The Long Way to Establish the Ergogenic Effect of Caffeine on Strength Performance: An Overview Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Statistical Analyses
3. Results
3.1. Main Search
3.2. Temporal Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Powers, S.K.; Dodd, S. Caffeine and Endurance Performance. Sports Med. 1985, 2, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, B.H.; Kulling, F.A. Health and Ergogenic Effects of Caffeine. Br. J. Sports Med. 1989, 23, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.H. Caffeine, Neuromuscular Function and High-Intensity Exercise Performance. J. Sports Med. Phys. Fit. 1991, 31, 481–489. [Google Scholar]
- Weber, A.; Herz, R. The Relationship between Caffeine Contracture of Intact Muscle and the Effect of Caffeine on Reticulum. J. Gen. Physiol. 1968, 52, 750–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varagić, V.M.; Zugić, M. Interactions of Xanthine Derivatives, Catecholamines and Glucose-6-Phosphate on the Isolated Phrenic Nerve Diaphragm Preparation of the Rat. Pharmacology 1971, 5, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, A.; Sandow, A. Caffeine Effects on Radiocalcium Movement in Normal and Denervated Rat Skeletal Muscle. J. Pharmacol. Exp. Ther. 1967, 155, 376–388. [Google Scholar]
- Lüttgau, H.C.; Oetliker, H. The Action of Caffeine on the Activation of the Contractile Mechanism in Straited Muscle Fibres. J. Physiol. 1968, 194, 51–74. [Google Scholar] [CrossRef] [Green Version]
- Graham, T.E. Caffeine and Exercise: Metabolism, Endurance and Performance. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Burke, L.M. Caffeine and Sports Performance. Appl. Physiol. Nutr. Metab. 2008, 33, 1319–1334. [Google Scholar] [CrossRef]
- Davis, J.K.; Green, J.M. Caffeine and Anaerobic Performance: Ergogenic Value and Mechanisms of Action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Effect of Caffeine on the Neuromuscular System—Potential as an Ergogenic Aid. Appl. Physiol. Nutr. Metab. 2008, 33, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Baltazar-Martins, J.G.; Brito de Souza, D.; Aguilar, M.; Grgic, J.; Del Coso, J. Infographic. The Road to the Ergogenic Effect of Caffeine on Exercise Performance. Br. J. Sports Med. 2020, 54, 618–619. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International Society of Sports Nutrition Position Stand: Caffeine and Exercise Performance. J. Int. Soc. Sports Nutr. 2021, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Raya-González, J.; Rendo-Urteaga, T.; Domínguez, R.; Castillo, D.; Rodríguez-Fernández, A.; Grgic, J. Acute Effects of Caffeine Supplementation on Movement Velocity in Resistance Exercise: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 717–729. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of Caffeine Intake on Muscle Strength and Power: A Systematic Review and Meta-Analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J. Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sports Med. 2021, 51, 2281–2298. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P. Effects of Caffeine on Rate of Force Development: A Meta-Analysis. Scand. J. Med. Sci. Sports 2022, 32, 644–653. [Google Scholar] [CrossRef]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and Smell the Coffee: Caffeine Supplementation and Exercise Performance—An Umbrella Review of 21 Published Meta-Analyses. Br. J. Sports Med. 2020, 54, 681–688. [Google Scholar] [CrossRef]
- Neyroud, D.; Cheng, A.J.; Donnelly, C.; Bourdillon, N.; Gassner, A.-L.; Geiser, L.; Rudaz, S.; Kayser, B.; Westerblad, H.; Place, N. Toxic Doses of Caffeine are Needed to Increase Skeletal Muscle Contractility. Am. J. Physiol. Cell Physiol. 2019, 316, C246–C251. [Google Scholar] [CrossRef]
- Aguiar, A.S.; Speck, A.E.; Canas, P.M.; Cunha, R.A. Neuronal Adenosine A2A Receptors Signal Ergogenic Effects of Caffeine. Sci. Rep. 2020, 10, 13414. [Google Scholar] [CrossRef]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A Review of Caffeine’s Effects on Cognitive, Physical and Occupational Performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrens, M.; Mau-Moeller, A.; Weippert, M.; Fuhrmann, J.; Wegner, K.; Skripitz, R.; Bader, R.; Bruhn, S. Caffeine-Induced Increase in Voluntary Activation and Strength of the Quadriceps Muscle during Isometric, Concentric and Eccentric Contractions. Sci. Rep. 2015, 5, 10209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Navarro, M.; Muñoz, G.; Salinero, J.J.; Muñoz-Guerra, J.; Fernández-Álvarez, M.; Plata, M.D.M.; Del Coso, J. Urine Caffeine Concentration in Doping Control Samples from 2004 to 2015. Nutrients 2019, 11, 286. [Google Scholar] [CrossRef] [Green Version]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of Acute Ingestion of Caffeine on Team Sports Performance: A Systematic Review and Meta-Analysis. Res. Sports Med. 2019, 27, 238–256. [Google Scholar] [CrossRef]
- Christensen, P.M.; Shirai, Y.; Ritz, C.; Nordsborg, N.B. Caffeine and Bicarbonate for Speed. A Meta-Analysis of Legal Supplements Potential for Improving Intense Endurance Exercise Performance. Front. Physiol. 2017, 8, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Jamovi Project2022. Jamovi (Version 2.3). Available online: https://www.jamovi.org (accessed on 12 January 2023).
- Kedia, A.W.; Hofheins, J.E.; Habowski, S.M.; Ferrando, A.A.; Gothard, M.D.; Lopez, H.L. Effects of a Pre-Workout Supplement on Lean Mass, Muscular Performance, Subjective Workout Experience and Biomarkers of Safety. Int. J. Med. Sci. 2014, 11, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Lopes, J.M.; Aubier, M.; Jardim, J.; Aranda, J.V.; Macklem, P.T. Effect of Caffeine on Skeletal Muscle Function before and after Fatigue. J. Appl. Physiol. 1983, 54, 1303–1305. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; da Rocha, A.L.S.; Rocha, J.C.C.; Silva, V.F.D.S.; Correia-Oliveira, C.R. Caffeine Ingestion Increases the Upper-Body Intermittent Dynamic Strength Endurance Performance of Combat Sports Athletes. Eur. J. Sport Sci. 2022, 22, 227–236. [Google Scholar] [CrossRef]
- Spineli, H.; Pinto, M.P.; Dos Santos, B.P.; Lima-Silva, A.E.; Bertuzzi, R.; Gitaí, D.L.G.; de Araujo, G.G. Caffeine Improves Various Aspects of Athletic Performance in Adolescents Independent of Their 163 C > A CYP1A2 Genotypes. Scand. J. Med. Sci. Sports 2020, 30, 1869–1877. [Google Scholar] [CrossRef]
- Suksuwan, C.; Phoemsapthawee, J.; Tumnark, P. Effects of a Low-Dose of Caffeine Co-Ingestion with Carbohydrate on Muscular Strength, Power, and Anaerobic Performance in Combat Sports Athletes. J. Exerc. Physiol. Online 2022, 25, 26–38. [Google Scholar]
- Turley, K.; Eusse, P.A.; Thomas, M.M.; Townsend, J.R.; Morton, A.B. Effects of Different Doses of Caffeine on Anaerobic Exercise in Boys. Pediatr. Exerc. Sci. 2015, 27, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Arazi, H.; Hoseinihaji, M.; Eghbali, E. The Effects of Different Doses of Caffeine on Performance, Rating of Perceived Exertion and Pain Perception in Teenagers Female Karate Athletes. Braz. J. Pharm. Sci. 2016, 52, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Arazi, H.; Najafdari, A.; Eghbali, E. Effect of Big Bear Energy Drink on Performance Indicators, Blood Lactate Levels and Rating of Perceived Exertion in Elite Adolescent Female Swimmers. Prog. Nutr. 2016, 18, 403–410. [Google Scholar]
- Arazi, H.; Rakhshanfar, S.; Eghbali, E.; Suzuki, K. Acute Influence of Caffeinated Commercially Available Energy Drinks on Performance, Perceived Exertion and Blood Lactate in Youth Female Water Polo Players: Energy Drinks on Performance of Water Polo Players. Prog. Nutr. 2021, 23, e2021220. [Google Scholar] [CrossRef]
- Waer, F.B.; Laatar, R.; Jouira, G.; Srihi, S.; Rebai, H.; Sahli, S. Functional and Cognitive Responses to Caffeine Intake in Middle-Aged Women are Dose Depending. Behav. Brain Res. 2021, 397, 112956. [Google Scholar] [CrossRef]
- Tallis, J.; Duncan, M.J.; Wright, S.L.; Eyre, E.L.J.; Bryant, E.; Langdon, D.; James, R.S. Assessment of the Ergogenic Effect of Caffeine Supplementation on Mood, Anticipation Timing, and Muscular Strength in Older Adults. Physiol. Rep. 2013, 1, e00072. [Google Scholar] [CrossRef]
- Norager, C.B.; Jensen, M.B.; Madsen, M.R.; Laurberg, S. Caffeine Improves Endurance in 75-Yr-Old Citizens: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. J. Appl. Physiol. 2005, 99, 2302–2306. [Google Scholar] [CrossRef]
- Rivers, W.H.; Webber, H.N. The Action of Caffeine on the Capacity for Muscular Work. J. Physiol. 1907, 36, 33–47. [Google Scholar] [CrossRef]
- Thornton, G.R.; Holck, H.G.O.; Smith, E.L. The Effect of Benzedrine and Caffeine upon Performance in Certain Psychomotor Tasks. J. Abnorm. Soc. Psychol. 1939, 34, 96–113. [Google Scholar] [CrossRef]
- Hyde, I.H.; Root, C.B.; Curl, H. A Comparison of the Effects of Breakfast, of No Breakfast and of Caffeine on Work in an Athlete and a Non-Athlete. Am. J. Physiol.-Leg. Content 1917, 43, 371–394. [Google Scholar] [CrossRef] [Green Version]
- Brooks, J.H.; Wyld, K. Acute Effects of Caffeine on Strength Performance in Trained and Untrained Individuals. J. Athl. Enhanc. 2015, 4. [Google Scholar] [CrossRef]
- Berjisian, E.; Naderi, A.; Mojtahedi, S.; Grgic, J.; Ghahramani, M.H.; Karayigit, R.; Forbes, J.L.; Amaro-Gahete, F.J.; Forbes, S.C. Are Caffeine’s Effects on Resistance Exercise and Jumping Performance Moderated by Training Status? Nutrients 2022, 14, 4840. [Google Scholar] [CrossRef] [PubMed]
- Martinez, N.; Campbell, B.; Franek, M.; Buchanan, L.; Colquhoun, R. The Effect of Acute Pre-Workout Supplementation on Power and Strength Performance. J. Int. Soc. Sports Nutr. 2016, 13, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinsley, G.M.; Urbina, S.; Mullins, J.; Outlaw, J.; Hayward, S.; Stone, M.; Foster, C.; Wilborn, C.; Taylor, L. Influence of A Thermogenic Dietary Supplement on Safety Markers, Body Composition, Energy Expenditure, Muscular Performance and Hormone Concentrations: A Randomized, Placebo-Controlled, Double-Blind Trial. J. Sports Sci. Med. 2017, 16, 459–467. [Google Scholar]
- Ormsbee, M.J.; Mandler, W.K.; Thomas, D.D.; Ward, E.G.; Kinsey, A.W.; Simonavice, E.; Panton, L.B.; Kim, J.-S. The Effects of Six Weeks of Supplementation with Multi-Ingredient Performance Supplements and Resistance Training on Anabolic Hormones, Body Composition, Strength, and Power in Resistance-Trained Men. J. Int. Soc. Sports Nutr. 2012, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Venier, S.; Grgic, J.; Mikulic, P. Caffeinated Gel Ingestion Enhances Jump Performance, Muscle Strength, and Power in Trained Men. Nutrients 2019, 11, 937. [Google Scholar] [CrossRef] [Green Version]
- Venier, S.; Grgic, J.; Mikulic, P. Acute Enhancement of Jump Performance, Muscle Strength, and Power in Resistance-Trained Men After Consumption of Caffeinated Chewing Gum. Int. J. Sports Physiol. Perform. 2019, 14, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, N.; Serpa, M.C.; Lemos, E.C.; De Lucas, R.D.; Guglielmo, L.G.A. Effects of Caffeine Chewing Gum on Exercise Tolerance and Neuromuscular Responses in Well-Trained Runners. J. Strength Cond. Res. 2021, 35, 1671–1676. [Google Scholar] [CrossRef]
- Ratamess, N.A.; Bush, J.A.; Kang, J.; Kraemer, W.J.; Stohs, S.J.; Nocera, V.G.; Leise, M.D.; Diamond, K.B.; Faigenbaum, A.D. The Effects of Supplementation with P-Synephrine Alone and in Combination with Caffeine on Resistance Exercise Performance. J. Int. Soc. Sports Nutr. 2015, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Weiss, B.; Laties, V.G. Enhancement of Human Performance by Caffeine and the Amphetamines. Pharmacol. Rev. 1962, 14, 1–36. [Google Scholar]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of Caffeine Use in Elite Athletes Following Its Removal from the World Anti-Doping Agency List of Banned Substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Costello, J.T.; Bieuzen, F.; Bleakley, C.M. Where Are All the Female Participants in Sports and Exercise Medicine Research? Eur. J. Sport Sci. 2014, 14, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Salinero, J.J.; Lara, B.; Jiménez-Ormeño, E.; Romero-Moraleda, B.; Giráldez-Costas, V.; Baltazar-Martins, G.; Del Coso, J. More Research Is Necessary to Establish the Ergogenic Effect of Caffeine in Female Athletes. Nutrients 2019, 11, 1600. [Google Scholar] [CrossRef] [Green Version]
- Skinner, T.L.; Desbrow, B.; Arapova, J.; Schaumberg, M.A.; Osborne, J.; Grant, G.D.; Anoopkumar-Dukie, S.; Leveritt, M.D. Women Experience the Same Ergogenic Response to Caffeine as Men. Med. Sci. Sports Exerc. 2019, 51, 1195–1202. [Google Scholar] [CrossRef] [Green Version]
- Lara, B.; Salinero, J.J.; Giráldez-Costas, V.; Del Coso, J. Similar Ergogenic Effect of Caffeine on Anaerobic Performance in Men and Women Athletes. Eur. J. Nutr. 2021, 60, 4107–4114. [Google Scholar] [CrossRef] [PubMed]
- Romero-Moraleda, B.; Del Coso, J.; Gutiérrez-Hellín, J.; Lara, B. The Effect of Caffeine on the Velocity of Half-Squat Exercise during the Menstrual Cycle: A Randomized Controlled Trial. Nutrients 2019, 11, 2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, B.; Gutiérrez-Hellín, J.; García-Bataller, A.; Rodríguez-Fernández, P.; Romero-Moraleda, B.; Del Coso, J. Ergogenic Effects of Caffeine on Peak Aerobic Cycling Power during the Menstrual Cycle. Eur. J. Nutr. 2020, 59, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Gutiérrez Hellín, J.; Ruíz-Moreno, C.; Romero-Moraleda, B.; Del Coso, J. Acute Caffeine Intake Increases Performance in the 15-s Wingate Test during the Menstrual Cycle. Br. J. Clin. Pharmacol. 2020, 86, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bugyi, G.J. The Effects of Moderate Doses of Caffeine on Fatigue Parameters of the Forearm Flexor Muscles. Am. Correct. Ther. J. 1980, 34, 49–53. [Google Scholar]
- Del Coso, J.; Salinero, J.J.; González-Millán, C.; Abián-Vicén, J.; Pérez-González, B. Dose Response Effects of a Caffeine-Containing Energy Drink on Muscle Performance: A Repeated Measures Design. J. Int. Soc. Sports Nutr. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallarés, J.G.; Fernández-Elías, V.E.; Ortega, J.F.; Muñoz, G.; Muñoz-Guerra, J.; Mora-Rodríguez, R. Neuromuscular Responses to Incremental Caffeine Doses: Performance and Side Effects. Med. Sci. Sports Exerc. 2013, 45, 2184–2192. [Google Scholar] [CrossRef]
- de Souza, J.G.; Del Coso, J.; Fonseca, F. de S.; Silva, B.V.C.; de Souza, D.B.; da Silva Gianoni, R.L.; Filip-Stachnik, A.; Serrão, J.C.; Claudino, J.G. Risk or Benefit? Side Effects of Caffeine Supplementation in Sport: A Systematic Review. Eur. J. Nutr. 2022, 61, 3823–3834. [Google Scholar] [CrossRef] [PubMed]
- Seifert, S.M.; Schaechter, J.L.; Hershorin, E.R.; Lipshultz, S.E. Health Effects of Energy Drinks on Children, Adolescents, and Young Adults. Pediatrics 2011, 127, 511–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; Mckibans, K.I.; Millard-Stafford, M.L. Effect of Caffeine Ingestion on Muscular Strength and Endurance: A Meta-Analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.J.; Godfrey, C.M.; Khalil, H.; McInerney, P.; Parker, D.; Soares, C.B. Guidance for Conducting Systematic Scoping Reviews. Int. J. Evid.-Based Healthc. 2015, 13, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | <1980 | 1980–1999 | 2000–2009 | 2010–2014 | 2015–2022 | |
---|---|---|---|---|---|---|
n papers | 3 (1.6%) | 8 (4.2%) | 18 (9.5%) | 29 (15.3%) | 131 (69.3%) | |
Sample size | n | 2.3 ± 0.6 | 15.5 ± 10.7 | 15.7 ± 6.9 | 16.0 ± 7.8 * | 19.7 ± 14.4 * |
n Male | 2.3 ± 0.6 | 14.7 ± 7.0 | 13.8 ± 5.6 | 13.8 ± 6.7 | 14.6 ± 13.6 | |
n Female | 0 | 2.3 ± 6.0 | 1.9 ± 4.4 | 1.3 ± 3.4 | 4.6 ± 7.8 | |
Adjusted dose | Yes | 0 (0%) | 5 (62.5%) | 14 (77.8%) | 20 (69.0%) | 96 (73.3%) |
No | 3 (100%) | 3 (37.5%) | 4 (22.2%) | 9 (31.0%) | 35 (26.7%) | |
Dose–response | Yes | 0 (0%) | 2 (25.0%) | 0 (0%) | 2 (6.9%) | 20 (15.3%) |
No | 3 (100%) | 6 (75.0%) | 18 (100%) | 27 (93.1%) | 111 (84.7%) | |
Dose | Adjusted (mg/kg) | – | 5.8 ± 0.8 | 5.2 ± 1.3 | 4.6 ± 1.5 | 4.8 ± 1.6 |
Absolute (mg) | 300 | 437.9 ± 69.0 | 180.3 ± 90.6 | 226.1 ± 95.9 | 298.3 ± 142.4 | |
Mix with other substances | Yes | 1 (33.3%) | 1 (12.5%) | 6 (33.3%) | 16 (55.2%) | 27 (20.6%) |
No | 2 (66.7%) | 7 (87.5%) | 12 (66.7%) | 13 (44.8%) | 104 (79.4%) | |
Relationship with other co-ingested substances | Yes | 0 (0%) | 0 (0%) | 2 (11.1%) | 2 (6.9%) | 15 (11.5%) |
No | 3 (100%) | 8 (100%) | 16 (88.9%) | 27 (93.1%) | 116 (88.5%) | |
Placebo-controlled design | Yes | 2 (66.7%) | 8 (100%) | 18 (100%) | 28 (96.6%) | 130 (99.2%) |
No | 1 (33.3%) | 0 (0%) | 0 (0%) | 1 (3.4%) | 1 (0.8%) | |
Caffeine consumption reported | Yes | 0 (0%) | 5 (62.5%) | 13 (72.2%) | 19 (65.5%) | 92 (70.2%) |
No | 3 (100%) | 3 (37.5%) | 5 (27.8%) | 10 (34.5%) | 39 (29.8%) | |
Reported side effects | Yes | 0 (0%) | 1 (12.5%) | 6 (33.3%) | 10 (34.5%) | 33 (25.2%) |
No | 3 (100%) | 7 (87.5%) | 12 (66.7%) | 19 (65.5%) | 98 (74.8%) | |
Caffeine form | Capsule | 1 (33.3%) | 4 (50.0%) | 11 (61.1%) | 9 (31.0%) | 73 (55.7%) |
Beverage | 1 (33.3%) | 4 (50.0%) | 7 (38.9%) | 20 (69.0%) | 46 (35.1%) | |
Gum | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (2.3%) | |
Mouth rinse | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (3.8%) | |
Gel | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (0.8%) | |
Various forms | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (0.8%) | |
N/A | 1 (33.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (1.5%) | |
Exercise test | Upper | 2 (66.7%) | 1 (12.5%) | 5 (27.8%) | 8 (27.6%) | 31 (23.7%) |
Lower | 1 (33.3%) | 7 (87.5%) | 8 (44.4%) | 7 (24.1%) | 48 (36.6%) | |
Both | 0 (0%) | 0 (0%) | 5 (27.8%) | 14 (48.3%) | 52 (39.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giráldez-Costas, V.; Del Coso, J.; Mañas, A.; Salinero, J.J. The Long Way to Establish the Ergogenic Effect of Caffeine on Strength Performance: An Overview Review. Nutrients 2023, 15, 1178. https://doi.org/10.3390/nu15051178
Giráldez-Costas V, Del Coso J, Mañas A, Salinero JJ. The Long Way to Establish the Ergogenic Effect of Caffeine on Strength Performance: An Overview Review. Nutrients. 2023; 15(5):1178. https://doi.org/10.3390/nu15051178
Chicago/Turabian StyleGiráldez-Costas, Verónica, Juan Del Coso, Asier Mañas, and Juan José Salinero. 2023. "The Long Way to Establish the Ergogenic Effect of Caffeine on Strength Performance: An Overview Review" Nutrients 15, no. 5: 1178. https://doi.org/10.3390/nu15051178
APA StyleGiráldez-Costas, V., Del Coso, J., Mañas, A., & Salinero, J. J. (2023). The Long Way to Establish the Ergogenic Effect of Caffeine on Strength Performance: An Overview Review. Nutrients, 15(5), 1178. https://doi.org/10.3390/nu15051178