]
- Islam, M.A.; Akhtar, M.A.; Islam, M.R.; Hossain, M.S.; Alam, M.K.; Wahed, M.I.I.; Rahman, B.M.; Anisuzzaman, A.S.M.; Shaheen, S.M.; Ahmed, M. Antidiabetic and hypolipidemic effects of different fractions of Catharanthus roseus (Linn.) on normal and streptozotocin-induced diabetic rats. J. Sci. Res. 2009, 1, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Tiong, S.H.; Looi, C.Y.; Hazni, H.; Arya, A.; Paydar, M.; Wong, W.F.; Cheah, S.C.; Mustafa, M.R.; Awang, K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 2013, 18, 9770–9784. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.H.; Polakis, S.E. Differentiation of 3T3-L1 fibroblasts to adipocytes. Effect of insulin and indomethacin on the levels of insulin receptors. J. Biol. Chem. 1978, 253, 4693–4696. [Google Scholar] [CrossRef]
- Gao, D.; Griffiths, H.R.; Bailey, C.J. Oleate protects against palmitate-induced insulin resistance in L6 myotubes. Br. J. Nutr. 2009, 102, 1557–1563. [Google Scholar] [CrossRef] [Green Version]
- Guru, A.; Issac, P.K.; Saraswathi, N.T.; Seshadri, V.D.; Gabr, G.A.; Arockiaraj, J. Deteriorating insulin resistance due to WL15 peptide from cysteine and glycine-rich protein 2 in high glucose-induced rat skeletal muscle L6 cells. Cell Biol. Int. 2021, 45, 1698–1709. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Y.; Wang, X.; Liu, S.; Shang, W.; Yuan, G.; Li, F.; Tang, J.; Chen, M.; Chen, J. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism 2007, 56, 405–412. [Google Scholar] [CrossRef]
- Issac, P.K.; Guru, A.; Chandrakumar, S.S.; Lite, C.; Saraswathi, N.T.; Arasu, M.V.; Al-Dhabi, N.A.; Arshad, A.; Arockiaraj, J. Molecular process of glucose uptake and glycogen storage due to hamamelitannin via insulin signalling cascade in glucose metabolism. Mol. Biol. Rep. 2020, 47, 6727–6740. [Google Scholar] [CrossRef]
- Roe, J.H.; Robert, E. Dailey, Determination of glycogen with the anthrone reagent. Anal. Biochem. 1966, 15, 245–250. [Google Scholar] [CrossRef]
- Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr. Physiol. 2018, 9, 1–58. [Google Scholar]
- Cignarelli, A.; Genchi, V.A.; Perrini, S.; Natalicchio, A.; Laviola, L.; Giorgino, F. Insulin and Insulin Receptors in Adipose Tissue Development. Int. J. Mol. Sci. 2019, 20, 759. [Google Scholar] [CrossRef] [Green Version]
- Oliva, M.E.; Ferreira, M.R.; Chicco, A.; Lombardo, Y.B. Dietary Salba (Salvia hispanica L.) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats. Prostaglandins Leukot Essent Fat. Acids 2013, 89, 279–289. [Google Scholar] [CrossRef]
- Goboza, M.; Meyer, M.; Aboua, Y.G.; Oguntibeju, O.O. In Vitro Antidiabetic and Antioxidant Effects of Different Extracts of Catharanthus roseus and Its Indole Alkaloid, Vindoline. Molecules 2020, 25, 5546. [Google Scholar] [CrossRef] [PubMed]
- Sakoda, H.; Ogihara, T.; Anai, M.; Funaki, M.; Inukai, K.; Katagiri, H.; Fukushima, Y.; Onishi, Y.; Ono, H.; Fujishiro, M.; et al. Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes 2000, 49, 1700–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morigny, P.; Houssier, M.; Mouisel, E.; Langin, D. Adipocyte lipolysis and insulin resistance. Biochimie 2016, 125, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Veilleux, A.; Blouin, K.; Rhéaume, C.; Daris, M.; Marette, A.; Tchernof, A. Glucose transporter 4 and insulin receptor substrate-1 messenger RNA expression in omental and subcutaneous adipose tissue in women. Metabolism 2009, 58, 624–631. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanism of insulin action and insulin resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [Green Version]
- James, D.E.; Stöckli, J.; Birnbaum, M.J. The aetiology and molecular landscape of insulin resistance. Nat. Rev. Mol. Cell Biol. 2021, 22, 751–771. [Google Scholar] [CrossRef]
- Carvalho, E.; Jansson, P.A.; Axelsen, M.; Eriksson, J.W.; Huang, X.; Groop, L.; Rondinone, C.; Sjostrom LSmith, U. Low cellular IRS 1 gene and protein expression predict insulin resistance and NIDDM. FASEB J. 1999, 13, 2173–2178. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, J.; Zhang, Y.; Zhang, W.; Li, X.; Tang, H.; Liu, Y.; Li, T.; He, H.; Du, B.; et al. Bisphenol F suppresses insulin-stimulated glucose metabolism in adipocytes by inhibiting IRS-1/PI3K/AKT pathway. Ecotoxicol. Environ. Saf. 2022, 231, 113201. [Google Scholar] [CrossRef]
- Fu, Y.; Luo, N.; Klein, R.L.; Garvey, W.T. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 2005, 46, 1369–1379. [Google Scholar] [CrossRef] [Green Version]
- Abel, E.D.; Peroni, O.; Kim, J.K.; Kim, Y.B.; Boss, O.; Hadro, E.; Minnemann, T.; Shulman, G.I.; Kahn, B.B. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001, 409, 729–733. [Google Scholar] [CrossRef]
- Petersen, K.F.; Shulman, G.I. Etiology of insulin resistance. Am. J. Med. 2006, 119 (Suppl. S1), S10–S16. [Google Scholar] [CrossRef] [Green Version]
- Oguntibeju, O.O.; Aboua, Y.; Goboza, M. Vindoline—A Natural Product from Catharanthus roseus Reduces Hyperlipidemia and Renal Pathophysiology in Experimental Type 2 Diabetes. Biomedicines 2019, 7, 59. [Google Scholar] [CrossRef] [Green Version]
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
Rat IRS-1 | CTGCATAATCGGGCAAAGGC | CATCGCTAGGAGAACCGGAC |
Rat GLUT-4 | GTTGCGGATGCTATGGGTC | GTATGGGGAGTAAGGGAG |
Rat β-actin | CCAACCGTGAAAAGATGA | TCCAGTAGTGATAGCCGT |
Mice GLUT-4 | CTGGCACTTCCACTCAAC | GAGACTGATGCGCTCTAAC |
Mice IRS-1 | TAACTGGACATCACAGCAGAATG | ACGGATGCATCGTACCATCT |
Mice adiponectin | TAAACATTTCCGGCCCCTCC | GCTCCACTGTGTCAGCTTCT |
Mice β-actin | AGGATCACGACTGACAAAGGC | ATGGAGCCACCGATCCACA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shijina, B.N.; Radhika, A.; Sherin, S.; Biju, P.G. Vindoline Exhibits Anti-Diabetic Potential in Insulin-Resistant 3T3-L1 Adipocytes and L6 Skeletal Myoblasts. Nutrients 2023, 15, 2865. https://doi.org/10.3390/nu15132865
Shijina BN, Radhika A, Sherin S, Biju PG. Vindoline Exhibits Anti-Diabetic Potential in Insulin-Resistant 3T3-L1 Adipocytes and L6 Skeletal Myoblasts. Nutrients. 2023; 15(13):2865. https://doi.org/10.3390/nu15132865
Chicago/Turabian StyleShijina, Beegum Noorjahan, Achuthan Radhika, Sainulabdeen Sherin, and Prabath Gopalakrishnan Biju. 2023. "Vindoline Exhibits Anti-Diabetic Potential in Insulin-Resistant 3T3-L1 Adipocytes and L6 Skeletal Myoblasts" Nutrients 15, no. 13: 2865. https://doi.org/10.3390/nu15132865
APA StyleShijina, B. N., Radhika, A., Sherin, S., & Biju, P. G. (2023). Vindoline Exhibits Anti-Diabetic Potential in Insulin-Resistant 3T3-L1 Adipocytes and L6 Skeletal Myoblasts. Nutrients, 15(13), 2865. https://doi.org/10.3390/nu15132865