Pre-Therapeutic Sarcopenia among Cancer Patients: An Up-to-Date Meta-Analysis of Prevalence and Predictive Value during Cancer Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources
2.2. Search Strategy
- (a)
- What is the most commonly encountered definition of PS among patients with cancer?
- (b)
- What is the pooled prevalence of PS among patients with cancer, and what is the prevalence according to the definition of sarcopenia?
- (c)
- What are the mean differences in muscle strength (i.e., grip-strength) and physical performance (i.e., gait speed) between sarcopenic and non-sarcopenic groups of patients with cancer?
- (d)
- What is the predictive value of PS for overall survival (OS) and progression-free survival (PFS) among patients with cancer?
- (e)
- What is the predictive value of PS for severe post-operative complications (POC) among patients with cancer?
- (f)
- What is the predictive value of PS for severe treatment-related toxicities and/or dose-limiting toxicities (TOX) among patients with cancer?
- (g)
- What is the predictive value of PS for disability and nosocomial infections (NI) among patients with cancer?
2.3. Selection Process
2.4. Data Collection
2.5. Meta-Analysis Endpoints
2.6. Quality Assessment
2.7. Effect Measures
2.8. Synthesis Method
3. Results
3.1. Study Selection and Quality Rating of the Studies Included
3.2. Patient and Study Characteristics
3.3. Definition of Sarcopenia among Cancer Patients
3.4. PS Is Prevalent among Cancer Patients
3.5. Muscle Strength and Physical Performance among Cancer Patients with Sarcopenia
3.6. Pre-Therapeutic Sarcopenia Is Associated with OS and PFS among Cancer Patients
3.7. Pre-Therapeutic Sarcopenia Is Predictive of Severe Postoperative Complications among Cancer Patients
3.8. Pre-Therapeutic Sarcopenia Is Predictive of Severe Treatment-Related Toxicity and/or Dose-Limiting Toxicity among Cancer Patients
3.9. Pre-Therapeutic Sarcopenia Is Associated with Disability among Cancer Patients
3.10. Pre-Therapeutic Sarcopenia Is Predictive of Nosocomial Infections among Cancer Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Consensus | Year | Screening | Definition | ||||
---|---|---|---|---|---|---|---|
Muscle Mass | Muscular Strength | Muscular Performance | |||||
EWGOS 1 | 2010 | No | ↓ DXA, BIA, CT or MRI | AND | ↓ Hand-grip strength (kg) [M < 30, F < 20] | OR | ↓ GS < 0.8 m/s or SPPB < 9/12 or TGUG ≥ 20 s |
IWGS | 2011 | No | ↓ DXA | AND | No | - | ↓ GS < 1 m/s |
AWGS 1 | 2014 | No | ↓ DXA or BIA | AND | ↓ Hand-grip strength (kg) [M < 26, F < 18] | AND | ↓ GS < 0.8 m/s |
EWGOS 2 | 2019 | Yes (SARCF) | ↓ DXA, BIA, CT or MRI | AND | ↓ Hand-grip strength (kg) [M < 27, F < 16] Or 5 Rising from a chair > 15 s | AND (severity) | ↓ GS < 0.8 m/s or SPPB < 9/12 or TGUG ≥ 20 s |
AWGS 2 | 2019 | Yes (SARCF) | ↓ DXA or BIA | AND | ↓ Hand-grip strength (kg) [M < 28, F < 18] 5 Rising from a chair > 12 s | AND (severity) | ↓ GS < 1 m/s or SPPB < 9/12 |
Study Groups | Estimates | Standard Error | p |
---|---|---|---|
N° of patients included (n = 65,936) | |||
<100 | 1 (reference) | - | - |
100–199 | 0.02 | 0.15 | 0.89 |
200–300 | −0.25 | 0.16 | 0.10 |
≥400 | 0.51 | 0.19 | <0.01 |
Definition of sarcopenia | |||
Muscle mass only (n = 54,923) | 1 (reference) | - | - |
Consensus algorithm-based (n = 11,013) | −0.85 | 0.18 | <0.0001 |
Cut-off values of CT scan-based SMI for women (per 6.0 cm2/m2 of more) (n = 14,216) | 0.05 | 0.02 | <0.01 |
Appendix B
References
- Williams, G.R.; Dunne, R.F.; Giri, S.; Shachar, S.S.; Caan, B.J. Sarcopenia in the Older Adult with Cancer. J. Clin. Oncol. 2021, 39, 2068–2078. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; van Kan, G.A.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Bahyah, K.S.; Chou, M.-Y.; Chen, L.-Y.; Hsu, P.-S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Pamoukdjian, F.; Bouillet, T.; Lévy, V.; Soussan, M.; Zelek, L.; Paillaud, E. Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: A systematic review. Clin. Nutr. 2018, 37, 1101–1113. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- Ottawa Hospital Research Institute. Available online: https://www.ohri.ca//programs/clinical_epidemiology/oxford.asp (accessed on 19 August 2022).
- Takagi, A.; Hawke, P.; Tokuda, S.; Toda, T.; Higashizono, K.; Nagai, E.; Watanabe, M.; Nakatani, E.; Kanemoto, H.; Oba, N. Serum carnitine as a biomarker of sarcopenia and nutritional status in preoperative gastrointestinal cancer patients. J. Cachexia Sarcopenia Muscle 2022, 13, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xu, Q.; Zhu, S.; Chen, L.; Ding, L.; Hua, H.; Xu, X.; Hu, J. Comparison of five sarcopenia screening tools in preoperative patients with gastric cancer using the diagnostic criteria of the European Working Group on Sarcopenia in Older People 2. Nutrition 2022, 95, 111553. [Google Scholar] [CrossRef]
- Deluche, E.; Lachatre, D.; Di Palma, M.; Simon, H.; Tissot, V.; Vansteene, D.; Meingan, P.; Mohebi, A.; Lenczner, G.; Pigneur, F.; et al. Is sarcopenia a missed factor in the management of patients with metastatic breast cancer? Breast 2022, 61, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Tagliafico, A.S.; Rossi, F.; Bignotti, B.; Torri, L.; Bonsignore, A.; Belgioia, L.; Domineitto, A. CT-derived relationship between low relative muscle mass and bone damage in patients with multiple myeloma undergoing stem cells transplantation. Br. J. Radiol. 2022, 95, 1132. [Google Scholar] [CrossRef]
- Orzell, S.; Verhaaren, B.F.J.; Grewal, R.; Sklar, M.; Irish, J.C.; Gilbert, R.; Brown, D.; Gullane, P.; de Almeida, J.R.; Yu, E.; et al. Evaluation of Sarcopenia in Older Patients Undergoing Head and Neck Cancer Surgery. Laryngoscope 2022, 132, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Bajrić, T.; Kornprat, P.; Faschinger, F.; Werkgartner, G.; Mischinger, H.J.; Wagner, D. Sarcopenia and primary tumor location influence patients outcome after liver resection for colorectal liver metastases. Eur. J. Surg. Oncol. 2021, 48, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Cárcamo, L.; Peñailillo, E.; Bellolio, F.; Miguieles, R.; Urrejola, G.; Zúñiga, A.; Molina, M.E.; Larach, J.T. Computed tomography-measured body composition parameters do not influence survival in non-metastatic colorectal cancer. ANZ J. Surg. 2021, 91, E298–E306. [Google Scholar] [CrossRef]
- Catanese, S.; Aringhieri, G.; Vivaldi, C.; Salani, F.; Vitali, S.; Pecora, I.; Massa, V.; Lencioni, M.; Vasile, E.; Tintori, R.; et al. Role of Baseline Computed-Tomography-Evaluated Body Composition in Predicting Outcome and Toxicity from First-Line Therapy in Advanced Gastric Cancer Patients. J. Clin. Med. 2021, 10, 1079. [Google Scholar] [CrossRef]
- Chai, V.W.; Chia, M.; Cocco, A.; Bhamidipaty, M.; D’Souza, B. Sarcopenia is a strong predictive factor of clinical and oncological outcomes following curative colorectal cancer resection. ANZ J. Surg. 2021, 91, E292–E297. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-R.; Huang, W.-K.; Wang, S.-Y.; Wu, C.-E.; Chen, J.-S.; Yeh, C.-N. A Nomogram Predicting Progression Free Survival in Patients with Gastrointestinal Stromal Tumor Receiving Sunitinib: Incorporating Pre-Treatment and Post-Treatment Parameters. Cancers 2021, 13, 2587. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-W.; Chen, Y.-C.; Yang, L.-H.; Shih, M.-C.P.; Li, C.-C.; Chueh, K.-S.; Wu, W.-J.; Juan, Y.-S. Impact of cachexia on oncologic outcomes of sarcopenic patients with upper tract urothelial carcinoma after radical nephroureterectomy. PLoS ONE 2021, 16, e0250033. [Google Scholar] [CrossRef]
- Daffrè, E.; Prieto, M.; Martini, K.; Hoang-Thi, T.-N.; Halm, N.; Dermine, H.; Bobbio, A.; Chassagnon, G.; Revel, M.P.; Alifano, M. Total Psoas Area and Total Muscular Parietal Area Affect Long-Term Survival of Patients Undergoing Pneumonectomy for Non-Small Cell Lung Cancer. Cancers 2021, 13, 1888. [Google Scholar] [CrossRef]
- Ferini, G.; Cacciola, A.; Parisi, S.; Lillo, S.; Molino, L.; Tamburella, C.; Davi, V.; Napoli, I.; Platania, A.; Settineri, N.; et al. Curative Radiotherapy in Elderly Patients with Muscle Invasive Bladder Cancer: The Prognostic Role of Sarcopenia. In Vivo 2021, 35, 571–578. [Google Scholar] [CrossRef]
- Haik, L.; Gonthier, A.; Quivy, A.; Gross-goupil, M.; Veillon, R.; Frison, E.; Ravaud, A.; Domblides, C.; Daste, A. The impact of sarcopenia on the efficacy and safety of immune checkpoint inhibitors in patients with solid tumours. Acta Oncol. 2021, 60, 1597–1603. [Google Scholar] [CrossRef]
- Hsu, T.-M.H.; Schawkat, K.; Berkowitz, S.J.; Wei, J.L.; Makoyeva, A.; Legare, K.; DeCicco, C.; Paez, S.N.; Wu, J.S.H.; Szolovits, P.; et al. Artificial intelligence to assess body composition on routine abdominal CT scans and predict mortality in pancreatic cancer– A recipe for your local application. Eur. J. Radiol. 2021, 142, 109834. [Google Scholar] [CrossRef]
- Hu, W.-H.; Chang, C.-D.; Liu, T.-T.; Chen, H.-H.; Hsiao, C.-C.; Kang, H.-Y.; Chuang, J.-H. Association of sarcopenia and expression of interleukin-23 in colorectal cancer survival. Clin. Nutr. 2021, 40, 5322–5326. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.-D.; Cai, H.-Y.; Wang, W.-B.; Song, H.-N.; Luo, X.; Dong, W.-X.; Dong, Q.-T.; Chen, X.-L.; Yan, J.-Y. Measurement of muscle quantity/quality has additional predictive value for postoperative complications and long-term survival after gastrectomy for gastric cancer in patients with probable sarcopenia as defined by the new EWGSOP2 consensus: Analysis from a large-scale prospective study. Nutrition 2021, 86, 111156. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Han, S.H.; Kim, H. Detection of sarcopenic obesity and prediction of long-term survival in patients with gastric cancer using preoperative computed tomography and machine learning. J. Surg. Oncol. 2021, 124, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Choi, K.D.; Ko, Y.; Park, T.; Kim, K.W.; Park, S.Y.; Na, H.K.; Ahn, J.Y.; Lee, J.H.; Jung, K.W.; et al. Impact of Comorbidities, Sarcopenia, and Nutritional Status on the Long-Term Outcomes after Endoscopic Submucosal Dissection for Early Gastric Cancer in Elderly Patients Aged ≥ 80 Years. Cancers 2021, 13, 3598. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Hanaoka, J.; Ohshio, Y.; Okamoto, K.; Kaku, R.; Hayashi, K.; Shiratori, T.; Akazawa, A. Sarcopenia increases the risk of post-operative recurrence in patients with non-small cell lung cancer. PLoS ONE 2021, 16, e0257594. [Google Scholar] [CrossRef] [PubMed]
- Juris, A.; Taylor-Gehman, A.; Spencer, B.; Schaefer, E.; Pameijer, C. The Impact of Sarcopenia in Patients with Peritoneal Surface Disease. Pathol. Oncol. Res. 2021, 27, 638857. [Google Scholar] [CrossRef]
- Jullien, M.; Tessoulin, B.; Ghesquières, H.; Oberic, L.; Morschhauser, F.; Tilly, H.; Ribrag, V.; Lamy, T.; Thieblemont, C.; Villemagne, B.; et al. Deep-Learning Assessed Muscular Hypodensity Independently Predicts Mortality in DLBCL Patients Younger than 60 Years. Cancers 2021, 13, 4503. [Google Scholar] [CrossRef] [PubMed]
- Jalal, M.; Campbell, J.A.; Wadsley, J.; Hopper, A.D. Computed Tomographic Sarcopenia in Pancreatic Cancer: Further Utilization to Plan Patient Management. J. Gastrointest. Cancer 2021, 52, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- Kirsten, J.; Wais, V.; Schulz, S.V.W.; Sala, E.; Treff, G.; Bunjes, D.; Steinacker, J.M. Sarcopenia Screening Allows Identifying High-Risk Patients for Allogenic Stem Cell Transplantation. Cancers 2021, 13, 1771. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Yu, J.I.; Lim, D.H.; Lee, J.; Kim, S.T.; Hong, J.Y.; Kang, W.K.; Jeong, W.K.; Kim, K.-M. Prognostic Impact of Sarcopenia and Radiotherapy in Patients with Advanced Gastric Cancer Treated with Anti-PD-1 Antibody. Front. Immunol. 2021, 12, 701668. [Google Scholar] [CrossRef] [PubMed]
- Leone, R.; Sferruzza, G.; Calimeri, T.; Steffanoni, S.; Conte, G.M.; De Cobelli, F.; Falini, A.; Ferreri, A.J.M.; Anzalone, N. Quantitative muscle mass biomarkers are independent prognosis factors in primary central nervous system lymphoma: The role of L3-skeletal muscle index and temporal muscle thickness. Eur. J. Radiol. 2021, 143, 109945. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Ku, J.Y.; Seo, W.I.; Park, Y.J.; Chung, J.I.; Kim, W.; Park, T.Y.; Ha, H.K. Prognostic significance of sarcopenia and decreased relative dose intensity during the initial two cycles of first-line sunitinib for metastatic renal cell carcinoma. J. Chemother. 2021, 33, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Peng, H.; Chen, L. Prognostic Value of Sarcopenia and Systemic Inflammation Markers in Patients Undergoing Definitive Radiotherapy for Esophageal Cancer. Cancer Manag. Res. 2021, 13, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Makal, G.B.; Aslan, A. Is sarcopenia really a risk factor in the development of postoperative complications? Surg. Oncol. 2021, 37, 101527. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.P.; Johnsson, A.; Scherman, J. Sarcopenia and dosimetric parameters in relation to treatment-related leukopenia and survival in anal cancer. Radiat. Oncol. 2021, 16, 152. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T.; Sasaki, T.; Suzumori, C.; Mie, T.; Furukawa, T.; Yamada, Y.; Kasuga, A.; Matsuyama, M.; Ozaka, M.; Sasahira, N. The impact of cachexia and sarcopenia in elderly pancreatic cancer patients receiving palliative chemotherapy. Int. J. Clin. Oncol. 2021, 26, 1293–1303. [Google Scholar] [CrossRef]
- Takiguchi, K.; Furuya, S.; Sudo, M.; Saito, R.; Yamamoto, A.; Ashizawa, N.; Hirayama, K.; Shoda, K.; Akaike, H.; Hosomura, N.; et al. Prognostic effect of sarcopenia in colorectal cancer recurrence. Nutrition 2021, 91–92, 111362. [Google Scholar] [CrossRef]
- Thureau, S.; Lebret, L.; Lequesne, J.; Cabourg, M.; Dandoy, S.; Gouley, C.; Lefebvre, L.; Mallet, R.; Mihailescu, S.-D.; Moldovan, C.; et al. Prospective Evaluation of Sarcopenia in Head and Neck Cancer Patients Treated with Radiotherapy or Radiochemotherapy. Cancers 2021, 13, 753. [Google Scholar] [CrossRef] [PubMed]
- Troschel, F.M.; Jin, Q.; Eichhorn, F.; Muley, T.; Best, T.D.; Leppelmann, K.S.; Yang, C.-F.J.; Troschel, A.S.; Winter, H.; Heußel, C.P.; et al. Sarcopenia on preoperative chest computed tomography predicts cancer-specific and all-cause mortality following pneumonectomy for lung cancer: A multicenter analysis. Cancer Med. 2021, 10, 6677–6686. [Google Scholar] [CrossRef] [PubMed]
- Trussardi Fayh, A.P.; de Sousa, I.M. Comparison of revised EWGSOP2 criteria of sarcopenia in patients with cancer using different parameters of muscle mass. PLoS ONE 2021, 16, e0257446. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, I.; Coebergh van den Braak, R.R.J.; van Vugt, J.L.A.; Ijzermans, J.N.M.; Buettner, S. Actual survival after resection of primary colorectal cancer: Results from a prospective multicenter study. World J. Surg. Oncol. 2021, 19, 96. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-Y.; Dong, J.-J.; Huang, X.-C.; Chen, Z.-J.; Chen, X.-L.; Dong, Q.-T.; Bai, Y.-Y. AWGS2019 vs EWGSOP2 for diagnosing sarcopenia to predict long-term prognosis in Chinese patients with gastric cancer after radical gastrectomy. World J. Clin. Cases 2021, 9, 4668–4680. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-Y.; Zhou, X.-L.; Yu, C.-H.; Wang, W.-W.; Ji, F.-Z.; He, D.-C.; Zhu, W.-G.; Tong, Y.-S. Association of Sarcopenia with Toxicity and Survival in Postoperative Recurrent Esophageal Squamous Cell Carcinoma Patients Receiving Chemoradiotherapy. Front. Oncol. 2021, 11, 655071. [Google Scholar] [CrossRef]
- Yamashita, S.; Iguchi, T.; Koike, H.; Wakamiya, T.; Kikkawa, K.; Kohjimoto, Y.; Hara, I. Impact of preoperative sarcopenia and myosteatosis on prognosis after radical cystectomy in patients with bladder cancer. Int. J. Urol. 2021, 28, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.-M.; Zhang, X.-Z.; Zhu, G.-L.; Lv, L.-Q.; Yan, X.-L.; Wu, W.-X.; Wang, S.-L.; Chen, X.-L.; Zhuang, C.-L.; Yu, Z. Impact of sarcopenia on clinical outcomes of patients with stage I gastric cancer after radical gastrectomy: A prospective cohort study. Eur. J. Surg. Oncol. 2022, 48, 541–547. [Google Scholar] [CrossRef]
- Zilioli, V.R.; Albano, D.; Arcari, A.; Merli, F.; Coppola, A.; Besutti, G.; Marcheselli, L.; Gramegna, D.; Muzi, C.; Manicone, M.; et al. Clinical and prognostic role of sarcopenia in elderly patients with classical Hodgkin lymphoma: A multicentre experience. J. Cachexia Sarcopenia Muscle 2021, 12, 1042–1055. [Google Scholar] [CrossRef]
- Zou, H.-B.; Yan, X.-L.; Dong, W.-X.; Yu, D.-Y.; Zhang, F.-M.; Zhou, L.-P.; Shen, Z.-L.; Cai, G.-J.; Zhuang, C.-L.; Yu, Z. Sarcopenia is a predictive factor of poor quality of life and prognosis in patients after radical gastrectomy. Eur. J. Surg. Oncol. 2021, 47, 1976–1984. [Google Scholar] [CrossRef]
- Peng, H.; Tan, X. The Prognostic Significance of Sarcopenia and the Neutrophil-to-Lymphocyte Ratio in Elderly Patients with Esophageal Squamous Cell Carcinoma. Cancer Manag. Res. 2021, 13, 3209–3218. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Strippoli, A.; Cintoni, M.; Raoul, P.; Vivolo, R.; Di Salvatore, M.; Genco, E.; Manfredi, R.; Bria, E.; Tortora, G.; et al. Body Composition Changes in Gastric Cancer Patients during Preoperative FLOT Therapy: Preliminary Results of an Italian Cohort Study. Nutrients 2021, 13, 960. [Google Scholar] [CrossRef] [PubMed]
- Runkel, M.; Diallo, T.D.; Lang, S.A.; Bamberg, F.; Benndorf, M.; Fichtner-Feigl, S. The Role of Visceral Obesity, Sarcopenia and Sarcopenic Obesity on Surgical Outcomes after Liver Resections for Colorectal Metastases. World J. Surg. 2021, 45, 2218–2226. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Kubo, N.; Tamamori, Y.; Aomatsu, N.; Nishii, T.; Tachimori, A.; Nishiguchi, Y.; Maeda, K. Depletion of skeletal muscle mass adversely affects long-term outcomes for men undergoing gastrectomy for gastric cancer. PLoS ONE 2021, 16, e0256365. [Google Scholar] [CrossRef] [PubMed]
- Sehouli, J.; Mueller, K.; Richter, R.; Anker, M.; Woopen, H.; Rasch, J.; Grabowski, J.P.; Prinz-Theissing, E.; Inci, M.G. Effects of sarcopenia and malnutrition on morbidity and mortality in gynecologic cancer surgery: Results of a prospective study. J. Cachexia Sarcopenia Muscle 2021, 12, 393–402. [Google Scholar] [CrossRef]
- Şengül Ayçiçek, G.; Erol, T.; Ünsal, P.; Deniz, O.; Abbasoğlu, O.; Halil, M. Impact of frailty and ultrasonography-based sarcopenia on the development of postoperative complications in gastrointestinal cancer patients. Turk. J. Med. Sci. 2021, 51, 1261–1266. [Google Scholar] [CrossRef]
- Sun, X.; Xu, J.; Chen, X.; Zhang, W.; Chen, W.; Zhu, C.; Sun, J.; Yang, X.; Wang, X.; Hu, Y.; et al. Sarcopenia in Patients with Normal Body Mass Index Is an Independent Predictor for Postoperative Complication and Long-Term Survival in Gastric Cancer. Clin. Transl. Sci. 2021, 14, 837–846. [Google Scholar] [CrossRef]
- Pessia, B.; Giuliani, A.; Romano, L.; Bruno, F.; Carlei, F.; Vicentini, V.; Schietroma, M. The role of sarcopenia in the pancreatic adenocarcinoma. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 3670–3678. [Google Scholar] [CrossRef]
- Choi, H.; Park, Y.S.; Na, K.J.; Park, S.; Park, I.K.; Kang, C.H.; Kim, Y.T.; Goo, J.M.; Yoon, S.H. Association of Adipopenia at Preoperative PET/CT with Mortality in Stage I Non-Small Cell Lung Cancer. Radiology 2021, 301, 645–653. [Google Scholar] [CrossRef]
- Jang, H.Y.; Choi, G.H.; Hwang, S.H.; Jang, E.S.; Kim, J.-W.; Ahn, J.M.; Choi, Y.; Cho, J.Y.; Han, H.-S.; Lee, J.; et al. Sarcopenia and visceral adiposity predict poor overall survival in hepatocellular carcinoma patients after curative hepatic resection. Transl. Cancer Res. 2021, 10, 854–866. [Google Scholar] [CrossRef]
- Tenuta, M.; Gelibter, A.; Pandozzi, C.; Sirgiovanni, G.; Campolo, F.; Venneri, M.A.; Caponnetto, S.; Cortesi, E.; Marchetti, P.; Isidori, A.M.; et al. Impact of Sarcopenia and Inflammation on Patients with Advanced Non-Small Cell Lung Cancer (NCSCL) Treated with Immune Checkpoint Inhibitors (ICIs): A Prospective Study. Cancers 2021, 13, 6355. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jee, B.A.; Kim, J.-H.; Bae, H.; Chung, J.H.; Song, W.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Seo, S.I.; et al. Prognostic Impact of Sarcopenia in Patients with Metastatic Hormone-Sensitive Prostate Cancer. Cancers 2021, 13, 6345. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Kurokawa, Y.; Takahashi, T.; Saito, T.; Yamashita, K.; Tanaka, K.; Makino, T.; Yamasaki, M.; Nakajima, K.; Eguchi, H.; et al. Impacts of Preoperative Psoas Muscle Mass and Visceral Fat Area on Postoperative Short- and Long-Term Outcomes in Patients with Gastric Cancer. World J. Surg. 2021, 45, 815–821. [Google Scholar] [CrossRef]
- Deng, L.; Wang, Y.; Zhao, J.; Tong, Y.; Zhang, S.; Jin, C.; Chen, K.; Bao, W.; Yu, Z.; Chen, G. The prognostic value of sarcopenia combined with hepatolithiasis in intrahepatic cholangiocarcinoma patients after surgery: A prospective cohort study. Eur. J. Surg. Oncol. 2021, 47, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Uemura, S.; Iwashita, T.; Ichikawa, H.; Iwasa, Y.; Mita, N.; Shiraki, M.; Shimizu, M. The impact of sarcopenia and decrease in skeletal muscle mass in patients with advanced pancreatic cancer during FOLFIRINOX therapy. Br. J. Nutr. 2021, 125, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Jung, A.R.; Roh, J.-L.; Kim, J.S.; Choi, S.-H.; Nam, S.Y.; Kim, S.Y. The impact of skeletal muscle depletion on older adult patients with head and neck cancer undergoing primary surgery. J. Geriatr. Oncol. 2021, 12, 128–133. [Google Scholar] [CrossRef]
- Huang, X.; Lv, L.-N.; Zhao, Y.; Li, L.; Zhu, X.-D. Is skeletal muscle loss associated with chemoradiotherapy toxicity in nasopharyngeal carcinoma patients? A prospective study. Clin. Nutr. 2021, 40, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Regnier, P.; De Luca, V.; Brunelle, S.; Sfumato, P.; Walz, J.; Rybikowski, S.; Maubon, T.; Branger, N.; Fakhfakh, S.; Durand, M.; et al. Impact of sarcopenia status of muscle-invasive bladder cancer patients on kidney function after neoadjuvant chemotherapy. Minerva Urol. Nephrol. 2021, 73, 215–224. [Google Scholar] [CrossRef]
- Jin, K.; Tang, Y.; Wang, A.; Hu, Z.; Liu, C.; Zhou, H.; Yu, X. Body Composition and Response and Outcome of Neoadjuvant Treatment for Pancreatic Cancer. Nutr. Cancer 2022, 74, 100–109. [Google Scholar] [CrossRef]
- Miura, A.; Yamamoto, H.; Sato, H.; Tomioka, Y.; Shiotani, T.; Suzawa, K.; Miyoshi, K.; Otani, S.; Okazaki, M.; Sugimoto, S.; et al. The prognostic impact of sarcopenia on elderly patients undergoing pulmonary resection for non-small cell lung cancer. Surg. Today 2021, 51, 1203–1211. [Google Scholar] [CrossRef]
- Takahashi, Y.; Suzuki, S.; Hamada, K.; Nakada, T.; Oya, Y.; Sakakura, N.; Matsushita, H.; Kuroda, H. Sarcopenia is poor risk for unfavorable short- and long-term outcomes in stage I non-small cell lung cancer. Ann. Transl. Med. 2021, 9, 325. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.B.; Ramos, G.H.A.; Petterle, R.R.; Borba, V.Z.C. Sarcopenia as an early complication of patients with head and neck cancer with dysphagia. Eur. J. Cancer Care 2021, 30, e13343. [Google Scholar] [CrossRef] [PubMed]
- Seror, M.; Sartoris, R.; Hobeika, C.; Bouattour, M.; Paradis, V.; Rautou, P.-E.; Soubrane, O.; Vilgrain, V.; Cauchy, F.; Ronot, M. Computed Tomography-Derived Liver Surface Nodularity and Sarcopenia as Prognostic Factors in Patients with Resectable Metabolic Syndrome-Related Hepatocellular Carcinoma. Ann. Surg. Oncol. 2021, 28, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Badran, H.; Elsabaawy, M.M.; Ragab, A.; Abdelhafiz Aly, R.; Alsebaey, A.; Sabry, A. Baseline Sarcopenia is Associated with Lack of Response to Therapy, Liver Decompensation and High Mortality in Hepatocellular Carcinoma Patients. Asian Pac. J. Cancer Prev. 2020, 21, 3285–3290. [Google Scholar] [CrossRef]
- Chen, W.S.; Huang, Y.S.; Xu, L.B.; Shi, M.M.; Chen, X.D.; Ye, G.Q.; Wu, T.T.; Zhu, G.B. Effects of sarcopenia, hypoalbuminemia, and laparoscopic surgery on postoperative complications in elderly patients with colorectal cancer: A prospective study. Neoplasma 2020, 67, 922–932. [Google Scholar] [CrossRef]
- Fraisse, G.; Renard, Y.; Lebacle, C.; Masson-Lecomte, A.; Desgrandchamps, F.; Hennequin, C.; Bessede, T.; Irani, J. La sarcopénie est-elle un facteur de morbi-mortalité dans le traitement des tumeurs localisées de la vessie infiltrant le muscle ? Prog. Urol. 2020, 30, 41–50. [Google Scholar] [CrossRef]
- Hirsch, L.; Bellesoeur, A.; Boudou-Rouquette, P.; Arrondeau, J.; Thomas-Schoemann, A.; Kirchgesner, J.; Gervais, C.; Jouinot, A.; Chapron, J.; Giraud, F.; et al. The impact of body composition parameters on severe toxicity of nivolumab. Eur. J. Cancer 2020, 124, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-H.; Lue, K.-H.; Hsieh, T.-C.; Liu, S.-H.; Wang, T.-F.; Peng, T.-C. Association Between Sarcopenia and Clinical Outcomes in Patients with Esophageal Cancer Under Neoadjuvant Therapy. Anticancer Res. 2020, 40, 1175–1181. [Google Scholar] [CrossRef]
- Lanza, E.; Masetti, C.; Messana, G.; Muglia, R.; Pugliese, N.; Ceriani, R.; Lleo de Nalda, A.; Rimassa, L.; Torzilli, G.; Poretti, D.; et al. Sarcopenia as a predictor of survival in patients undergoing bland transarterial embolization for unresectable hepatocellular carcinoma. PLoS ONE 2020, 15, e0232371. [Google Scholar] [CrossRef]
- Tsukagoshi, M.; Yokobori, T.; Yajima, T.; Maeno, T.; Shimizu, K.; Mogi, A.; Araki, K.; Harimoto, N.; Shirabe, K.; Kaira, K. Skeletal muscle mass predicts the outcome of nivolumab treatment for non-small cell lung cancer. Medicine 2020, 99, e19059. [Google Scholar] [CrossRef]
- Ueno, A.; Yamaguchi, K.; Sudo, M.; Imai, S. Sarcopenia as a risk factor of severe laboratory adverse events in breast cancer patients receiving perioperative epirubicin plus cyclophosphamide therapy. Support. Care Cancer 2020, 28, 4249–4254. [Google Scholar] [CrossRef] [PubMed]
- Pielkenrood, B.J.; van Urk, P.R.; van der Velden, J.M.; Kasperts, N.; Verhoeff, J.J.C.; Bol, G.H.; Verkooijen, H.M.; Verlaan, J.J. Impact of body fat distribution and sarcopenia on the overall survival in patients with spinal metastases receiving radiotherapy treatment: A prospective cohort study. Acta Oncol. 2020, 59, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, X.; Liu, Q.; Yu, Y.; Xu, L.; Liu, X.; Zhang, R.; Wang, Z.; Li, Y. Highlighting sarcopenia management for promoting surgical outcomes in esophageal cancers: Evidence from a prospective cohort study. Int. J. Surg. 2020, 83, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Martini, K.; Chassagnon, G.; Fournel, L.; Prieto, M.; Hoang-Thi, T.-N.; Halm, N.; Bobbio, A.; Revel, M.-P.; Alifano, M. Sarcopenia as independent risk factor of postpneumonectomy respiratory failure, ARDS and mortality. Lung Cancer 2020, 149, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Berardi, G.; Antonelli, G.; Colasanti, M.; Meniconi, R.; Guglielmo, N.; Laurenzi, A.; Ferretti, S.; Levi Sandri, G.B.; Spagnoli, A.; Moschetta, G.; et al. Association of Sarcopenia and Body Composition with Short-term Outcomes after Liver Resection for Malignant Tumors. JAMA Surg. 2020, 155, e203336. [Google Scholar] [CrossRef]
- den Boer, R.B.; Jones, K.I.; Ash, S.; van Boxel, G.I.; Gillies, R.S.; O’Donnell, T.; Ruurda, J.P.; Sgromo, B.; Silva, M.A.; Maynard, N.D. Impact on postoperative complications of changes in skeletal muscle mass during neoadjuvant chemotherapy for gastro-oesophageal cancer. BJS Open 2020, 4, 847–854. [Google Scholar] [CrossRef]
- Xu, L.-B.; Zhang, H.-H.; Shi, M.-M.; Huang, Z.-X.; Zhang, W.-T.; Chen, X.-D.; Cai, Y.-Q.; Zhu, G.-B.; Shen, X.; Chen, W.-J. Metabolic syndrome-related sarcopenia is associated with worse prognosis in patients with gastric cancer: A prospective study. Eur. J. Surg. Oncol. 2020, 46, 2262–2269. [Google Scholar] [CrossRef]
- Yu, J.I.; Choi, C.; Lee, J.; Kang, W.K.; Park, S.H.; Kim, S.T.; Hong, J.Y.; Kim, S.; Sohn, T.S.; Lee, J.H.; et al. Effect of baseline sarcopenia on adjuvant treatment for D2 dissected gastric cancer: Analysis of the ARTIST phase III trial. Radiother. Oncol. 2020, 152, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Bigam, K.D.; Extermann, M.; Faramand, R.; Thomas, K.; Pidala, J.A.; Baracos, V.E. Sarcopenia and low muscle radiodensity associate with impaired FEV1 in allogeneic haematopoietic stem cell transplant recipients. J. Cachexia Sarcopenia Muscle 2020, 11, 1570–1579. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Jang, H.Y.; Ahn, J.M.; Hwang, S.H.; Chung, J.W.; Choi, Y.S.; Kim, J.-W.; Jang, E.S.; Choi, G.H.; Jeong, S.-H. The association of the serum levels of myostatin, follistatin, and interleukin-6 with sarcopenia, and their impacts on survival in patients with hepatocellular carcinoma. Clin. Mol. Hepatol. 2020, 26, 492–505. [Google Scholar] [CrossRef]
- Benadon, B.; Servagi-Vernat, S.; Quero, L.; Cattan, P.; Guillerm, S.; Hennequin, V.; Aparicio, T.; Lourenço, N.; Bouché, O.; Hennequin, C. Sarcopenia: An important prognostic factor for males treated for a locally advanced esophageal carcinoma. Dig. Liver Dis. 2020, 52, 1047–1052. [Google Scholar] [CrossRef]
- Mallet, R.; Modzelewski, R.; Lequesne, J.; Mihailescu, S.; Decazes, P.; Auvray, H.; Benyoucef, A.; Di Fiore, F.; Vera, P.; Dubray, B.; et al. Prognostic value of sarcopenia in patients treated by Radiochemotherapy for locally advanced oesophageal cancer. Radiat. Oncol. 2020, 15, 116. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.; Shin, S.H.; Kim, J.-H.; Jeong, W.K.; Park, D.J.; Kim, N.; Heo, J.S.; Choi, D.W.; Han, I.W. The effects of sarcopenia and sarcopenic obesity after pancreaticoduodenectomy in patients with pancreatic head cancer. HPB 2020, 22, 1782–1792. [Google Scholar] [CrossRef] [PubMed]
- Giani, A.; Famularo, S.; Riva, L.; Tamini, N.; Ippolito, D.; Nespoli, L.; Conconi, P.; Sironi, S.; Braga, M.; Gianotti, L. Association between specific presurgical anthropometric indexes and morbidity in patients undergoing rectal cancer resection. Nutrition 2020, 75–76, 110779. [Google Scholar] [CrossRef] [PubMed]
- van Rijn-Dekker, M.I.; van den Bosch, L.; van den Hoek, J.G.M.; Bijl, H.P.; van Aken, E.S.M.; van der Hoorn, A.; Oosting, S.F.; Halmos, G.B.; Witjes, M.J.H.; van der Laan, H.P.; et al. Impact of sarcopenia on survival and late toxicity in head and neck cancer patients treated with radiotherapy. Radiother. Oncol. 2020, 147, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Srpcic, M.; Jordan, T.; Popuri, K.; Sok, M. Sarcopenia and myosteatosis at presentation adversely affect survival after esophagectomy for esophageal cancer. Radiol. Oncol. 2020, 54, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Roch, B.; Coffy, A.; Jean-Baptiste, S.; Palaysi, E.; Daures, J.-P.; Pujol, J.-L.; Bommart, S. Cachexia—Sarcopenia as a determinant of disease control rate and survival in non-small lung cancer patients receiving immune-checkpoint inhibitors. Lung Cancer 2020, 143, 19–26. [Google Scholar] [CrossRef]
- Agalar, C.; Sokmen, S.; Arslan, C.; Altay, C.; Basara, I.; Canda, A.E.; Obuz, F. The impact of sarcopenia on morbidity and long-term survival among patients with peritoneal metastases of colorectal origin treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: A 10-year longitudinal analysis of a single-center experience. Tech. Coloproctol. 2020, 24, 301–308. [Google Scholar] [CrossRef]
- Shinohara, S.; Otsuki, R.; Kobayashi, K.; Sugaya, M.; Matsuo, M.; Nakagawa, M. Impact of Sarcopenia on Surgical Outcomes in Non-Small Cell Lung Cancer. Ann. Surg. Oncol. 2020, 27, 2427–2435. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.A.; Omar, H.S.E.; Mikhail, H.M.S.; Tourky, M.; El-ghobary, M.; Elkassar, H.; Omar, M.G.; Matter, M.; Elbasiouny, A.M.; Farag, A.M.; et al. Sarcopenia increases 1-year mortality after surgical resection of hepatocellular carcinoma. ANZ J. Surg. 2020, 90, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Stangl-Kremser, J.; Suarez-Ibarrola, R.; Andrea, D.D.; Korn, S.M.; Pones, M.; Kramer, G.; Marhold, M.; Krainer, M.; Enikeev, D.V.; Glybochko, P.V.; et al. Assessment of body composition in the advanced stage of castration-resistant prostate cancer: Special focus on sarcopenia. Prostate Cancer Prostatic Dis. 2020, 23, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.-L.; Shen, X.; Zou, H.-B.; Dong, Q.-T.; Cai, H.-Y.; Chen, X.-L.; Yu, Z.; Wang, S.-L. EWGSOP2 versus EWGSOP1 for sarcopenia to predict prognosis in patients with gastric cancer after radical gastrectomy: Analysis from a large-scale prospective study. Clin. Nutr. 2020, 39, 2301–2310. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, N.R.; Mayo, Z.; Shamrock, A.; Kesler, K.; Glass, N.; Nau, P.; Miller, B.J. Sarcopenia is associated with increased mortality but not complications following resection and reconstruction of sarcoma of the extremities. J. Surg. Oncol. 2020, 121, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Yumioka, T.; Honda, M.; Nishikawa, R.; Teraoka, S.; Kimura, Y.; Iwamoto, H.; Morizane, S.; Hikita, K.; Takenaka, A. Sarcopenia as a significant predictive factor of neutropenia and overall survival in urothelial carcinoma patients underwent gemcitabine and cisplatin or carboplatin. Int. J. Clin. Oncol. 2020, 25, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Oflazoglu, U.; Alacacioglu, A.; Varol, U.; Kucukzeybek, Y.; Salman, T.; Taskaynatan, H.; Yildiz, Y.; Ozdemir, O.; Tarhan, M. Prevalence and related factors of sarcopenia in newly diagnosed cancer patients. Support. Care Cancer 2020, 28, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.C.; Park, S.-J.; Lee, S.D.; Han, S.-S.; Kim, S.H. Effects of Sarcopenia on Prognosis after Resection of Gallbladder Cancer. J. Gastrointest. Surg. 2020, 24, 1082–1091. [Google Scholar] [CrossRef]
- Martin, L.; Gioulbasanis, I.; Senesse, P.; Baracos, V.E. Cancer-Associated Malnutrition and CT-Defined Sarcopenia and Myosteatosis Are Endemic in Overweight and Obese Patients. J. Parenter. Enter. Nutr. 2020, 44, 227–238. [Google Scholar] [CrossRef]
- Couderc, A.-L.; Muracciole, X.; Nouguerede, E.; Rey, D.; Schneider, S.; Champsaur, P.; Lechevallier, E.; Lalys, L.; Villani, P. HoSAGE: Sarcopenia in Older Patients before and after Treatment with Androgen Deprivation Therapy and Radiotherapy for Prostate Cancer. J. Nutr. Health Aging 2020, 24, 205–209. [Google Scholar] [CrossRef]
- He, W.-Z.; Jiang, C.; Liu, L.-L.; Yin, C.-X.; Rong, Y.-M.; Hu, W.-M.; Yang, L.; Wang, L.; Jin, Y.-N.; Lin, X.-P.; et al. Association of body composition with survival and inflammatory responses in patients with non-metastatic nasopharyngeal cancer. Oral Oncol. 2020, 108, 104771. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Li, B.; Ma, B.-W.; Zhang, X.-Z.; Chen, W.-Z.; Lu, L.-S.; Shen, X.; Zhuang, C.-L.; Yu, Z. Sarcopenia is an effective prognostic indicator of postoperative outcomes in laparoscopic-assisted gastrectomy. Eur. J. Surg. Oncol. 2019, 45, 1092–1098. [Google Scholar] [CrossRef]
- Dijksterhuis, W.P.M.; Pruijt, M.J.; van der Woude, S.O.; Klaassen, R.; Kurk, S.A.; van Oijen, M.G.H.; van Laarhoven, H.W.M. Association between body composition, survival, and toxicity in advanced esophagogastric cancer patients receiving palliative chemotherapy. J. Cachexia Sarcopenia Muscle 2019, 10, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolan, R.D.; Almasaudi, A.S.; Dieu, L.B.; Horgan, P.G.; McSorley, S.T.; McMillan, D.C. The relationship between computed tomography-derived body composition, systemic inflammatory response, and survival in patients undergoing surgery for colorectal cancer. J. Cachexia Sarcopenia Muscle 2019, 10, 111–122. [Google Scholar] [CrossRef]
- de Paula, N.S.; Rodrigues, C.S.; Chaves, G.V. Comparison of the prognostic value of different skeletal muscle radiodensity parameters in endometrial cancer. Eur. J. Clin. Nutr. 2019, 73, 524–530. [Google Scholar] [CrossRef]
- Griffin, O.M.; Duggan, S.N.; Ryan, R.; McDermott, R.; Geoghegan, J.; Conlon, K.C. Characterising the impact of body composition change during neoadjuvant chemotherapy for pancreatic cancer. Pancreatology 2019, 19, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, J.J.; Reif, R.L.; Bigam, D.L.; Baracos, V.E.; Eurich, D.T.; Sawyer, M.B. The Impact of Muscle and Adipose Tissue on Long-Term Survival in Patients with Stage I to III Colorectal Cancer. Dis. Colon Rectum 2019, 62, 549–560. [Google Scholar] [CrossRef]
- Jung, A.R.; Roh, J.-L.; Kim, J.S.; Kim, S.-B.; Choi, S.-H.; Nam, S.Y.; Kim, S.Y. Prognostic value of body composition on recurrence and survival of advanced-stage head and neck cancer. Eur. J. Cancer 2019, 116, 98–106. [Google Scholar] [CrossRef]
- Huillard, O.; Jouinot, A.; Tlemsani, C.; Brose, M.S.; Arrondeau, J.; Meinhardt, G.; Fellous, M.; De Sanctis, Y.; Schlumberger, M.; Goldwasser, F. Body Composition in Patients with Radioactive Iodine-Refractory, Advanced Differentiated Thyroid Cancer Treated with Sorafenib or Placebo: A Retrospective Analysis of the Phase III DECISION Trial. Thyroid 2019, 29, 1820–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitano, Y.; Yamashita, Y.; Saito, Y.; Nakagawa, S.; Okabe, H.; Imai, K.; Komohara, Y.; Miyamoto, Y.; Chikamoto, A.; Ishiko, T.; et al. Sarcopenia Affects Systemic and Local Immune System and Impacts Postoperative Outcome in Patients with Extrahepatic Cholangiocarcinoma. World J. Surg. 2019, 43, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
- Kurk, S.; Peeters, P.; Stellato, R.; Dorresteijn, B.; de Jong, P.; Jourdan, M.; Creemers, G.; Erdkamp, F.; de Jongh, F.; Kint, P.; et al. Skeletal muscle mass loss and dose-limiting toxicities in metastatic colorectal cancer patients. J. Cachexia Sarcopenia Muscle 2019, 10, 803–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Zhang, W.; Chen, W.; Huang, Y.; Wu, R.; Chen, X.; Shen, X.; Zhu, G. Muscle Mass, Density, and Strength Are Necessary to Diagnose Sarcopenia in Patients with Gastric Cancer. J. Surg. Res. 2019, 241, 141–148. [Google Scholar] [CrossRef]
- Matsunaga, T.; Miyata, H.; Sugimura, K.; Motoori, M.; Asukai, K.; Yanagimoto, Y.; Takahashi, Y.; Tomokuni, A.; Yamamoto, K.; Akita, H.; et al. Prognostic Significance of Sarcopenia and Systemic Inflammatory Response in Patients with Esophageal Cancer. Anticancer Res. 2019, 39, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Sakurai, K.; Nambara, M.; Miki, Y.; Toyokawa, T.; Kubo, N.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Ohira, M. Adverse Effects of Preoperative Sarcopenia on Postoperative Complications of Patients with Gastric Cancer. Anticancer Res. 2019, 39, 987–992. [Google Scholar] [CrossRef]
- Vashi, P.G.; Gorsuch, K.; Wan, L.; Hill, D.; Block, C.; Gupta, D. Sarcopenia supersedes subjective global assessment as a predictor of survival in colorectal cancer. PLoS ONE 2019, 14, e0218761. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Hirao, M.; Nishikawa, K.; Omori, T.; Yanagimoto, Y.; Shinno, N.; Sugimura, K.; Miyata, H.; Wada, H.; Takahashi, H.; et al. Sarcopenia Is Associated with Impaired Overall Survival after Gastrectomy for Elderly Gastric Cancer. Anticancer Res. 2019, 39, 4297–4303. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, T.; Feng, D.; Dai, X.; Lv, T.; Wang, X.; Gong, J.; Zhu, W.; Li, J. A new diagnostic index for sarcopenia and its association with short-term postoperative complications in patients undergoing surgery for colorectal cancer. Colorectal Dis. 2019, 21, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Okabe, H.; Ohsaki, T.; Ogawa, K.; Ozaki, N.; Hayashi, H.; Akahoshi, S.; Ikuta, Y.; Ogata, K.; Baba, H.; Takamori, H. Frailty predicts severe postoperative complications after elective colorectal surgery. Am. J. Surg. 2019, 217, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Otten, L.; Stobäus, N.; Franz, K.; Genton, L.; Müller-Werdan, U.; Wirth, R.; Norman, K. Impact of sarcopenia on 1-year mortality in older patients with cancer. Age Ageing 2019, 48, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Panje, C.M.; Höng, L.; Hayoz, S.; Baracos, V.E.; Herrmann, E.; Garcia Schüler, H.; Meier, U.R.; Henke, G.; Schacher, S.; Hawle, H.; et al. Skeletal muscle mass correlates with increased toxicity during neoadjuvant radiochemotherapy in locally advanced esophageal cancer: A SAKK 75/08 substudy. Radiat. Oncol. 2019, 14, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, S.; Oki, E.; Saeki, H.; Shimose, T.; Sakamoto, S.; Hu, Q.; Kudo, K.; Tsuda, Y.; Nakashima, Y.; Ando, K.; et al. Skeletal muscle loss during systemic chemotherapy for colorectal cancer indicates treatment response: A pooled analysis of a multicenter clinical trial (KSCC 1605-A). Int. J. Clin. Oncol. 2019, 24, 1204–1213. [Google Scholar] [CrossRef]
- Shi, B.; Liu, S.; Chen, J.; Liu, J.; Luo, Y.; Long, L.; Lan, Q.; Zhang, Y. Sarcopenia Is Associated with Perioperative Outcomes in Gastric Cancer Patients Undergoing Gastrectomy. Ann. Nutr. Metab. 2019, 75, 213–222. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.R.; Wiegert, E.V.M.; Oliveira, L.; Calixto-Lima, L. Different methods for diagnosis of sarcopenia and its association with nutritional status and survival in patients with advanced cancer in palliative care. Nutrition 2019, 60, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Charette, N.; Vandeputte, C.; Ameye, L.; Bogaert, C.V.; Krygier, J.; Guiot, T.; Deleporte, A.; Delaunoit, T.; Geboes, K.; Van Laethem, J.-L.; et al. Prognostic value of adipose tissue and muscle mass in advanced colorectal cancer: A post hoc analysis of two non-randomized phase II trials. BMC Cancer 2019, 19, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, M.; Park, H.W.; Huh, J.; Lee, J.H.; Jeong, Y.K.; Nah, Y.W.; Park, J.; Kim, K.W. Predictive value of sarcopenia and visceral obesity for postoperative pancreatic fistula after pancreaticoduodenectomy analyzed on clinically acquired CT and MRI. Eur. Radiol. 2019, 29, 2417–2425. [Google Scholar] [CrossRef] [PubMed]
- Kiss, N.; Beraldo, J.; Everitt, S. Early Skeletal Muscle Loss in Non-Small Cell Lung Cancer Patients Receiving Chemoradiation and Relationship to Survival. Support. Care Cancer 2019, 27, 2657–2664. [Google Scholar] [CrossRef] [PubMed]
- Kurita, Y.; Kobayashi, N.; Tokuhisa, M.; Goto, A.; Kubota, K.; Endo, I.; Nakajima, A.; Ichikawa, Y. Sarcopenia is a reliable prognostic factor in patients with advanced pancreatic cancer receiving FOLFIRINOX chemotherapy. Pancreatology 2019, 19, 127–135. [Google Scholar] [CrossRef]
- Nakamura, N.; Ninomiya, S.; Matsumoto, T.; Nakamura, H.; Kitagawa, J.; Shiraki, M.; Hara, T.; Shimizu, M.; Tsurumi, H. Prognostic impact of skeletal muscle assessed by computed tomography in patients with acute myeloid leukemia. Ann. Hematol. 2019, 98, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.-W.; Chen, X.-Y.; Fan, S.-D.; Zhang, F.-M.; Huang, D.-D.; Li, B.; Shen, X.; Zhuang, C.-L.; Yu, Z. Impact of sarcopenia on clinical outcomes after radical gastrectomy for patients without nutritional risk. Nutrition 2019, 61, 61–66. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Sun, H.; Zhang, R.; Liu, X.; Liu, S.; Wang, Z.; Zheng, Y.; Yu, Y.; Chen, X.; et al. Analysis of the associated factors for severe weight loss after minimally invasive McKeown esophagectomy. Thorac. Cancer 2019, 10, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Soma, D.; Kawamura, Y.I.; Yamashita, S.; Wake, H.; Nohara, K.; Yamada, K.; Kokudo, N. Sarcopenia, the depletion of muscle mass, an independent predictor of respiratory complications after oncological esophagectomy. Dis. Esophagus 2019, 32, doy092. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, S.; Jiang, Y.; Xi, Q.; Meng, Q.; Zhuang, Q.; Han, Y.; Sui, X.; Wu, G. Sarcopenia as a predictor of poor surgical and oncologic outcomes after abdominal surgery for digestive tract cancer: A prospective cohort study. Clin. Nutr. 2019, 38, 2881–2888. [Google Scholar] [CrossRef]
- Ataseven, B.; Luengo, T.G.; du Bois, A.; Waltering, K.-U.; Traut, A.; Heitz, F.; Alesina, P.F.; Prader, S.; Meier, B.; Schneider, S.; et al. Skeletal Muscle Attenuation (Sarcopenia) Predicts Reduced Overall Survival in Patients with Advanced Epithelial Ovarian Cancer Undergoing Primary Debulking Surgery. Ann. Surg. Oncol. 2018, 25, 3372–3379. [Google Scholar] [CrossRef] [PubMed]
- Banaste, N.; Rousset, P.; Mercier, F.; Rieussec, C.; Valette, P.-J.; Glehen, O.; Passot, G. Preoperative nutritional risk assessment in patients undergoing cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy for colorectal carcinomatosis. Int. J. Hyperth. 2018, 34, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Chambard, L.; Girard, N.; Ollier, E.; Rousseau, J.-C.; Duboeuf, F.; Carlier, M.-C.; Brevet, M.; Szulc, P.; Pialat, J.-B.; Wegrzyn, J.; et al. Bone, muscle, and metabolic parameters predict survival in patients with synchronous bone metastases from lung cancers. Bone 2018, 108, 202–209. [Google Scholar] [CrossRef]
- Chen, W.-Z.; Chen, X.-D.; Ma, L.-L.; Zhang, F.-M.; Lin, J.; Zhuang, C.-L.; Yu, Z.; Chen, X.-L.; Chen, X.-X. Impact of Visceral Obesity and Sarcopenia on Short-Term Outcomes after Colorectal Cancer Surgery. Dig. Dis. Sci. 2018, 63, 1620–1630. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, T.; Makuuchi, R.; Tokunaga, M.; Tanizawa, Y.; Bando, E.; Yasui, H.; Aoyama, T.; Inano, T.; Terashima, M. Long-Term Outcomes of Gastric Cancer Patients with Preoperative Sarcopenia. Ann. Surg. Oncol. 2018, 25, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Ní Bhuachalla, É.B.; Daly, L.E.; Power, D.G.; Cushen, S.J.; MacEneaney, P.; Ryan, A.M. Computed tomography diagnosed cachexia and sarcopenia in 725 oncology patients: Is nutritional screening capturing hidden malnutrition? J. Cachexia Sarcopenia Muscle 2018, 9, 295–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.R.; Park, S.; Han, S.; Ahn, J.H.; Kim, S.; Sinn, D.H.; Jeong, W.K.; Ko, J.S.; Gwak, M.S.; Kim, G.S. Sarcopenia as a predictor of post-transplant tumor recurrence after living donor liver transplantation for hepatocellular carcinoma beyond the Milan criteria. Sci. Rep. 2018, 8, 7157. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Kim, Y.S.; Kim, E.Y.; Jin, W. Prognostic significance of CT-determined sarcopenia in patients with advanced gastric cancer. PLoS ONE 2018, 13, e0202700. [Google Scholar] [CrossRef] [Green Version]
- Mayr, R.; Fritsche, H.-M.; Zeman, F.; Reiffen, M.; Siebertz, L.; Niessen, C.; Pycha, A.; van Rhijn, B.W.G.; Burger, M.; Gierth, M. Sarcopenia predicts 90-day mortality and postoperative complications after radical cystectomy for bladder cancer. World J. Urol. 2018, 36, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Chen, X.; Lin, J.; Zhu-ge, W.; Xie, Z.; Chen, X.; Zhang, F.; Wu, R.; Zhang, W.; Lou, N.; et al. A Novel Nomogram for Predicting Postsurgical Intra-abdominal Infection in Gastric Cancer Patients: A Prospective Study. J. Gastrointest. Surg. 2018, 22, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Motoori, M.; Fujitani, K.; Sugimura, K.; Miyata, H.; Nakatsuka, R.; Nishizawa, Y.; Komatsu, H.; Miyazaki, S.; Komori, T.; Kashiwazaki, M.; et al. Skeletal Muscle Loss during Neoadjuvant Chemotherapy Is an Independent Risk Factor for Postoperative Infectious Complications in Patients with Advanced Esophageal Cancer. Oncology 2018, 95, 281–287. [Google Scholar] [CrossRef]
- McSorley, S.T.; Black, D.H.; Horgan, P.G.; McMillan, D.C. The relationship between tumour stage, systemic inflammation, body composition and survival in patients with colorectal cancer. Clin. Nutr. 2018, 37, 1279–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Kroft, G.; Bours, D.M.J.L.; Janssen-Heijnen, D.M.; van Berlo, D.C.L.H.; Konsten, D.J.L.M. Value of sarcopenia assessed by computed tomography for the prediction of postoperative morbidity following oncological colorectal resection: A comparison with the malnutrition screening tool. Clin. Nutr. ESPEN 2018, 24, 114–119. [Google Scholar] [CrossRef] [PubMed]
- van Vugt, J.L.A.; Coebergh van den Braak, R.R.J.; Lalmahomed, Z.S.; Vrijland, W.W.; Dekker, J.W.T.; Zimmerman, D.D.E.; Vles, W.J.; Coene, P.-P.L.O.; IJzermans, J.N.M. Impact of low skeletal muscle mass and density on short and long-term outcome after resection of stage I–III colorectal cancer. Eur. J. Surg. Oncol. 2018, 44, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.R.; Deal, A.M.; Shachar, S.S.; Walko, C.M.; Patel, J.N.; O’Neil, B.; McLeod, H.L.; Weinberg, M.S.; Choi, S.K.; Muss, H.B.; et al. The Impact of Skeletal Muscle on the Pharmacokinetics and Toxicity of 5-Fluorouracil in Colorectal Cancer. Cancer Chemother. Pharmacol. 2018, 81, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lin, J.; Chen, W.; Huang, Y.; Wu, R.; Chen, X.; Lou, N.; Chi, C.; Hu, C.; Shen, X. Sarcopenic Obesity Is Associated with Severe Postoperative Complications in Gastric Cancer Patients Undergoing Gastrectomy: A Prospective Study. J. Gastrointest. Surg. 2018, 22, 1861–1869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.P.; Wang, X.L.; Tian, H.; Gao, T.T.; Tang, L.M.; Tian, F.; Wang, J.W.; Zheng, H.J.; Zhang, L.; et al. Computed tomography–quantified body composition predicts short-term outcomes after gastrectomy in gastric cancer. Curr. Oncol. 2018, 25, e411–e422. [Google Scholar] [CrossRef] [Green Version]
- Okugawa, Y.; Yao, L.; Toiyama, Y.; Yamamoto, A.; Shigemori, T.; Yin, C.; Omura, Y.; Ide, S.; Kitajima, T.; Shimura, T.; et al. Prognostic impact of sarcopenia and its correlation with circulating miR-21 in colorectal cancer patients. Oncol. Rep. 2018, 39, 1555–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rier, H.N.; Jager, A.; Meinardi, M.C.; van Rosmalen, J.; Kock, M.C.J.M.; Westerweel, P.E.; Trajkovic, M.; Sleijfer, S.; Levin, M.-D. Severe sarcopenia might be associated with a decline of physical independence in older patients undergoing chemotherapeutic treatment. Support. Care Cancer 2018, 26, 1781–1789. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Kunisaki, C.; Suematsu, H.; Tanaka, Y.; Hiroshi, M.; Kosaka, T.; Yukawa, N.; Tanaka, K.; Sato, K.; Akiyama, H.; et al. Impact of Sarcopenia in Patients with Unresectable Locally Advanced Esophageal Cancer Receiving Chemoradiotherapy. In Vivo 2018, 32, 603–610. [Google Scholar] [CrossRef]
- Stretch, C.; Aubin, J.-M.; Mickiewicz, B.; Leugner, D.; Al-manasra, T.; Tobola, E.; Salazar, S.; Sutherland, F.R.; Ball, C.G.; Dixon, E.; et al. Sarcopenia and myosteatosis are accompanied by distinct biological profiles in patients with pancreatic and periampullary adenocarcinomas. PLoS ONE 2018, 13, e0196235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, M.; Farnell, M.B.; Nagorney, D.M.; Kendrick, M.L.; Truty, M.J.; Smoot, R.L.; Chari, S.T.; Moynagh, M.R.; Petersen, G.M.; Carter, R.E.; et al. Decreased Skeletal Muscle Volume Is a Predictive Factor for Poorer Survival in Patients Undergoing Surgical Resection for Pancreatic Ductal Adenocarcinoma. J. Gastrointest. Surg. 2018, 22, 831–839. [Google Scholar] [CrossRef]
- Sui, K.; Okabayshi, T.; Iwata, J.; Morita, S.; Sumiyoshi, T.; Iiyama, T.; Shimada, Y. Correlation between the skeletal muscle index and surgical outcomes of pancreaticoduodenectomy. Surg. Today 2018, 48, 545–551. [Google Scholar] [CrossRef]
- Limpawattana, P.; Theerakulpisut, D.; Wirasorn, K.; Sookprasert, A.; Khuntikeo, N.; Chindaprasirt, J. The impact of skeletal muscle mass on survival outcome in biliary tract cancer patients. PLoS ONE 2018, 13, e0204985. [Google Scholar] [CrossRef] [Green Version]
- Caan, B.J.; Cespedes Feliciano, E.M.; Prado, C.M.; Alexeeff, S.; Kroenke, C.H.; Bradshaw, P.; Quesenberry, C.P.; Weltzien, E.K.; Castillo, A.L.; Olobatuyi, T.A.; et al. Association of Muscle and Adiposity Measured by Computed Tomography with Survival in Patients with Nonmetastatic Breast Cancer. JAMA Oncol. 2018, 4, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.; Kim, D.; Han, S.; Chon, Y.E.; Lee, Y.B.; Kim, M.N.; Lee, J.H.; Park, H.; Rim, K.S.; Hwang, S.G. Sarcopenia Predicts Prognosis in Patients with Newly Diagnosed Hepatocellular Carcinoma, Independent of Tumor Stage and Liver Function. Cancer Res. Treat. 2018, 50, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, Y.; Saeki, H.; Nakanishi, R.; Sugiyama, M.; Kurashige, J.; Oki, E.; Maehara, Y. Assessment of Sarcopenia as a Predictor of Poor Outcomes after Esophagectomy in Elderly Patients with Esophageal Cancer. Ann. Surg. 2018, 267, 1100–1104. [Google Scholar] [CrossRef] [PubMed]
- Makiura, D.; Ono, R.; Inoue, J.; Fukuta, A.; Kashiwa, M.; Miura, Y.; Oshikiri, T.; Nakamura, T.; Kakeji, Y.; Sakai, Y. Impact of Sarcopenia on Unplanned Readmission and Survival after Esophagectomy in Patients with Esophageal Cancer. Ann. Surg. Oncol. 2018, 25, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.J.; Boorjian, S.A.; Bhindi, B.; Rangel, L.; Frank, I.; Karnes, R.J.; Tollefson, M.K. The Association between Sarcopenia and Oncologic Outcomes after Radical Prostatectomy. Clin. Genitourin. Cancer 2018, 16, e629–e636. [Google Scholar] [CrossRef] [PubMed]
- Begini, P.; Gigante, E.; Antonelli, G.; Carbonetti, F.; Iannicelli, E.; Anania, G.; Imperatrice, B.; Pellicelli, A.M.; Fave, G.D.; Marignani, M. Sarcopenia predicts reduced survival in patients with hepatocellular carcinoma at first diagnosis. Ann. Hepatol. 2017, 16, 107–114. [Google Scholar] [CrossRef]
- Black, D.; Mackay, C.; Ramsay, G.; Hamoodi, Z.; Nanthakumaran, S.; Park, K.G.M.; Loudon, M.A.; Richards, C.H. Prognostic Value of Computed Tomography: Measured Parameters of Body Composition in Primary Operable Gastrointestinal Cancers. Ann. Surg. Oncol. 2017, 24, 2241–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, L.E.; Power, D.G.; O’Reilly, Á.; Donnellan, P.; Cushen, S.J.; O’Sullivan, K.; Twomey, M.; Woodlock, D.P.; Redmond, H.P.; Ryan, A.M. The impact of body composition parameters on ipilimumab toxicity and survival in patients with metastatic melanoma. Br. J. Cancer 2017, 116, 310–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, T.; Momoki, C.; Yamaoka, M.; Hachino, S.; Iwatani, S.; Kiyota, S.; Tanaka, H.; Habu, D. Validation of Skeletal Muscle Volume as a Nutritional Assessment in Patients with Gastric or Colorectal Cancer before Radical Surgery. J. Clin. Med. Res. 2017, 9, 844–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Härter, J.; Orlandi, S.P.; Gonzalez, M.C. Nutritional and functional factors as prognostic of surgical cancer patients. Support. Care Cancer 2017, 25, 2525–2530. [Google Scholar] [CrossRef] [PubMed]
- Heidelberger, V.; Goldwasser, F.; Kramkimel, N.; Jouinot, A.; Huillard, O.; Boudou-Rouquette, P.; Chanal, J.; Arrondeau, J.; Franck, N.; Alexandre, J.; et al. Sarcopenic overweight is associated with early acute limiting toxicity of anti-PD1 checkpoint inhibitors in melanoma patients. Investig. New Drugs 2017, 35, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.-D.; Zhou, C.-J.; Wang, S.-L.; Mao, S.-T.; Zhou, X.-Y.; Lou, N.; Zhang, Z.; Yu, Z.; Shen, X.; Zhuang, C.-L. Impact of different sarcopenia stages on the postoperative outcomes after radical gastrectomy for gastric cancer. Surgery 2017, 161, 680–693. [Google Scholar] [CrossRef]
- Imai, K.; Takai, K.; Watanabe, S.; Hanai, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M. Sarcopenia Impairs Prognosis of Patients with Hepatocellular Carcinoma: The Role of Liver Functional Reserve and Tumor-Related Factors in Loss of Skeletal Muscle Volume. Nutrients 2017, 9, 1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, N.; Chi, C.-H.; Chen, X.-D.; Zhou, C.-J.; Wang, S.-L.; Zhuang, C.-L.; Shen, X. Sarcopenia in overweight and obese patients is a predictive factor for postoperative complication in gastric cancer: A prospective study. Eur. J. Surg. Oncol. 2017, 43, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Cushen, S.J.; Power, D.G.; Teo, M.Y.; MacEneaney, P.; Maher, M.M.; McDermott, R.; O’Sullivan, K.; Ryan, A.M. Body Composition by Computed Tomography as a Predictor of Toxicity in Patients with Renal Cell Carcinoma Treated with Sunitinib. Am. J. Clin. Oncol. 2017, 40, 47–52. [Google Scholar] [CrossRef]
- Cespedes Feliciano, E.M.; Kroenke, C.H.; Meyerhardt, J.A.; Prado, C.M.; Bradshaw, P.T.; Kwan, M.L.; Xiao, J.; Alexeeff, S.; Corley, D.; Weltzien, E.; et al. Association of Systemic Inflammation and Sarcopenia with Survival in Nonmetastatic Colorectal Cancer. JAMA Oncol. 2017, 3, e172319. [Google Scholar] [CrossRef]
- Elliott, J.; Doyle, S.; Murphy, C.; King, S.; Guinan, E.; Beddy, P.; Ravi, N.; Reynolds, J. Sarcopenia: Prevalence, and Impact on Operative and Oncologic Outcomes in the Multimodal Management of Locally Advanced Esophageal Cancer. Ann. Surg. 2017, 266, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Wendrich, A.W.; Swartz, J.E.; Bril, S.I.; Wegner, I.; de Graeff, A.; Smid, E.J.; de Bree, R.; Pothen, A.J. Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer. Oral Oncol. 2017, 71, 26–33. [Google Scholar] [CrossRef]
- Bronger, H.; Hederich, P.; Hapfelmeier, A.; Metz, S.; Noël, P.B.; Kiechle, M.; Schmalfeldt, B. Sarcopenia in Advanced Serous Ovarian Cancer. Int. J. Gynecol. Cancer 2017, 27, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, H.; Kondo, T.; Omae, K.; Takagi, T.; Iizuka, J.; Kobayashi, H.; Hashimoto, Y.; Tanabe, K. Sarcopenia predicts survival outcomes among patients with urothelial carcinoma of the upper urinary tract undergoing radical nephroureterectomy: A retrospective multi-institution study. Int. J. Clin. Oncol. 2017, 22, 136–144. [Google Scholar] [CrossRef]
- Miyata, H.; Sugimura, K.; Motoori, M.; Fujiwara, Y.; Omori, T.; Yanagimoto, Y.; Ohue, M.; Yasui, M.; Miyoshi, N.; Tomokuni, A.; et al. Clinical Assessment of Sarcopenia and Changes in Body Composition During Neoadjuvant Chemotherapy for Esophageal Cancer. Anticancer Res. 2017, 37, 3053–3059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.-J.; Zhang, F.-M.; Zhang, F.-Y.; Yu, Z.; Chen, X.-L.; Shen, X.; Zhuang, C.-L.; Chen, X.-X. Sarcopenia: A new predictor of postoperative complications for elderly gastric cancer patients who underwent radical gastrectomy. J. Surg. Res. 2017, 211, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Chemama, S.; Bayar, M.A.; Lanoy, E.; Ammari, S.; Stoclin, A.; Goéré, D.; Elias, D.; Raynard, B.; Antoun, S. Sarcopenia is Associated with Chemotherapy Toxicity in Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Carcinomatosis from Colorectal Cancer. Ann. Surg. Oncol. 2016, 23, 3891–3898. [Google Scholar] [CrossRef]
- Grotenhuis, B.A.; Shapiro, J.; van Adrichem, S.; de Vries, M.; Koek, M.; Wijnhoven, B.P.L.; van Lanschot, J.J.B. Sarcopenia/Muscle Mass is not a Prognostic Factor for Short- and Long-Term Outcome after Esophagectomy for Cancer. World J. Surg. 2016, 40, 2698–2704. [Google Scholar] [CrossRef] [Green Version]
- Nishigori, T.; Okabe, H.; Tanaka, E.; Tsunoda, S.; Hisamori, S.; Sakai, Y. Sarcopenia as a predictor of pulmonary complications after esophagectomy for thoracic esophageal cancer. J. Surg. Oncol. 2016, 113, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Okumura, S.; Kaido, T.; Hamaguchi, Y.; Fujimoto, Y.; Kobayashi, A.; Iida, T.; Yagi, S.; Taura, K.; Hatano, E.; Uemoto, S. Impact of the preoperative quantity and quality of skeletal muscle on outcomes after resection of extrahepatic biliary malignancies. Surgery 2016, 159, 821–833. [Google Scholar] [CrossRef]
- Pecorelli, N.; Carrara, G.; De Cobelli, F.; Cristel, G.; Damascelli, A.; Balzano, G.; Beretta, L.; Braga, M. Effect of sarcopenia and visceral obesity on mortality and pancreatic fistula following pancreatic cancer surgery. Br. J. Surg. 2016, 103, 434–442. [Google Scholar] [CrossRef]
- Park, I.; Choi, S.J.; Kim, Y.S.; Ahn, H.K.; Hong, J.; Sym, S.J.; Park, J.; Cho, E.K.; Lee, J.H.; Shin, Y.J.; et al. Prognostic Factors for Risk Stratification of Patients with Recurrent or Metastatic Pancreatic Adenocarcinoma Who Were Treated with Gemcitabine-Based Chemotherapy. Cancer Res. Treat. 2016, 48, 1264–1273. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Okamoto, T.; Fujishita, T.; Katsura, M.; Akamine, T.; Takamori, S.; Morodomi, Y.; Tagawa, T.; Shoji, F.; Maehara, Y. Clinical implications of sarcopenia in patients undergoing complete resection for early non-small cell lung cancer. Lung Cancer 2016, 101, 92–97. [Google Scholar] [CrossRef]
- Takeoka, Y.; Sakatoku, K.; Miura, A.; Yamamura, R.; Araki, T.; Seura, H.; Okamura, T.; Koh, H.; Nakamae, H.; Hino, M.; et al. Prognostic Effect of Low Subcutaneous Adipose Tissue on Survival Outcome in Patients with Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2016, 16, 434–441. [Google Scholar] [CrossRef]
- Fukushima, H.; Nakanishi, Y.; Kataoka, M.; Tobisu, K.; Koga, F. Prognostic significance of sarcopenia in upper tract urothelial carcinoma patients treated with radical nephroureterectomy. Cancer Med. 2016, 5, 2213–2220. [Google Scholar] [CrossRef] [Green Version]
- Go, S.; Park, M.J.; Song, H.; Kim, H.; Kang, M.H.; Lee, H.R.; Kim, Y.; Kim, R.B.; Lee, S.I.; Lee, G. Prognostic impact of sarcopenia in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J. Cachexia Sarcopenia Muscle 2016, 7, 567–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Moynagh, M.R.; Multinu, F.; Cliby, W.A.; McGree, M.E.; Weaver, A.L.; Young, P.M.; Bakkum-Gamez, J.N.; Langstraat, C.L.; Dowdy, S.C.; et al. Muscle composition measured by CT scan is a measurable predictor of overall survival in advanced ovarian cancer. Gynecol. Oncol. 2016, 142, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Pędziwiatr, M.; Pisarska, M.; Major, P.; Grochowska, A.; Matłok, M.; Przęczek, K.; Stefura, T.; Budzyński, A.; Kłęk, S. Laparoscopic colorectal cancer surgery combined with enhanced recovery after surgery protocol (ERAS) reduces the negative impact of sarcopenia on short-term outcomes. Eur. J. Surg. Oncol. 2016, 42, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Rollins, K.E.; Tewari, N.; Ackner, A.; Awwad, A.; Madhusudan, S.; Macdonald, I.A.; Fearon, K.C.H.; Lobo, D.N. The impact of sarcopenia and myosteatosis on outcomes of unresectable pancreatic cancer or distal cholangiocarcinoma. Clin. Nutr. 2016, 35, 1103–1109. [Google Scholar] [CrossRef]
- Yabusaki, N.; Fujii, T.; Yamada, S.; Suzuki, K.; Sugimoto, H.; Kanda, M.; Nakayama, G.; Koike, M.; Fujiwara, M.; Kodera, Y. Adverse impact of low skeletal muscle index on the prognosis of hepatocellular carcinoma after hepatic resection. Int. J. Surg. 2016, 30, 136–142. [Google Scholar] [CrossRef]
- Buettner, S.; Wagner, D.; Kim, Y.; Margonis, G.A.; Makary, M.A.; Wilson, A.; Sasaki, K.; Amini, N.; Gani, F.; Pawlik, T.M. Inclusion of Sarcopenia Outperforms the Modified Frailty Index in Predicting 1-Year Mortality among 1,326 Patients Undergoing Gastrointestinal Surgery for a Malignant Indication. J. Am. Coll. Surg. 2016, 222, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Amini, N.; Spolverato, G.; Gupta, R.; Margonis, G.A.; Kim, Y.; Wagner, D.; Rezaee, N.; Weiss, M.J.; Wolfgang, C.L.; Makary, M.M.; et al. Impact Total Psoas Volume on Short- and Long-Term Outcomes in Patients Undergoing Curative Resection for Pancreatic Adenocarcinoma: A New Tool to Assess Sarcopenia. J. Gastrointest. Surg. 2015, 19, 1593–1602. [Google Scholar] [CrossRef] [PubMed]
- Anandavadivelan, P.; Brismar, T.B.; Nilsson, M.; Johar, A.M.; Martin, L. Sarcopenic obesity: A probable risk factor for dose limiting toxicity during neo-adjuvant chemotherapy in oesophageal cancer patients. Clin. Nutr. 2015, 35, 724–730. [Google Scholar] [CrossRef]
- Fukuda, Y.; Yamamoto, K.; Hirao, M.; Nishikawa, K.; Nagatsuma, Y.; Nakayama, T.; Tanikawa, S.; Maeda, S.; Uemura, M.; Miyake, M.; et al. Sarcopenia is associated with severe postoperative complications in elderly gastric cancer patients undergoing gastrectomy. Gastric Cancer 2015, 19, 986–993. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.-D.; Wang, S.-L.; Zhuang, C.-L.; Zheng, B.-S.; Lu, J.-X.; Chen, F.-F.; Zhou, C.-J.; Shen, X.; Yu, Z. Sarcopenia, as defined by low muscle mass, strength and physical performance, predicts complications after surgery for colorectal cancer. Colorectal Dis. 2015, 17, O256–O264. [Google Scholar] [CrossRef]
- Ida, S.; Watanabe, M.; Yoshida, N.; Baba, Y.; Umezaki, N.; Harada, K.; Karashima, R.; Imamura, Y.; Iwagami, S.; Baba, H. Sarcopenia is a Predictor of Postoperative Respiratory Complications in Patients with Esophageal Cancer. Ann. Surg. Oncol. 2015, 22, 4432–4437. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Kim, Y.S.; Park, I.; Ahn, H.K.; Cho, E.K.; Jeong, Y.M. Prognostic Significance of CT-Determined Sarcopenia in Patients with Small-Cell Lung Cancer. J. Thorac. Oncol. 2015, 10, 1795–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levolger, S.; van Vledder, M.G.; Muslem, R.; Koek, M.; Niessen, W.J.; de Man, R.A.; de Bruin, R.W.F.; Ijzermans, J.N.M. Sarcopenia impairs survival in patients with potentially curable hepatocellular carcinoma. J. Surg. Oncol. 2015, 112, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, K.W.; van Vugt, J.L.A.; Tegels, J.J.W.; Snijders, C.; Hulsewé, K.W.E.; Hoofwijk, A.G.M.; Stoot, J.H.; Von Meyenfeldt, M.F.; Beets, G.L.; Derikx, J.P.M.; et al. Functional compromise reflected by sarcopenia, frailty, and nutritional depletion predicts adverse postoperative outcome after colorectal cancer surgery. Ann. Surg. 2015, 261, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Tamandl, D.; Paireder, M.; Asari, R.; Baltzer, P.A.; Schoppmann, S.F.; Ba-Ssalamah, A. Markers of sarcopenia quantified by computed tomography predict adverse long-term outcome in patients with resected oesophageal or gastro-oesophageal junction cancer. Eur. Radiol. 2016, 26, 1359–1361. [Google Scholar] [CrossRef]
- Tegels, J.J.W.; van Vugt, J.L.A.; Reisinger, K.W.; Hulsewé, K.W.E.; Hoofwijk, A.G.M.; Derikx, J.P.M.; Stoot, J.H.M.B. Sarcopenia is highly prevalent in patients undergoing surgery for gastric cancer but not associated with worse outcomes. J. Surg. Oncol. 2015, 112, 403–407. [Google Scholar] [CrossRef]
- Voron, T.; Tselikas, L.; Pietrasz, D.; Pigneur, F.; Laurent, A.; Compagnon, P.; Salloum, C.; Luciani, A.; Azoulay, D. Sarcopenia Impacts on Short- and Long-term Results of Hepatectomy for Hepatocellular Carcinoma. Ann. Surg. 2015, 261, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Lodewick, T.M.; van Nijnatten, T.J.A.; van Dam, R.M.; van Mierlo, K.; Dello, S.A.W.G.; Neumann, U.P.; Olde Damink, S.W.M.; Dejong, C.H.C. Are sarcopenia, obesity and sarcopenic obesity predictive of outcome in patients with colorectal liver metastases? HPB 2015, 17, 438–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.H.L.; Brammer, K.; Randhawa, N.; Welch, N.T.; Parsons, S.L.; James, E.J.; Catton, J.A. Sarcopenia is associated with toxicity in patients undergoing neo-adjuvant chemotherapy for oesophago-gastric cancer. Eur. J. Surg. Oncol. 2015, 41, 333–338. [Google Scholar] [CrossRef]
- Wang, S.-L.; Zhuang, C.-L.; Huang, D.-D.; Pang, W.-Y.; Lou, N.; Chen, F.-F.; Zhou, C.-J.; Shen, X.; Yu, Z. Sarcopenia Adversely Impacts Postoperative Clinical Outcomes Following Gastrectomy in Patients with Gastric Cancer: A Prospective Study. Ann. Surg. Oncol. 2015, 23, 556–564. [Google Scholar] [CrossRef]
- van Vugt, J.L.A.; Braam, H.J.; van Oudheusden, T.R.; Vestering, A.; Bollen, T.L.; Wiezer, M.J.; de Hingh, I.H.J.T.; van Ramshorst, B.; Boerma, D. Skeletal Muscle Depletion is Associated with Severe Postoperative Complications in Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Carcinomatosis of Colorectal Cancer. Ann. Surg. Oncol. 2015, 22, 3625–3631. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.C.; Pastore, C.A.; Orlandi, S.P.; Heymsfield, S.B. Obesity paradox in cancer: New insights provided by body composition. Am. J. Clin. Nutr. 2014, 99, 999–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barret, M.; Antoun, S.; Dalban, C.; Malka, D.; Mansourbakht, T.; Zaanan, A.; Latko, E.; Taieb, J. Sarcopenia is linked to treatment toxicity in patients with metastatic colorectal cancer. Nutr. Cancer 2014, 66, 583–589. [Google Scholar] [CrossRef]
- Harimoto, N.; Shirabe, K.; Yamashita, Y.-I.; Ikegami, T.; Yoshizumi, T.; Soejima, Y.; Ikeda, T.; Maehara, Y.; Nishie, A.; Yamanaka, T. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br. J. Surg. 2013, 100, 1523–1530. [Google Scholar] [CrossRef]
- Huillard, O.; Mir, O.; Peyromaure, M.; Tlemsani, C.; Giroux, J.; Boudou-Rouquette, P.; Ropert, S.; Delongchamps, N.B.; Zerbib, M.; Goldwasser, F. Sarcopenia and body mass index predict sunitinib-induced early dose-limiting toxicities in renal cancer patients. Br. J. Cancer 2013, 108, 1034–1041. [Google Scholar] [CrossRef] [Green Version]
- Veasey-Rodrigues, H.; Parsons, H.A.; Janku, F.; Naing, A.; Wheler, J.J.; Tsimberidou, A.M.; Kurzrock, R. A pilot study of temsirolimus and body composition. J. Cachexia Sarcopenia Muscle 2013, 4, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Veasey Rodrigues, H.; Baracos, V.E.; Wheler, J.J.; Parsons, H.A.; Hong, D.S.; Naing, A.; Fu, S.; Falchoock, G.; Tsimberidou, A.M.; Piha-Paul, S.; et al. Body composition and survival in the early clinical trials setting. Eur. J. Cancer 2013, 49, 3068–3075. [Google Scholar] [CrossRef] [PubMed]
- Meza-Junco, J.; Montano-Loza, A.J.; Baracos, V.E.; Prado, C.M.M.; Bain, V.G.; Beaumont, C.; Esfandiari, N.; Lieffers, J.R.; Sawyer, M.B. Sarcopenia as a Prognostic Index of Nutritional Status in Concurrent Cirrhosis and Hepatocellular Carcinoma. J. Clin. Gastroenterol. 2013, 47, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Lieffers, J.R.; Bathe, O.F.; Fassbender, K.; Winget, M.; Baracos, V.E. Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br. J. Cancer 2012, 107, 931–936. [Google Scholar] [CrossRef] [Green Version]
- Mir, O.; Coriat, R.; Boudou-Rouquette, P.; Ropert, S.; Durand, J.-P.; Cessot, A.; Mallet, V.; Sogni, P.; Chaussade, S.; Pol, S.; et al. Gemcitabine and oxaliplatin as second-line treatment in patients with hepatocellular carcinoma pre-treated with sorafenib. Med. Oncol. 2012, 29, 2793–2799. [Google Scholar] [CrossRef]
- Parsons, H.A.; Baracos, V.E.; Dhillon, N.; Hong, D.S.; Kurzrock, R. Body composition, symptoms, and survival in advanced cancer patients referred to a phase I service. PLoS ONE 2012, 7, e29330. [Google Scholar] [CrossRef] [Green Version]
- Parsons, H.A.; Tsimberidou, A.M.; Pontikos, M.; Fu, S.; Hong, D.; Wen, S.; Baracos, V.E.; Kurzrock, R. Evaluation of the clinical relevance of body composition parameters in patients with cancer metastatic to the liver treated with hepatic arterial infusion chemotherapy. Nutr. Cancer 2012, 64, 206–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vledder, M.G.; Levolger, S.; Ayez, N.; Verhoef, C.; Tran, T.C.K.; Ijzermans, J.N.M. Body composition and outcome in patients undergoing resection of colorectal liver metastases. Br. J. Surg. 2012, 99, 550–557. [Google Scholar] [CrossRef]
- Dalal, S.; Hui, D.; Bidaut, L.; Lem, K.; Del Fabbro, E.; Crane, C.; Reyes-Gibby, C.C.; Bedi, D.; Bruera, E. Relationships among body mass index, longitudinal body composition alterations, and survival in patients with locally advanced pancreatic cancer receiving chemoradiation: A pilot study. J. Pain Symptom Manag. 2012, 44, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Antoun, S.; Birdsell, L.; Sawyer, M.B.; Venner, P.; Escudier, B.; Baracos, V.E. Association of Skeletal Muscle Wasting with Treatment with Sorafenib in Patients with Advanced Renal Cell Carcinoma: Results From a Placebo-Controlled Study. J. Clin. Oncol. 2010, 28, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.H.L.; Birdsell, L.A.; Martin, L.; Baracos, V.E.; Fearon, K.C.H. Sarcopenia in an Overweight or Obese Patient Is an Adverse Prognostic Factor in Pancreatic Cancer. Clin. Cancer Res. 2009, 15, 6973–6979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, C.M.M.; Baracos, V.E.; McCargar, L.J.; Reiman, T.; Mourtzakis, M.; Tonkin, K.; Mackey, J.R.; Koski, S.; Pituskin, E.; Sawyer, M.B. Sarcopenia as a Determinant of Chemotherapy Toxicity and Time to Tumor Progression in Metastatic Breast Cancer Patients Receiving Capecitabine Treatment. Clin. Cancer Res. 2009, 15, 2920–2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Paireder, M.; Asari, R.; Kristo, I.; Rieder, E.; Tamandl, D.; Ba-Ssalamah, A.; Schoppmann, S. Impact of sarcopenia on outcome in patients with esophageal resection following neoadjuvant chemotherapy for esophageal cancer. Eur. J. Surg. Oncol. (EJSO) 2016, 43, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Nakano, J.; Fukushima, T.; Tanaka, T.; Fu, J.B.; Morishita, S. Physical function predicts mortality in patients with cancer: A systematic review and meta-analysis of observational studies. Support. Care Cancer 2021, 29, 5623–5634. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.R.; Al-Obaidi, M.; Dai, C.; Bhatia, S.; Giri, S. SARC-F for screening of sarcopenia among older adults with cancer. Cancer 2021, 127, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-D.; Tsauo, J.-Y.; Wu, Y.-T.; Cheng, C.-P.; Chen, H.-C.; Huang, Y.-C.; Chen, H.-C.; Liou, T.-H. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2017, 106, 1078–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference | Asia (Y/N) | Recruitment RCT/P/RP | Follow-Up (m) | Patients | Site | Extension | Treatment | Mean or Median Age (y) | Definition of Sarcopenia/Muscle Mass Index | Sarcopenia | Over the 95% CI (Y/N) | NOS G/F/P | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | M | F | Total | M | F | |||||||||||
Takagi A et al., 2022 [10] | Y | P | 1.0 | 114 | 74 | 40 | Various | Various | Various | 68.4 | CT scan/SMI | 57 | NA | NA | N | G |
Lu JL et al., 2022 [11] | Y | P | 0.0 | 260 | 196 | 64 | Gastric | Locally advanced | Surgery | 62.4 | EWGOS 2/ASM | 41 | 22 | 19 | Y | G |
Deluche E et al., 2022 [12] | N | P | 1.0 | 139 | 2 | 137 | Breast | Metastatic | Various | 61.2 | EWGOS 1/SMI | 41 | 1 | 40 | N | F |
Tagliafico AS et al., 2022 [13] | N | P | 200.0 | 74 | 37 | 37 | Myeloma | Metastatic | Chemotherapy | 60.8 | CT scan/SMI | 18 | 6 | 12 | Y | G |
Orzell S et al., 2022 [14] | N | P | 72.0 | 251 | 191 | 58 | Head and neck | Various | Surgery | 67.4 | EWGOS 2/SMI | 39 | 21 | 18 | Y | G |
Bajric T et al., 2021 [15] | N | RP | 63.6 | 355 | 135 | 220 | Colorectal | Metastatic | Surgery | 68.0 | CT scan/SMI | 78 | 65 | 13 | Y | F |
Cárcamo L. et al., 2021 [16] | N | RP | 72.0 | 359 | 193 | 166 | Colorectal | Various | Surgery | 64.0 | CT scan/SMI | 85 | NA | NA | Y | G |
Catanese S et al., 2021 [17] | N | RP | 87.6 | 78 | 56 | 22 | Gastric | Metastatic | Various | 67.0 | CT scan/SMI | 34 | 22 | 12 | N | G |
Chai VW et al., 2021 [18] | N | RP | 12.0 | 228 | 139 | 89 | Colorectal | Various | Surgery | 69.0 | CT scan/SMI | 36 | 24 | 12 | Y | G |
Chang YR et al., 2021 [19] | Y | RP | 141.6 | 109 | 63 | 46 | Sarcoma | Metastatic | Targeted therapy | 61.0 | CT scan/PMI | 25 | NA | NA | Y | F |
Chen HW et al., 2021 [20] | Y | RP | 86.4 | 163 | NA | NA | Urothelial | Various | Surgery | 64.3 | CT scan/SMI | 132 | NA | NA | Y | F |
Daffrè E et al., 2021 [21] | N | RP | 60.0 | 238 | 169 | 69 | Lung NSC | Various | Surgery | 63.0 | CT scan/SMI | 47 | 36 | 11 | Y | G |
Ferini G et al., 2021 [22] | N | RP | 70.0 | 28 | 25 | 3 | Urothelial | Various | Radiotherapy | 85.0 | CT scan/SMI | 8 | 8 | 0 | N | F |
Haik L et al., 2021 [23] | N | RP | 60.0 | 261 | 198 | 63 | Various | Various | Immunotherapy | 61.9 | CT scan/SMI | 122 | 87 | 35 | N | F |
Harry Hsu TM et al., 2021 [24] | N | P | 33.6 | 136 | 63 | 73 | Pancreas | Various | Not specified | 67.0 | CT scan/SMI | 21 | 9 | 12 | Y | F |
Hu WH et al.,2021 [25] | Y | RP | 80.4 | 114 | 68 | 46 | Colorectal | Various | Surgery | 63.2 | CT scan/SMI | 52 | NA | NA | N | G |
Huang DD et al.,2021 [26] | Y | P | 67.2 | 419 | 282 | 137 | Gastric | Various | Surgery | 72.0 | CT scan/SMI | 285 | 208 | 77 | Y | G |
Kim J et al., 2021 [27] | Y | RP | 41.0 | 840 | 526 | 534 | Gastric | Various | Various | 60.4 | CT scan/SMI | 119 | 110 | 9 | Y | G |
Kim GH et al., 2021 [28] | Y | RP | 70.5 | 280 | 182 | 98 | Gastric | Local | Surgery | 82.0 | CT scan/SMI | 173 | NA | NA | Y | G |
Kawaguchi Y et al., 2021 [29] | Y | RP | 60.0 | 256 | 173 | 83 | Lung NSC | Various | Surgery | 68.5 | CT scan/PMI | 128 | 89 | 39 | Y | F |
Juris A et al., 2021 [30] | N | RP | 48.0 | 89 | 40 | 49 | Various | Various | Various | 57.0 | CT scan/SMI | 22 | 11 | 11 | Y | F |
Jullien M et al., 2021 [31] | N | P | 36.6 | 656 | 367 | 289 | Lymphoma | Various | Various | 49.0 | CT scan/SMI | 225 | 179 | 46 | N | G |
Jalal M et al., 2021 [32] | N | RP | 0.0 | 204 | 114 | 90 | Pancreas | Locally advanced | Various | 69.0 | CT scan/SMI | 111 | 41 | 70 | Y | F |
Kirsten J et al., 2021 [33] | N | P | 12.0 | 178 | 109 | 69 | Leukemia | Metastatic | Chemotherapy | 58.3 | EWGOS1 | 49 | 42 | 7 | Y | G |
Kim N et al., 2021 [34] | Y | RP | 30.1 | 185 | 120 | 65 | Gastric | Metastatic | Immunotherapy | 59.0 | CT scan/SMI | 93 | 85 | 8 | Y | G |
Leone R et al., 2021 [35] | N | RP | 40.0 | 43 | 15 | 28 | Lymphoma | Various | Chemotherapy | 61.0 | CT scan/SMI | 13 | NA | NA | N | F |
Lee CH et al., 2021 [36] | Y | RP | 57.1 | 78 | 59 | 19 | Kidney | Metastatic | Targeted therapy | 61.6 | CT scan/SMI | 41 | 28 | 13 | N | G |
Liang H et al., 2021 [37] | Y | RP | 17.7 | 100 | 93 | 7 | Esophageal | Various | Radiotherapy | 59.0 | CT scan/SMI | 77 | 74 | 3 | Y | F |
Makal GB et al., 2021 [38] | Y | RP | 1.0 | 225 | 141 | 84 | Various | Various | Surgery | 58.7 | CT scan/TPA | 102 | 42 | 60 | N | P |
Nilsson M et al., 2021 [39] | N | RP | 60.0 | 106 | 22 | 84 | Anal | Various | Radiotherapy | 63.8 | CT scan/SMI | 41 | 11 | 30 | N | G |
Takeda T et al., 2021 [40] | Y | RP | 63.6 | 80 | 35 | 45 | Pancreas | Metastatic | Chemotherapy | 77.0 | CT scan/SMI | 61 | 25 | 36 | Y | G |
Takiguchi K et al., 2021 [41] | Y | RP | 96.0 | 209 | 116 | 93 | Colorectal | Locally advanced | Surgery | NA | CT scan/PMI | 81 | 50 | 31 | N | F |
Thureau S et al., 2021 [42] | N | P | 60.0 | 243 | 187 | 56 | Head and neck | Various | Various | 61.0 | CT scan/SMI | 88 | NA | NA | N | G |
Troschel FM et al., 2021 [43] | N | RP | 96,0 | 367 | 247 | 120 | Lung NSC | Various | Surgery | 62.2 | CT scan/NA | 104 | 86 | 18 | Y | G |
Trussardi Fayh AP et al., 2021 [44] | N | P | 0.0 | 108 | 51 | 57 | Various | Various | Various | 70.6 | EWGOS 2/SMI | 26 | NA | NA | Y | F |
van den Berg I et al., 2021 [45] | N | RP | 60.0 | 754 | 352 | 306 | Colorectal | Various | Surgery | NA | CT scan/NA | 266 | NA | NA | N | F |
Wu WY et al., 2021 [46] | Y | P | 67.2 | 648 | 486 | 162 | Gastric | Various | Surgery | 64.3 | AWGS2/ EWGOS2/SMI | 133 | 91 | 42 | Y | G |
Xu YY et al., 2021 [47] | Y | RP | 50.0 | 184 | 141 | 43 | Esophageal | Various | Various | 62.0 | CT scan/SMI | 94 | 75 | 19 | Y | F |
Yamashita S et al., 2021 [48] | Y | RP | 72.0 | 123 | 103 | 20 | Urothelial | Various | Surgery | 74.0 | CT scan/SMI | 48 | NA | NA | N | F |
Zhang FM et al., 2021 [49] | Y | P | 80.0 | 507 | 367 | 140 | Gastric | Local | Surgery | 63.0 | CT scan/SMI | 73 | 53 | 20 | Y | F |
Zilioli VR et al., 2021 [50] | N | RP | 144.0 | 154 | 78 | 76 | Lymphoma | Various | Various | 71.0 | CT scan/SMI | 66 | 42 | 24 | N | G |
Zou HB et al., 2021 [51] | Y | P | 6.0 | 135 | 91 | 44 | Gastric | Various | Surgery | 64.0 | AWGS 2/SMI | 27 | 14 | 13 | Y | F |
Peng H et al., 2021 [52] | Y | RP | 82.0 | 121 | 96 | 25 | Esophageal | Various | Surgery | 70.3 | CT scan/SMI | 65 | 52 | 13 | Y | F |
Rinninella E et al., 2021 [53] | N | RP | 0.0 | 26 | 18 | 8 | Gastric | Locally advanced | Various | 63.3 | CT scan/SMI | 19 | NA | NA | Y | F |
Runkel M et al., 2021 [54] | N | RP | 0.0 | 94 | 58 | 36 | Colorectal | Metastatic | Surgery | 61.4 | CT scan/SMI | 34 | NA | NA | N | F |
Sakurai K et al., 2021 [55] | Y | RP | 127.0 | 1054 | 691 | 363 | Gastric | Various | Surgery | NA | CT scan/SMI | 193 | 117 | 76 | Y | G |
Sehouli J et al., 2021 [56] | N | P | 59.0 | 226 | 0 | 226 | Various | Various | Surgery | 59.0 | BIA/ASM | 68 | 0 | 68 | N | G |
Şengül Ayçiçek G et al., 2021 [57] | N | P | 0.0 | 49 | 25 | 24 | Various | Various | Surgery | 70.0 | BIA/ASM | 14 | 1 | 13 | N | F |
Sun X et al., 2021 [58] | Y | P | 50.0 | 267 | 202 | 65 | Gastric | Various | Surgery | 64.8 | AWGS 1/SMI | 49 | 32 | 17 | Y | G |
Pessia B et al., 2021 [59] | N | RP | 48.0 | 68 | NA | NA | Pancreas | Local | Surgery | 63.0 | CT scan/SMI | 32 | NA | NA | N | G |
Choi H et al., 2021 [60] | Y | RP | 60.0 | 440 | 243 | 197 | Lung NSC | Local | Surgery | 65.0 | CT scan/SMI | 246 | NA | NA | Y | G |
Jang HY et al., 2021 [61] | Y | RP | 120.0 | 160 | 120 | 40 | Liver | Local | Surgery | 55.2 | CT scan/SMI | 28 | 17 | 11 | Y | G |
Tenuta M et al., 2021 [62] | N | P | 62.5 | 47 | 27 | 20 | Lung NSC | Locally advanced | Immunotherapy | 67.0 | EWGOS 2/ASM | 19 | 10 | 9 | N | G |
Lee JH et al., 2021 [63] | Y | P | 36.0 | 70 | 70 | 0 | Prostate | Metastatic | Various | 66.5 | CT scan/SMI | 47 | 47 | 0 | Y | G |
Taniguchi Y et al., 2021 [64] | Y | RP | 72.0 | 567 | 393 | 174 | Gastric | Various | Surgery | NA | CT scan/PMI | 88 | 81 | 7 | Y | G |
Deng L et al., 2021 [65] | Y | P | 80.0 | 121 | 52 | 69 | Cholangiocarcinoma | Various | Surgery | 65.0 | CT scan/PMI | 53 | NA | NA | N | G |
Uemura S et al., 2021 [66] | Y | RP | 60.0 | 69 | 38 | 31 | Pancreas | Various | Chemotherapy | 63.0 | CT scan/SMI | 33 | 12 | 21 | N | F |
Jung AR et al., 2021 [67] | Y | P | 96.0 | 190 | 156 | 34 | Head and neck | Various | Various | 71.9 | CT scan/SMI | 64 | 56 | 8 | N | G |
Huang X et al., 2021 [68] | Y | P | 3.0 | 82 | 55 | 27 | Head and neck | Various | Chemotherapy | 45.7 | AWGS 1//NA | 37 | 17 | 20 | N | G |
Regnier R et al., 2021 [69] | N | RP | 3.0 | 82 | 62 | 20 | Kidney | Locally advanced | Various | 65.0 | CT scan/SMI | 47 | 39 | 8 | Y | G |
Jin K et al., 2021 [70] | Y | RP | 0.0 | 119 | 59 | 60 | Pancreas | Locally advanced | Various | 60.2 | CT scan/SMI | 57 | NA | NA | N | G |
Miura A et al., 2021 [71] | Y | RP | 79.6 | 259 | 155 | 104 | Lung NSC | Various | Surgery | 73.0 | CT scan/PMI | 179 | 127 | 52 | Y | F |
Takahashi Y et al., 2021 [72] | Y | RP | 137.0 | 315 | 192 | 123 | Lung NSC | Local | Surgery | 70.0 | CT scan/PMI | 79 | 46 | 33 | Y | G |
Silva PB et al., 2021 [73] | N | P | 0.0 | 71 | 71 | 0 | Head and neck | Various | Not specified | 66.9 | EWGOS 1/ASM | 32 | 32 | 0 | N | F |
Seror M et al., 2021 [74] | N | RP | 60.0 | 110 | 92 | 18 | Liver | Local | Surgery | 67.7 | CT scan/SMI | 26 | 25 | 1 | Y | G |
Badran H et al., 2020 [75] | N | P | 12.0 | 262 | 96 | 53 | Liver | Locally advanced | Various | 59.6 | CT scan/SMI | 113 | 86 | 27 | N | F |
Chen WS et al., 2020 [76] | Y | P | 0.0 | 360 | 214 | 146 | Colorectal | Various | Surgery | 72.0 | AWGS 1/SMI | 133 | 76 | 57 | N | G |
Fraisse G et al., 2020 [77] | N | RP | 64.8 | 146 | 126 | 20 | Urothelial | Various | Various | NA | CT scan/SMI | 67 | 59 | 8 | N | P |
Hirsch L et al.,2020 [78] | N | P | 18.0 | 92 | 58 | 34 | Various | Metastatic | Immunotherapy | 64.6 | CT scan/SMI | 45 | NA | NA | N | G |
Huang CH et al., 2020 [79] | Y | RP | 84.0 | 107 | 101 | 6 | Esophageal | Various | Various | 54.1 | CT scan/SMI | 65 | 63 | 2 | Y | P |
Lanza E et al., 2020 [80] | N | RP | 60.0 | 142 | 110 | 32 | Liver | Various | Intra-arterial infusion for hepatocellular carcinoma | 73.0 | CT scan/SMI | 121 | 97 | 24 | Y | G |
Tsukagoshi M et al., 2020 [81] | Y | RP | 36.0 | 30 | 23 | 7 | Lung NSC | Various | Immunotherapy | 67.0 | CT scan/PMI | 13 | 10 | 3 | N | G |
Ueno A et al., 2020 [82] | Y | RP | 0.0 | 82 | 0 | 82 | Breast | Various | Chemotherapy | 54.0 | CT scan/SMI | 10 | NA | 10 | Y | F |
Pielkenrood BJ et al., 2020 [83] | N | P | 19.2 | 310 | 194 | 116 | Various | Metastatic | Radiotherapy | 67.0 | CT scan/SMI | 119 | NA | NA | N | G |
Wang PY et al., 2020 [84] | Y | P | 0.2 | 212 | 145 | 67 | Esophageal | Various | Surgery | 64.9 | AWGS 1/ASM | 55 | 37 | 18 | Y | G |
Martini K et al., 2020 [85] | N | RP | 1.0 | 234 | 69 | 165 | Lung NSC | Various | Surgery | NA | CT scan/NA | 78 | 23 | 55 | N | F |
Berardi G et al., 2020 [86] | N | P | 3.0 | 234 | 158 | 76 | Various | Various | Surgery | 66.5 | EWGOS 2/NA | 68 | 31 | 37 | Y | G |
den Boer RB et al., 2020 [87] | N | P | 3.0 | 199 | 158 | 41 | Gastric | Various | Various | 66.1 | CT scan/SMI | 84 | 67 | 17 | N | F |
Xu LB et al., 2020 [88] | Y | P | 48.0 | 749 | 499 | 250 | Gastric | Various | Surgery | NA | AWGS 2/SMI | 134 | 91 | 43 | Y | G |
Yu J II et al., 2020 [89] | Y | RCT | 192.0 | 458 | 282 | 176 | Gastric | Various | Various | NA | CT scan/SMI | 75 | 74 | 1 | Y | G |
Mishra A et al., 2020 [90] | N | P | 0.0 | 296 | 161 | 135 | Leukemia | Metastatic | Chemotherapy | 52.4 | CT scan/SMI | 132 | 75 | 57 | N | G |
Choi K et al., 2020 [91] | Y | P | 72.0 | 238 | 193 | 45 | Liver | Various | Various | 59.0 | CT scan/PMI | 135 | 130 | 5 | Y | G |
Benadon B et al., 2020 [92] | N | P | 60.0 | 104 | 72 | 32 | Esophageal | Locally advanced | Various | 63.0 | CT scan/SMI | 84 | NA | NA | Y | G |
Mallet R et al., 2020 [93] | N | P | 120.0 | 97 | 81 | 16 | Esophageal | Various | Various | 63.6 | CT scan/SMI | 54 | 49 | 5 | Y | G |
Ryu Y et al., 2020 [94] | Y | P | 60.0 | 548 | 326 | 222 | Pancreas | Various | Various | 62.5 | CT scan/SMI | 252 | 186 | 66 | Y | G |
Giani A et al., 2020 [95] | N | P | 0.0 | 173 | 111 | 62 | Colorectal | Local | Surgery | 70.0 | CT scan/NA | 43 | NA | NA | Y | F |
van Rijn-Dekker MI et al., 2020 [96] | N | P | 60.0 | 750 | 555 | 195 | Head and neck | Various | Various | NA | CT scan/NA | 189 | 143 | 46 | Y | G |
Srpcic M et al., 2020 [97] | N | P | 120.0 | 139 | 117 | 22 | Esophageal | Various | Surgery | 63.9 | CT scan/SMI | 23 | 20 | 3 | Y | G |
Roch B et al., 2020 [98] | N | RP | 30.0 | 142 | 93 | 49 | Lung NSC | Metastatic | Immunotherapy | 63.5 | CT scan/SMI | 92 | NA | NA | Y | G |
Agalar C et al., 2020 [99] | N | P | 36.0 | 65 | 23 | 42 | Colorectal | Metastatic | Various | 56.0 | CT scan/SMI | 20 | 6 | 14 | N | F |
Shinohara S et al., 2020 [100] | Y | RP | 96.0 | 391 | 275 | 116 | Lung NSC | Various | Surgery | 69.3 | CT scan/PMI | 198 | 160 | 38 | Y | G |
Salman MA et al., 2020 [101] | N | P | 12.0 | 52 | 38 | 14 | Liver | Local | Surgery | 53.9 | CT scan/SMI | 27 | 18 | 9 | N | G |
Stangl-Kremser J et al., 2020 [102] | N | RCT | 60.0 | 186 | 186 | 0 | Prostate | Metastatic | Chemotherapy | 68.8 | CT scan/SMI | 154 | 154 | NA | Y | G |
Zhuang CL et al., 2020 [103] | Y | RP | 36.0 | 883 | 619 | 264 | Gastric | Various | Surgery | 65.0 | EWGOS 1/EWGOS 2/SMI | 150 | 103 | 47 | Y | G |
Hendrickson NR et al., 2020 [104] | N | RP | 12.0 | 145 | 83 | 62 | Sarcoma | Various | Surgery | NA | CT scan/PMI | 38 | 21 | 17 | Y | G |
Yumioka T et al., 2020 [105] | Y | RP | 0.0 | 80 | 55 | 25 | Various | Various | Chemotherapy | 71.6 | CT scan/TPA | 39 | NA | NA | N | F |
Oflazoglu U et al., 2020 [106] | N | P | 0.0 | 461 | 203 | 258 | Various | Various | Not specified | 58.2 | EWGOS 1/ASM | 77 | 59 | 18 | Y | G |
Lee EC et al., 2020 [107] | Y | P | 60.0 | 158 | 73 | 85 | Urothelial | Various | Surgery | 64.0 | CT scan/SMI | 88 | 58 | 30 | Y | F |
Martin L et al., 2020 [108] | N | P | 19.6 | 1157 | 744 | 413 | Various | Various | Various | 63.6 | CT scan/SMI | 173 | NA | NA | Y | F |
Couderc AL et al., 2020 [109] | N | P | 0.0 | 31 | 31 | 0 | Prostate | Various | Various | 80.4 | EWGOS 2/ASM | 8 | 8 | NA | N | F |
He WZ et al., 2020 [110] | Y | P | 144.0 | 1767 | 1382 | 385 | Head and neck | Various | Various | NA | CT scan/SMI | 683 | 573 | 110 | N | G |
Chen XY et al., 2019 [111] | Y | P | 0.0 | 313 | 229 | 84 | Gastric | Various | Surgery | 62.0 | AWGS 1/SMI | 37 | 23 | 14 | Y | G |
Dijksterhuis WPM et al., 2019 [112] | N | P | 0.0 | 88 | 66 | 22 | Various | Metastatic | Chemotherapy | 63.0 | CT scan/SMI | 43 | 29 | 14 | N | F |
Dolan RD et al., 2019 [113] | N | P | 109.2 | 650 | 354 | 296 | Colorectal | Various | Surgery | NA | CT scan/SMI | 283 | 150 | 133 | N | G |
de Paula N et al., 2019 [114] | N | RP | 13.0 | 232 | 0 | 232 | Uterus | Various | Various | 64.3 | CT scan/SMI | 60 | 0 | 60 | Y | F |
Griffin OM et al., 2019 [115] | N | P | 48.0 | 78 | 37 | 41 | Pancreas | Various | Chemotherapy | 64.2 | CT scan/SMI | 39 | NA | NA | N | F |
Hopkins JJ et al., 2019 [116] | N | RP | 123.0 | 968 | 589 | 379 | Colorectal | Various | Surgery | 65.8 | CT scan/SMI | 488 | 262 | 226 | Y | G |
Jung A et al., 2019 [117] | Y | P | 70.5 | 258 | 223 | 35 | Head and neck | Various | Various | 64.0 | CT scan/SMI | 17 | NA | NA | Y | G |
Huillard O et al., 2019 [118] | N | RCT | 0.0 | 180 | NA | NA | Thyroid | Metastatic | Targeted therapy | 63.0 | CT scan/SMI | 89 | NA | NA | Y | G |
Kitano Y et al., 2019 [119] | Y | RP | 94.1 | 110 | 75 | 35 | Cholangiocarcinoma | Locally advanced | Surgery | 71.0 | CT scan/SMI | 31 | 17 | 14 | N | G |
Kurk S et al., 2019 [120] | N | RCT | 57.0 | 182 | 115 | 67 | Colorectal | Metastatic | Chemotherapy | 64.0 | CT scan/NA | 99 | 63 | 36 | Y | G |
Lin J et al., 2019 [121] | Y | P | 0.0 | 594 | 448 | 146 | Gastric | Locally advanced | Surgery | 64.3 | CT scan/SMI | 195 | NA | NA | N | G |
Matsunaga T et al., 2019 [122] | Y | RP | 54.0 | 163 | 128 | 35 | Esophageal | Various | Various | 64.7 | BIA/NA | 82 | 64 | 18 | Y | G |
Tamura T et al., 2019 [123] | Y | RP | 1.0 | 153 | 101 | 52 | Gastric | Various | Surgery | NA | BIA/NA | 24 | 17 | 7 | Y | G |
Vashi PG et al., 2019 [124] | N | RP | 70.0 | 112 | 63 | 49 | Colorectal | Various | Various | 56.3 | CT scan/SMI | 46 | 26 | 20 | N | G |
Yamamoto K et al., 2019 [125] | Y | RP | 60.0 | 90 | 61 | 29 | Gastric | Various | Surgery | NA | EWGOS 1/ASM | 19 | 17 | 2 | Y | G |
Yang J et al., 2019 [126] | Y | RP | 1.0 | 417 | 251 | 166 | Colorectal | Various | Surgery | 57.9 | CT scan/SMI | 61 | 42 | 19 | Y | G |
Okabe H et al., 2019 [127] | Y | RP | 0.0 | 269 | 167 | 102 | Colorectal | Various | Surgery | 74.0 | CT scan/SMI | 159 | 81 | 78 | Y | G |
Otten L et al., 2019 [128] | N | P | 12.0 | 439 | 248 | 191 | Various | Various | Various | 69.6 | EWGOS 1/ASM | 119 | 82 | 37 | Y | G |
Panje CM et al., 2019 [129] | N | RCT | 84.0 | 61 | 57 | 4 | Esophageal | Locally advanced | Various | 61.0 | CT scan/SMI | 31 | NA | NA | N | G |
Sasaki S et al., 2019 [130] | Y | RCT | 6.0 | 219 | 143 | 76 | Colorectal | Various | Various | 64.0 | CT scan/SMI | 135 | 109 | 26 | Y | G |
Shi B et al., 2019 [131] | Y | RP | 0.0 | 279 | 205 | 74 | Gastric | Various | Surgery | 56.2 | CT scan/SMI | 125 | 106 | 19 | N | G |
da Silva JR et al., 2019 [132] | N | P | 13.0 | 334 | 151 | 183 | Various | Various | Palliative | 63.0 | CT scan/ASM | 219 | NA | NA | Y | G |
Charette N et al., 2019 [133] | N | RCT | 30.0 | 217 | 123 | 94 | Colorectal | Locally advanced | Chemotherapy | 63.0 | CT scan/SMI | 150 | NA | NA | Y | G |
Jang M et al., 2019 [134] | Y | RP | 0.0 | 284 | 163 | 121 | Pancreas | Local | Surgery | 62.6 | CT scan/SMI | 191 | NA | NA | Y | G |
Kiss N et al., 2019 [135] | N | P | 80.0 | 41 | 29 | 12 | Lung NSC | Various | Various | 65.6 | CT scan/SMI | 25 | NA | NA | Y | G |
Kurita Y et al., 2019 [136] | Y | RP | 66.0 | 82 | 60 | 22 | Pancreas | Metastatic | Chemotherapy | 64.0 | CT scan/SMI | 42 | 31 | 11 | N | F |
Nakamura N et al., 2019 [137] | Y | RP | 146.5 | 90 | 51 | 39 | Lymphoma | Metastatic | Chemotherapy | 59.0 | CT scan/SMI | 39 | 25 | 14 | N | F |
Ma BW et al., 2019 [138] | Y | P | 1.0 | 545 | 418 | 127 | Gastric | Locally advanced | Surgery | 62.6 | EWGOS 1/SMI | 40 | 25 | 15 | Y | G |
Wang P et al., 2019 [139] | Y | P | 12.0 | 44 | 26 | 18 | Esophageal | Various | Surgery | 65.7 | BIA/NA | 18 | NA | NA | N | G |
Soma D et al., 2019 [140] | Y | P | 0.0 | 102 | 89 | 13 | Esophageal | Various | Various | 67.3 | CT scan/SMI | 45 | 34 | 11 | N | G |
Zhang S et al., 2019 [141] | Y | RP | 43.2 | 6447 | 4317 | 2130 | Various | Various | Surgery | NA | CT scan/NA | 1638 | 1109 | 529 | Y | F |
Ataseven B et al., 2018 [142] | N | RP | 0.0 | 323 | 0 | 323 | Ovary | Various | Surgery | 60.0 | CT scan/SMI | 152 | NA | 152 | Y | G |
Banaste N et al., 2018 [143] | N | RP | 81.6 | 214 | 105 | 109 | Colorectal | Metastatic | Various | 59.5 | CT scan/SMI | 90 | NA | NA | N | G |
Chambard LC et al., 2018 [144] | N | P | 50.0 | 64 | 48 | 16 | Lung NSC | Metastatic | Various | 65.1 | DXA/ASM | 16 | NA | NA | N | G |
Chen WZ et al., 2018 [145] | Y | P | 0.0 | 376 | 228 | 148 | Colorectal | Various | Surgery | 64.3 | AWGS 1/SMI | 92 | 44 | 48 | Y | G |
Kawamura T et al., 2018 [146] | Y | RP | 66.5 | 951 | 660 | 291 | Gastric | Various | Surgery | 74.2 | AWGS 1/AMA | 111 | 69 | 42 | Y | G |
Ní Bhuachalla EB et al., 2018 [147] | N | P | 26.1 | 725 | 433 | 292 | Various | Various | Chemotherapy | 64.3 | CT scan/NA | 274 | 144 | 130 | N | G |
Kim YR et al., 2018 [148] | Y | RP | 80.0 | 92 | 92 | 0 | Liver | Metastatic | Surgery | 54.0 | CT scan/NA | 72 | 72 | 0 | Y | G |
Lee JS et al., 2018 [149] | Y | RP | 31.9 | 140 | 106 | 34 | Gastric | Various | Chemotherapy | 67.0 | CT scan/SMI | 67 | 66 | 1 | N | F |
Mayr R et al., 2018 [150] | N | RP | 3.0 | 327 | 262 | 65 | Urothelial | Various | Surgery | 70.0 | CT scan/SMI | 108 | 81 | 27 | N | G |
Mao CC et al., 2018 [151] | Y | P | 1.2 | 682 | 513 | 169 | Gastric | Various | Surgery | 64.5 | AWGS 1/SMI | 132 | 90 | 42 | Y | F |
Motoori M et al., 2018 [152] | Y | RP | 0.0 | 83 | 66 | 17 | Esophageal | Various | Various | 65.0 | BIA/ASM | 28 | 55 | NA | N | P |
McSorley ST et al., 2018 [153] | N | P | 96.0 | 322 | 174 | 148 | Colorectal | Various | Surgery | NA | CT scan/SMI | 158 | NA | NA | Y | F |
van der Kroft G et al., 2018 [154] | N | P | 1.0 | 63 | 39 | 24 | Colorectal | Various | Surgery | 69.0 | CT scan/SMI | 33 | 20 | 13 | N | F |
van Vugt JLA et al., 2018 [155] | N | P | 1.0 | 816 | 440 | 376 | Colorectal | Various | Surgery | NA | CT scan/SMI | 411 | NA | NA | Y | G |
Williams GR et al., 2018 [156] | N | P | 0.1 | 25 | 12 | 13 | Colorectal | Various | Chemotherapy | 59.0 | CT scan/SMI | 12 | NA | NA | N | F |
Zhang WT et al., 2018 [157] | Y | RP | 1.0 | 636 | 478 | 158 | Gastric | Various | Surgery | NA | AWGS 1/SMI | 86 | 64 | 22 | Y | G |
Zhang Y et al., 2018 [158] | Y | RP | 0.2 | 156 | 115 | 41 | Gastric | Various | Surgery | 59.1 | CT scan/SMI | 24 | 17 | 7 | Y | G |
Okugawa Y et al., 2018 [159] | Y | P | 60.0 | 167 | 99 | 68 | Colorectal | Various | Various | 67.0 | CT scan/PMI | 55 | 20 | 35 | N | F |
Rier HN et al., 2018 [160] | N | P | 0.0 | 131 | 73 | 58 | Various | Various | Various | 72.0 | EWGOS 1/SMI | 34 | 18 | 16 | Y | F |
Sato S et al., 2018 [161] | Y | RP | 36.0 | 48 | 32 | 16 | Esophageal | Locally advanced | Various | 65.5 | CT scan/SMI | 34 | 23 | 11 | Y | F |
Stretch C et al., 2018 [162] | N | RP | 120.0 | 123 | 61 | 52 | Pancreas | Various | Surgery | 68.5 | CT scan/SMI | 50 | 29 | 21 | N | F |
Sugimoto M et al., 2018 [163] | N | RP | 60.0 | 323 | 176 | 147 | Pancreas | Various | Various | 65.0 | CT scan/SMI | 200 | NA | NA | Y | G |
Sui K et al., 2018 [164] | Y | P | 60.0 | 354 | 203 | 151 | Pancreas | Various | Surgery | 70.0 | CT scan/SMI | 87 | 51 | 36 | Y | G |
Limpawattana P et al., 2018 [165] | Y | P | 30.0 | 75 | 58 | 17 | Bile ducts | Various | Various | 57.0 | AWGS 1/ASM | 40 | 40 | 6 | Y | F |
Caan BJ et al., 2018 [166] | N | RP | 120.0 | 3241 | 0 | 3241 | Breast | Various | Various | 54.1 | CT scan/SMI | 1086 | 0 | 1086 | N | G |
Ha Y et al., 2018 [167] | Y | RP | 96.0 | 178 | 141 | 37 | Liver | Various | Various | NA | CT scan/SMI | 62 | 43 | 19 | N | G |
Nakashima Y et al., 2018 [168] | Y | RP | 60.0 | 341 | 289 | 52 | Esophageal | Various | Surgery | NA | CT scan/SMI | 171 | NA | NA | Y | G |
Makiura D et al., 2018 [169] | Y | P | 60.0 | 98 | 83 | 15 | Esophageal | Various | Surgery | 67.0 | AWGS 1/ASM | 31 | 24 | 7 | N | F |
Mason RJ et al., 2018 [170] | N | RP | 84.0 | 698 | 698 | 0 | Prostate | Various | Surgery | 61.8 | CT scan/SMI | 388 | 388 | 0 | Y | G |
Begini P et al., 2017 [171] | N | RP | 100.0 | 92 | 65 | 27 | Liver | Various | Various | 71.6 | CT scan/SMI | 37 | 20 | 17 | N | G |
Black D et al., 2017 [172] | N | RP | 61.0 | 447 | 256 | 191 | Various | Various | Various | NA | CT scan/SMI | 104 | NA | NA | Y | G |
Daly LE et al., 2017 [173] | N | RP | 0.0 | 84 | 52 | 32 | Melanoma | Metastatic | Immunotherapy | 54.0 | CT scan/SMI | 20 | 10 | 10 | Y | G |
Endo T et al., 2017 [174] | Y | P | 0.0 | 121 | 81 | 40 | Various | Various | Surgery | 70.3 | BIA/ASM | 29 | NA | NA | Y | F |
Härter J et al., 2017 [175] | N | P | 5.0 | 60 | 34 | 26 | Various | Various | Surgery | NA | BIA/ASM | 11 | NA | NA | Y | P |
Heidelberger V et al., 2017 [176] | N | RP | 17.0 | 68 | 36 | 32 | Melanoma | Various | Immunotherapy | 65.0 | CT scan/SMI | 34 | NA | NA | N | F |
Huang DD et al., 2017 [177] | Y | P | 1.0 | 470 | 364 | 106 | Gastric | Various | Surgery | 65.0 | AWGS 1/SMI | 79 | 59 | 20 | Y | F |
Imai K et al., 2017 [178] | Y | RP | 0.0 | 351 | 242 | 109 | Liver | Various | Various | 70.4 | CT scan/SMI | 33 | 30 | 3 | Y | G |
Paireder M et al., 2017 [235] | N | RP | 99.4 | 130 | 106 | 24 | Esophageal | Various | Various | 61.4 | CT scan/SMI | 80 | 68 | 12 | Y | G |
Lou N et al., 2017 [179] | Y | P | 1.0 | 206 | 161 | 45 | Gastric | Various | Surgery | 64.0 | AWGS 1/SMI | 14 | 9 | 5 | Y | G |
Cushen SJ et al., 2017 [180] | N | RP | 0.0 | 55 | 43 | 12 | Kidney | Metastatic | Targeted therapy | 66.0 | CT scan/SMI | 18 | 18 | 0 | N | G |
Cespedes Feliciano EMC et al., 2017 [181] | N | P | 120.0 | 2470 | 1251 | 1219 | Colorectal | Various | Surgery | 63.0 | CT scan/SMI | 1133 | NA | NA | Y | G |
Elliott JA et al., 2017 [182] | N | P | 60.0 | 207 | 165 | 42 | Esophageal | Various | Surgery | 61.6 | CT scan/SMI | 49 | 45 | 4 | Y | F |
Wendrich AW et al., 2017 [183] | N | RP | 90.0 | 112 | 72 | 40 | Head and neck | Various | Chemotherapy | 54.5 | CT scan/SMI | 61 | 23 | 38 | Y | G |
Bronger H et al., 2017 [184] | N | RP | 60.0 | 128 | 0 | 128 | Ovary | Various | Various | 65.0 | CT scan/SMI | 16 | 0 | 16 | Y | G |
Ishihara H et al., 2017 [185] | Y | RP | 58.0 | 137 | 89 | 48 | Urothelial | Locally advanced | Surgery | 72.8 | CT scan/SMI | 90 | 48 | 42 | Y | F |
Miyata H et al., 2017 [186] | Y | P | 0.0 | 94 | 76 | 18 | Esophageal | Various | Various | 64.2 | BIA/NA | 44 | NA | NA | N | G |
Zhou CJ et al., 2017 [187] | Y | P | 1.0 | 240 | 190 | 50 | Gastric | Various | Surgery | 73.0 | AWGS 1/SMI | 69 | 52 | 17 | Y | F |
Chemama S et al., 2016 [188] | N | RP | 0.0 | 97 | 37 | 60 | Colorectal | Metastatic | Various | 53.0 | CT scan/SMI | 39 | 6 | 33 | N | G |
Grotenhuis BA et al., 2016 [189] | N | RCT | 104.0 | 120 | 88 | 32 | Esophageal | Locally advanced | Various | 62.0 | CT scan/SMI | 54 | 42 | 12 | N | G |
Nishigori T et al., 2016 [190] | Y | RP | 0.0 | 199 | 164 | 35 | Esophageal | Various | Surgery | 65.0 | CT scan/SMI | 149 | 133 | 16 | Y | G |
Okumura S et al., 2016 [191] | Y | RP | 60.0 | 207 | 111 | 96 | Bile ducts | Various | Surgery | 68.0 | CT scan/SMI | 71 | 36 | 35 | N | G |
Pecorelli N et al., 2016 [192] | N | RP | 2.0 | 202 | 108 | 94 | Pancreas | Various | Surgery | 66.8 | CT scan/SMI | 132 | 79 | 53 | Y | F |
Park I et al., 2016 [193] | Y | P | 44.3 | 88 | 59 | 29 | Various | Metastatic | Chemotherapy | 65.0 | CT scan/ASM | 76 | 57 | 19 | Y | F |
Suzuki Y et al., 2016 [194] | Y | RP | 100.0 | 90 | 52 | 38 | Lung NSC | Local | Surgery | 68.7 | CT scan/SMI | 38 | 16 | 22 | N | F |
Takeoka Y et a. 2016 [195] | Y | RP | 60.0 | 56 | 19 | 37 | Myeloma | Metastatic | Chemotherapy | 71.0 | CT scan/SMI | 37 | 8 | 29 | Y | F |
Fukushima H et al., 2016 [196] | Y | RP | 96.0 | 81 | 53 | 28 | Urothelial | Various | Surgery | 71.0 | CT scan/SMI | 47 | 28 | 19 | Y | G |
Go SI et al., 2016 [197] | Y | RP | 132.0 | 187 | 112 | 75 | Lymphoma | Metastatic | Chemotherapy | NA | CT scan/SMI | 46 | 28 | 18 | Y | G |
Kumar A et al., 2016 [198] | N | P | 60.0 | 296 | 0 | 296 | Ovary | Metastatic | Chemotherapy | 64.6 | CT scan/SMI | 132 | 0 | 132 | N | G |
Pędziwiatr M et al., 2016 [199] | N | P | 1.0 | 124 | 73 | 51 | Colorectal | Various | Surgery | 65.9 | CT scan/SMI | 34 | 12 | 22 | Y | G |
Rollins KE et al., 2016 [200] | N | RP | 66.0 | 228 | 124 | 104 | Pancreas | Various | Chemotherapy | NA | CT scan/SMI | 138 | NA | NA | Y | G |
Yabusaki N et al., 2016 [201] | Y | RP | 60.0 | 195 | 157 | 38 | Liver | Local | Surgery | 66.0 | CT scan/SMI | 89 | 57 | 32 | N | F |
Buettner S et al., 2016 [202] | N | P | 12.0 | 1326 | 730 | 596 | Various | Various | Surgery | 62.5 | CT scan/TPA | 398 | 219 | 179 | Y | G |
Amini N et al., 2015 [203] | N | RP | 60.0 | 763 | 418 | 345 | Pancreas | Various | Surgery | 67.0 | CT scan/TPA | 192 | NA | NA | Y | G |
Anandavadivelan P et al., 2015 [204] | N | RCT | 0.0 | 72 | 61 | 11 | Esophageal | Various | Chemotherapy | 67.0 | CT scan/SMI | 31 | NA | NA | N | G |
Fukuda Y et al., 2015 [205] | Y | P | 0.0 | 99 | 66 | 33 | Gastric | Various | Surgery | NA | AWGS 1/ASM | 21 | 19 | 2 | Y | G |
Huang DD et al., 2015 [206] | Y | P | 1.0 | 142 | 88 | 54 | Colorectal | Various | Surgery | 62.0 | AWGS 1/SMI | 17 | 11 | 6 | Y | G |
Ida S et al., 2015 [207] | Y | P | 0.0 | 138 | 121 | 17 | Esophageal | Various | Surgery | NA | BIA/NA | 61 | 47 | 14 | N | G |
Kim EY et al., 2015 [208] | Y | RP | 38.0 | 149 | 127 | 22 | Lung SC | Various | Various | 68.6 | CT scan/SMI | 118 | 110 | 8 | Y | G |
Levolger S et al., 2015 [209] | N | P | 36.0 | 90 | 63 | 27 | Liver | Various | Various | 62.0 | CT scan/SMI | 52 | 39 | 13 | Y | G |
Reisinger KW et al., 2015 [210] | N | RP | 1.0 | 310 | 155 | 155 | Esophageal | Various | Surgery | 69.0 | CT scan/SMI | 148 | 90 | 58 | Y | G |
Tamandl D et al., 2015 [211] | N | RP | 60.0 | 200 | 151 | 49 | Esophageal | Various | Surgery | 63.9 | CT scan/SMI | 130 | 107 | 23 | Y | G |
Tegels JJ et al., 2015 [212] | N | RP | 6.0 | 149 | NA | NA | Gastric | Various | Surgery | 69.8 | EWGOS 1/SMI | 86 | NA | NA | Y | G |
Voron T et al., 2015 [213] | N | RP | 70.0 | 109 | 92 | 17 | Liver | Local | Surgery | 61.7 | CT scan/SMI | 59 | 53 | 6 | Y | G |
Lodewic TM et al., 2015 [214] | N | P | 60.0 | 171 | 104 | 67 | Colorectal | Metastatic | Surgery | 64.0 | CT scan/SMI | 80 | 45 | 35 | N | G |
Tan BH et al., 2015 [215] | N | RP | 83.3 | 89 | 67 | 22 | Various | Various | Chemotherapy | 65.8 | CT scan/SMI | 44 | 34 | 10 | N | G |
Wang SL et al., 2015 [216] | Y | P | 1.0 | 255 | 190 | 65 | Gastric | Various | Surgery | 65.1 | AWGS 1/SMI | 32 | 26 | 6 | Y | G |
van Vugt JL et al., 2015 [217] | N | RP | 1.0 | 206 | 100 | 106 | Colorectal | Metastatic | Surgery | NA | CT scan/SMI | 90 | 46 | 44 | N | G |
Gonzalez MC et al., 2014 [218] | N | P | 36.0 | 175 | 60 | 115 | Various | Various | Chemotherapy | 56.9 | BIA/ASM | 22 | NA | NA | Y | G |
Barret M et al., 2014 [219] | N | P | 2.0 | 51 | 38 | 13 | Colorectal | Metastatic | Chemotherapy | 65.0 | CT scan/SMI | 36 | 31 | 5 | Y | G |
Harimoto N et al., 2013 [220] | Y | RP | 60.0 | 186 | 145 | 41 | Liver | Various | Surgery | NA | CT scan/SMI | 75 | 50 | 25 | N | G |
Huillard O et al., 2013 [221] | N | RP | 52.0 | 61 | 38 | 59 | Kidney | Metastatic | Targeted therapy | 60.0 | CT scan/SMI | 32 | 24 | 8 | N | G |
Veasey-Rodrigues H et al., 2013 [222] | N | P | 2.0 | 16 | 5 | 11 | Various | Metastatic | Targeted therapy | 60.0 | CT scan/SMI | 7 | NA | NA | Y | F |
Veasey-Rodrigues H et al., 2013 [223] | N | RCT | 3.0 | 306 | 159 | 147 | Various | Metastatic | Various | 56.0 | CT scan/SMI | 144 | 93 | 51 | Y | G |
Meza-Junco J et al., 2013 [224] | N | RP | 24.0 | 116 | 98 | 18 | Liver | Various | Various | 58.0 | CT scan/SMI | 35 | 30 | 5 | N | F |
Lieffers JR et al., 2012 [225] | N | RP | 1.0 | 234 | 135 | 99 | Colorectal | Various | Surgery | 63.0 | CT scan/SMI | 91 | 57 | 34 | N | G |
Mir O et al., 2012 [226] | N | RP | 16.0 | 18 | 15 | 3 | Liver | Metastatic | Chemotherapy | 64.0 | CT scan/SMI | 9 | NA | NA | N | F |
Parsons HA et al., 2012 [227] | N | RCT | 26.6 | 104 | 65 | 39 | Various | Metastatic | Various | NA | CT scan/SMI | 53 | 36 | 17 | N | G |
Parsons HA et al., 2012 [228] | N | RP | 26.6 | 48 | 19 | 29 | Various | Metastatic | Intra-arterial infusion for hepatocellular carcinoma | 56.0 | CT scan/SMI | 21 | 10 | 11 | N | F |
van Vledder MG et al., 2012 [229] | N | RP | 97.0 | 196 | 120 | 76 | Colorectal | Metastatic | Surgery | 64.5 | CT scan/SMI | 38 | 11 | 27 | Y | G |
Dalal S et al., 2012 [230] | N | RCT | 90.0 | 41 | 18 | 23 | Pancreas | Locally advanced | Various | 58.9 | CT scan/SMI | 26 | NA | NA | Y | F |
Antoun S et al., 2010 [231] | N | RCT | 6.0 | 80 | 60 | 20 | Kidney | Metastatic | Targeted therapy | 59.8 | CT scan/SMI | 42 | 20 | 13 | Y | G |
Tan BH et al., 2009 [232] | N | P | 42.0 | 111 | 52 | 59 | Pancreas | Various | Palliative | 64.4 | CT scan/SMI | 62 | 33 | 27 | Y | G |
Prado CM et al., 2009 [233] | N | P | 19.2 | 55 | NA | 55 | Breast | Metastatic | Targeted therapy | 54.8 | CT scan/SMI | 14 | NA | 14 | N | G |
Prado CM et al., 2008 [234] | N | P | 39.6 | 250 | 136 | 114 | Various | Various | Not specified | 63.9 | CT scan/SMI | 38 | 28 | 10 | Y | F |
Study Groups | Patients | Prevalence % [95% CI] | p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | 0.11 | |||||
All studies | 65,936 | (100) | 38.0 [36.0–41.0] | 97% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 18,935 | (29) | 40.5 [39.0–42.0] | 66% | <0.01 | |
Quality of study (NOS scale) | 0.75 | |||||
Good | 47,028 | (71) | 38.0 [34.0–41.0] | 97% | <0.01 | |
Fair | 18,287 | (28) | 40.0 [35.0–44.0] | 96% | <0.01 | |
Poor | 621 | (1) | 40.5 [28.5–54.0] | 86.5% | <0.01 | |
Year of publication | 0.80 | |||||
2008–2012 | 1343 | (2) | 40.0 [30.0–50.0] | 92% | <0.01 | |
2013–2017 | 13,411 | (20) | 40.0 [34.0–46.0] | 96% | <0.01 | |
2018–2022 | 51,182 | (78) | 38.0 [35.0–41.0] | 97% | <0.01 | |
N° of patients included | <0.01 | |||||
<100 | 4364 | (7) | 45.0 [41.0–50.0] | 84% | <0.01 | |
<100–199 | 9606 | (14.5) | 41.0 [36.0–47.0] | 95% | <0.01 | |
<200–399 | 16,023 | (24) | 36.0 [31.0–42.0] | 97% | <0.01 | |
≥400 | 35,943 | (54.5) | 27.0 [22.0–32.0] | 99% | <0.01 | |
World region | 0.26 | |||||
Asia | 33,453 | (51) | 37.0 [32.0–41.0] | 97.5% | <0.01 | |
Not Asia | 32,483 | (49) | 40.0 [37.0–43.0] | 95% | <0.01 | |
Mean or median age (y) at inclusion (n = 47,986) | 0.21 | |||||
<65 | 30,691 | (64) | 38.0 [34.0–42.0] | 96% | <0.01 | |
≥65 | 17,295 | (36) | 42.0 [37.0–46.0] | 96% | <0.01 | |
Sex (n = 46,265) | 0.22 | |||||
Women | 15,841 | (34) | 34.0 [30.0–38.0] | 91% | <0.01 | |
Men | 30,424 | (66) | 37.0 [34.0–41.0] | 96% | <0.01 | |
BMI (n = 8627) | <0.01 | |||||
≥30 kg/m2 | 2628 | (30.5) | 19.0 [13.0–27.0] | 89.5% | <0.01 | |
<30 kg/m2 | 5999 | (69.5) | 39.0 [31.0–47.0] | 96% | <0.01 | |
Cancer site | <0.01 | |||||
Gastric | 13,513 | (20.5) | 24.0 [19.0–29.5] | 97.5% | <0.01 | |
Breast | 3517 | (5) | 25.0 [17.5–35.0] | 82% | <0.01 | |
Sarcoma | 254 | (0.4) | 25.0 [20.0–30.5] | 0% | 0.55 | |
Uterus | 232 | (0.3) | 26.0 [21.0–32.0] | - | - | |
Head and neck | 3724 | (6) | 31.0 [21.0–43.0] | 95% | <0.01 | |
Ovarian | 747 | (1) | 33.0 [16.0–55.0] | 95% | <0.01 | |
Lymphoma | 1130 | (2) | 35.0 [29.0–41.5] | 75% | <0.01 | |
Various | 14,600 | (22) | 35.0 [29.0–41.0] | 96% | <0.01 | |
Cholangiocarcinoma | 231 | (0.3) | 36.0 [26.0–47.0] | 83% | <0.01 | |
Melanoma | 152 | (0.2) | 36.0 [20.0–56.0] | 91% | <0.01 | |
Leukemia | 474 | (0.7) | 36.0 [25.0–49.0] | 93% | <0.01 | |
Colorectal | 11,419 | (17) | 38.0 [33.0–44.0] | 95% | <0.01 | |
Anal | 106 | (0.2) | 39.0 [30.0–48.0] | - | - | |
Bile ducts | 282 | (0.4) | 42.5 [30.0–56.0] | 88% | <0.01 | |
Non-small cell lung | 2914 | (4) | 43.0 [34.0–51.5] | 95% | <0.01 | |
Liver | 2391 | (4) | 44.0 [33.0–55.5] | 95% | <0.01 | |
Myeloma | 152 | (0.2) | 44.0 [18.0–74.0] | 95% | <0.01 | |
Thyroids | 180 | (0.3) | 49.5 [42.0–57.0] | - | - | |
Pancreatic | 3813 | (6) | 49.5 [41.5–57.5] | 96% | <0.01 | |
Kidney | 356 | (0.5) | 50.0 [43.0–57.0] | 53% | 0.07 | |
Esophageal | 3474 | (5) | 50.0 [43.0–57.0] | 92% | <0.01 | |
Urothelial | 1163 | (2) | 52.0 [39.5–64.0] | 94% | <0.01 | |
Prostatic | 985 | (1.5) | 60.0 [38.0–79.0] | 95% | <0.01 | |
Small cell lung | 149 | (0.2) | 79.0 [72.0–85.0] | - | - | |
Cancer extension | <0.01 | |||||
Various | 54,269 | (82) | 35.0 [32.0–38.0] | 97% | <0.01 | |
Local | 2783 | (4) | 39.0 [30.0–50.0] | 97% | <0.01 | |
Locally advanced | 3186 | (5) | 48.0 [37.0–59.0] | 96% | <0.01 | |
Metastatic | 5698 | (9) | 46.0 [40.0–51.0] | 92% | <0.01 | |
Treatment modalities | <0.01 | |||||
Not specified | 918 | (1) | 21.0 [12.5–33.0] | 91% | <0.01 | |
Surgery | 40,486 | (61) | 33.0 [30.0–37.0] | 97% | <0.01 | |
Targeted therapy | 634 | (1) | 41.0 [32.0–50.0] | 81% | <0.01 | |
Various | 17,641 | (27) | 41.0 [36.0–45.0] | 96% | <0.01 | |
Immune therapy | 909 | (1) | 46.0 [38.0–54.5] | 80% | <0.01 | |
Radiotherapy | 544 | (0.8) | 46.0 [28.0–66.0] | 93% | <0.01 | |
Chemotherapy | 4169 | (6) | 48.0 [41.0–56.0] | 93% | <0.01 | |
Exclusive supportive care | 445 | (0.7) | 62.0 [55.0–69.0] | 70% | <0.01 | |
Intra-arterial infusion for hepatocellular carcinoma | 190 | (0.3) | 68.0 [35.0–90.0] | 96.5% | <0.01 | |
Definition of sarcopenia | <0.01 | |||||
Consensus algorithm-based | ||||||
Overall | 11,013 | (17) | 22.0 [19.0–26.0] | 93% | <0.01 | |
AWGS | 6996 | 20.5 [16.0–25.0] | 93% | <0.01 | ||
EWGOS 2 | 2462 | 20.5 [15.5–27.0] | 88% | <0.01 | ||
EWGOS 1 | 3086 | 25.0 [17.0–35.0] | 96% | <0.01 | ||
Muscle mass quantity only | ||||||
Overall | 54,923 | (83) | 42.0 [39.0–45.0] | 96% | <0.01 | |
DXA | 64 | 25.0 [16.0–37.0] | - | - | ||
BIA | 1306 | 30.0 [23.0–38.0] | 90% | <0.01 | ||
CT scan | 53,553 | 43.0 [40.0–46.0] | 96.5% | <0.01 | ||
Muscle mass indices (n = 55,304) | <0.01 | |||||
AMA (cm2) | 951 | (2) | 12.0 [10.0–14.0] | - | - | |
ASM (kg/m2) | 3261 | (6) | 31.0 [24.0–39.0] | 95% | <0.01 | |
TPA (cm2/m2) | 2394 | (4) | 36.0 [27.0–46.0] | 93% | <0.01 | |
PMI (cm2/m2) | 2967 | (5) | 36.5 [28.0–46.0] | 96.5% | <0.01 | |
SMI (cm2/m2) | 45,731 | (83) | 40.0 [37.0–43.0] | 97% | <0.01 | |
Median cut-off values of CT scan-based SMI for women (n = 14,216) | <0.01 | |||||
<38.5 (cm2/m2) | 4609 | (32) | 25.0 [21.0–29.0] | 87% | <0.01 | |
≥38.5 (cm2/m2) | 9607 | (68) | 47.0 [40.0–54.0] | 92% | <0.01 | |
Median cut-off values of CT scan-based SMI for men (n = 20,514) | <0.01 | |||||
<47.3 (cm2/m2) | 11,584 | (56) | 28.0 [24.0–32.0] | 95% | <0.01 | |
≥47.3 (cm2/m2) | 8930 | (44) | 52.0 [46.0–58.0] | 95% | <0.01 |
Study Groups | Patients | Relative Risk [95% CI] for OS | p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | 0.37 | |||||
All studies | 28,995 | (100) | 1.97 [1.79–2.17] | 85% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 7191 | (25) | 1.68 [1.55–1.80] | 77% | <0.01 | |
Quality of study (NOS) | 0.65 | |||||
Good | 22,939 | (79) | 1.94 [1.73–2.16] | 75% | <0.01 | |
Fair | 5803 | (20) | 2.10 [1.71–2.58] | 90.5% | <0.01 | |
Poor | 253 | (1) | 1.40 [0.47–4.20] | 77% | 0.04 | |
Year of publication | 0.93 | |||||
2008–2012 | 598 | (2) | 1.85 [1.29–2.65] | 54% | 0.09 | |
2013–2017 | 5977 | (21) | 1.97 [1.53–2.52] | 93% | <0.01 | |
2018–2022 | 22,420 | (77) | 1.99 [1.78–2.22] | 75% | <0.01 | |
N° of patients included | 0.01 | |||||
<100 | 1718 | (6) | 2.24 [1.71–2.92] | 87% | <0.01 | |
100–199 | 5150 | (18) | 2.17 [1.86–2.53] | 61% | <0.01 | |
200–399 | 8417 | (29) | 1.90 [1.57–2.30] | 81% | <0.01 | |
≥400 | 13,710 | (47) | 1.57 [1.35–1.82] | 71% | <0.01 | |
World region | <0.01 | |||||
Asia | 10,964 | (38) | 2.37 [2.07–2.71] | 84% | <0.01 | |
Not Asia | 18,031 | (62) | 1.69 [1.48–1.91] | 72% | <0.01 | |
Mean or median age (y) at inclusion (n = 23,630) | 0.09 | |||||
<65 | 14,384 | (61) | 1.87 [1.62–2.16] | 75% | <0.01 | |
≥65 | 9246 | (39) | 2.24 [1.93–2.61] | 89% | <0.01 | |
Cancer site | <0.01 | |||||
Gastric | 5447 | (19) | 1.88 [1.46–2.44] | 74% | <0.01 | |
Breast | 0 | (0) | - | - | - | |
Sarcoma | 145 | (0.5) | 3.42 [0.81–14.4] | - | - | |
Uterus | 232 | (0.8) | 2.23 [1.18–3.92] | - | - | |
Head and neck | 1692 | (6) | 2.75 [2.00–3.78] | 62% | 0.03 | |
Ovarian | 424 | (1.5) | 1.64 [0.53–5.06] | 82.5% | 0.02 | |
Lymphoma | 997 | (3) | 1.55 [0.89–2.70] | 73% | 0.02 | |
Various | 3649 | (13) | 1.72 [1.19–2.45] | 96% | <0.01 | |
Cholangiocarcinoma | 231 | (0.8) | 2.66 [1.85–3.81] | 0% | 0.69 | |
Melanoma | 0 | (0) | - | - | - | |
Leukemia | 178 | (0.6) | 3.12 [1.53–6.35] | - | - | |
Colorectal | 7252 | (25) | 1.58 [1.28–1.95] | 67% | <0.01 | |
Anal | 106 | (0.4) | 4.50 [1.05–19.2] | - | - | |
Bile ducts | 282 | (1) | 2.71 [1.87–3.92] | 0% | 0.49 | |
Non-small cell lung | 1440 | (5) | 2.92 [2.01–4.24] | 53% | 0.04 | |
Liver | 1422 | (5) | 2.56 [1.94–3.39] | 43% | 0.07 | |
Myeloma | 56 | (0.2) | 1.96 [0.78–5.00] | - | - | |
Thyroids | 0 | (0) | - | - | - | |
Pancreatic | 1789 | (6) | 1.45 [1.13–1.86] | 71% | <0.01 | |
Kidney | 78 | (0.3) | 2.63 [1.50–4.61] | - | - | |
Esophageal | 1856 | (6) | 2.29 [1.77–2.95] | 49% | 0.03 | |
Urothelial | 835 | (3) | 1.87 [1.20–2.89] | 51% | 0.08 | |
Prostatic | 884 | (3) | 1.35 [0.89–2.03] | 0% | 0.52 | |
Small cell lung | 0 | (0) | - | - | - | |
Cancer extension | 0.40 | |||||
Various | 23,842 | (82) | 1.86 [1.68–2.07] | 72% | <0.01 | |
Local | 1404 | (5) | 2.32 [1.71–3.15] | 27% | 0.23 | |
Locally advanced | 917 | (3) | 2.42 [1.50–3.92] | 77% | <0.01 | |
Metastatic | 2832 | (10) | 2.09 [1.53–2.86] | 94% | <0.01 | |
Treatment modalities | 0.74 | |||||
Not specified | 386 | (1) | 2.16 [1.49–3.13] | 0% | 0.50 | |
Surgery | 16,463 | (57) | 2.09 [1.84–2.37] | 63% | <0.01 | |
Targeted therapy | 78 | (0.3) | 2.63 [1.50–4.61] | - | - | |
Various | 7798 | (27) | 1.85 [1.55–2.20] | 77% | <0.01 | |
Immune therapy | 618 | (2) | 2.37 [0.92–6.08] | 92% | <0.01 | |
Radiotherapy | 516 | (2) | 2.91 [1.23–6.90] | 77% | 0.01 | |
Chemotherapy | 2549 | (9) | 1.70 [1.23–2.36] | 95% | <0.01 | |
Exclusive supportive care | 445 | (1.5) | 1.62 [1.06–2.47] | 64% | 0.10 | |
Intra-arterial infusion for hepatocellular carcinoma | 142 | (0.5) | 2.22 [1.01–4.86] | - | - | |
Definition of sarcopenia | 0.24 | |||||
Muscle mass quantity only | ||||||
CT scan | 25,656 | (88) | 1.93 [1.74–2.15] | 86% | <0.01 | |
BIA | 347 | (1) | 1.77 [1.00–2.13] | 35% | 0.22 | |
DXA | 64 | (0.2) | 2.96 [1.40–6.27] | - | - | |
Consensus algorithm-based | 2928 | (10) | 2.31 [1.97–2.72] | 22% | 0.25 | |
Muscle mass indices (n = 27,061) | <0.01 | |||||
AMA (cm2) | 951 | (3) | 2.26 [1.69–3.03] | - | - | |
ASM (kg/m2) | 1274 | (5) | 2.84 [2.01–4.00] | 87% | <0.01 | |
TPA (cm2/m2) | 0 | (0) | - | - | - | |
PMI (cm2/m2) | 1567 | (6) | 2.76 [2.21–3.43] | 0% | 0.63 | |
SMI (cm2/m2) | 23,269 | (86) | 1.85 [1.66–2.07] | 75% | <0.01 |
Study Groups | Patients | Relative Risk [95% CI] for PFS | p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | 0.23 | |||||
All studies | 6546 | (100) | 1.76 [1.44–2.16] | 85% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 4008 | (61) | 1.35 [1.19–1.52] | 80% | <0.01 | |
Quality of study (NOS) | 0.15 | |||||
Good | 5055 | (77) | 1.83 [1.51–2.21] | 75% | <0.01 | |
Fair | 1345 | (20.5) | 1.68 [0.89–3.15] | 94% | <0.01 | |
Poor | 146 | (2.5) | 0.92 [0.48–1.78] | - | - | |
Year of publication | 0.93 | |||||
2008–2012 | 251 | (4) | 1.89 [1.34–2.64] | 0% | 0.98 | |
2013–2017 | 693 | (10) | 1.83 [1.07–3.13] | 83% | <0.01 | |
2018–2022 | 5602 | (86) | 1.75 [1.37–2.24] | 87% | <0.01 | |
N° of patients included | 0.73 | |||||
<100 | 489 | (7.5) | 2.22 [1.24–3.97] | <0.01 | ||
100–199 | 1863 | (28.5) | 1.81 [1.35–2.42] | <0.01 | ||
200–399 | 1922 | (29) | 1.49 [0.98–2.24] | <0.01 | ||
≥400 | 2272 | (35) | 1.79 [0.97–3.29] | <0.01 | ||
World region | <0.01 | |||||
Asia | 2307 | (35) | 2.38 [1.81–3.13] | 80% | <0.01 | |
Not Asia | 4239 | (65) | 1.42 [1.12–1.81] | 75.5% | <0.01 | |
Mean or median age (y) at inclusion (n = 5891) | 0.78 | |||||
<65 | 3186 | (54) | 1.75 [1.28–2.40] | 91% | <0.01 | |
≥65 | 2705 | (46) | 1.85 [1.43–2.39] | 60% | 0.01 | |
Cancer site | <0.01 | |||||
Gastric | 726 | (11) | 1.68 [0.43–6.50] | 96% | <0.01 | |
Breast | 55 | (0.8) | 1.90 [1.03–3.50] | - | - | |
Sarcoma | 109 | (2) | 4.60 [3.53–6.00] | - | - | |
Uterus | 0 | (0) | - | - | - | |
Head and neck | 243 | (3.5) | 2.45 [1.58–3.78] | - | - | |
Ovarian | 128 | (2) | 2.64 [1.23–5.64] | - | - | |
Lymphoma | 1040 | (16) | 1.95 [1.19–3.20] | 73% | 0.01 | |
Various | 349 | (5) | 0.70 [0.54–0.93] | 0% | 0.92 | |
Cholangiocarcinoma | 0 | (0) | - | - | - | |
Melanoma | 0 | (0) | - | - | - | |
Leukemia | 0 | (0) | - | - | - | |
Colorectal | 2512 | (38) | 1.35 [1.05–1.74] | 55% | 0.03 | |
Anal | 0 | (0) | - | - | - | |
Bile ducts | 207 | (3) | 2.14 [1.46–3.13] | - | - | |
Non-small cell lung | 534 | (8) | 2.43 [1.90–3.12] | 0% | 0.47 | |
Liver | 0 | (0) | - | - | - | |
Myeloma | 0 | (0) | - | - | - | |
Thyroids | 0 | (0) | - | - | - | |
Pancreatic | 0 | (0) | - | - | - | |
Kidney | 78 | (1) | 3.18 [1.85–5.47] | - | - | |
Esophageal | 163 | (2.5) | 1.24 [0.71–2.17] | - | - | |
Urothelial | 146 | (2) | 0.92 [0.47–1.78] | - | - | |
Prostatic | 256 | (4) | 2.23 [0.69–7.18] | 71% | 0.06 | |
Small cell lung | 0 | (0) | - | - | - | |
Cancer extension | 0.13 | |||||
Various | 4469 | (68) | 1.62 [1.26–2.08] | 81% | <0.01 | |
Local | 315 | (5) | 2.32 [1.62–3.32] | - | - | |
Locally advanced | 47 | (1) | 8.11 [1.61–41.0] | - | - | |
Metastatic | 1715 | (26) | 1.84 [1.28–2.64] | 89% | <0.01 | |
Treatment modalities | 0.11 | |||||
Not specified | 0 | (0) | - | - | - | |
Surgery | 3296 | (50) | 1.73 [1.28–2.35] | 81% | <0.01 | |
Targeted therapy | 242 | (4) | 3.21 [1.94–5.33] | 73% | 0.03 | |
Various | 2024 | (31) | 1.45 [1.10–1.91] | 62% | <0.01 | |
Immune therapy | 480 | (7) | 2.11 [0.84–5.29] | 90% | <0.01 | |
Radiotherapy | 0 | (0) | - | - | - | |
Chemotherapy | 504 | (8) | 1.74 [0.83–3.64] | 87% | <0.01 | |
Exclusive supportive care | 0 | (0) | - | - | - | |
Intra-arterial infusion for hepatocellular carcinoma | 0 | (0) | - | - | - | |
Definition of sarcopenia | <0.01 | |||||
Muscle mass quantity only | ||||||
CT scan | 5688 | (87) | 1.70 [1.38–2.10] | 84% | <0.01 | |
BIA | 163 | (2.5) | 1.24 [0.71–2.17] | - | - | |
DXA | 0 | (0) | - | - | - | |
Consensus algorithm-based | 695 | (10.5) | 3.59 [2.17–5.92] | 12% | 0.29 | |
Muscle mass indices (n = 6383) | <0.01 | |||||
AMA (cm2) | 0 | (0) | - | - | - | |
ASM (kg/m2) | 47 | (1) | 8.11 [1.61–40.9] | - | - | |
TPA (cm2/m2) | 0 | (0) | - | - | - | |
PMI (cm2/m2) | 621 | (9.5) | 3.05 [2.01–4.62] | 72% | 0.01 | |
SMI (cm2/m2) | 5715 | (87) | 1.61 [1.30–1.99] | 81% | <0.01 |
Study Groups | Patients | Relative Risk [95% CI] for POC | p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | 0.02 | |||||
All studies | 17,172 | (100) | 2.70 [2.33–3.12] | 72% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 3633 | (21) | 2.22 [1.84–2.68] | 64% | <0.01 | |
Quality of study (NOS) | 0.34 | |||||
Good | 14,555 | (85) | 2.75 [2.34–3.24] | 75% | <0.01 | |
Fair | 2411 | (14) | 2.67 [1.83–3.91] | 60% | <0.01 | |
Poor | 206 | (1) | 1.87 [1.16–3.04] | 0% | 0.51 | |
Year of publication | 0.02 | |||||
2008–2012 | 0 | (0) | - | |||
2013–2017 | 6355 | (37) | 1.39 [1.18–1.63] | 48.5% | <0.01 | |
2018–2022 | 10,817 | (63) | 1.91 [1.53–2.38] | 81% | <0.01 | |
N° of patients included | 0.04 | |||||
<100 | 806 | (5) | 1.78 [1.09–2.92] | 72% | <0.01 | |
100–199 | 2425 | (14) | 1.30 [1.08–1.56] | 41% | 0.04 | |
200–399 | 5407 | (31) | 1.95 [1.42–2.68] | 85% | <0.01 | |
≥400 | 8534 | (50) | 1.87 [1.47–2.39] | 58% | <0.01 | |
World region | <0.01 | |||||
Asia | 10,092 | (59) | 2.02 [1.60–2.55] | 81% | <0.01 | |
Not Asia | 7080 | (41) | 1.38 [1.20–1.60] | 57% | <0.01 | |
Mean or median age (y) at inclusion (n = 13,209) | 0.39 | |||||
<65 | 6572 | (50) | 1.91 [1.49–2.44] | 64% | <0.01 | |
≥65 | 6637 | (50) | 1.64 [1.28–2.10] | 78% | <0.01 | |
Cancer site | <0.01 | |||||
Gastric | 6856 | (40) | 3.09 [2.42–3.93] | 43% | 0.02 | |
Breast | 0 | (0) | - | - | - | |
Sarcoma | 145 | (1) | 1.78 [1.22–2.59] | - | - | |
Uterus | 0 | (0) | - | - | - | |
Head and neck | 0 | (0) | - | - | - | |
Ovarian | 0 | (0) | - | - | - | |
Lymphoma | 0 | (0) | - | - | - | |
Various | 1895 | (11) | 3.95 [1.97–7.95] | 71% | <0.01 | |
Cholangiocarcinoma | 110 | (1) | 2.44 [2.08–2.87] | 0% | 0.46 | |
Melanoma | 0 | (0) | - | - | - | |
Leukemia | 0 | (0) | - | - | - | |
Colorectal | 0 | (0) | - | - | - | |
Anal | 0 | (0) | - | - | - | |
Bile ducts | 0 | (0) | - | - | - | |
Non-small cell lung | 808 | (5) | 3.66 [1.12–11.9] | 93% | <0.01 | |
Liver | 385 | (2) | 2.47 [0.90–6.77] | 85% | <0.01 | |
Myeloma | 0 | (0) | - | - | - | |
Thyroids | 0 | (0) | - | - | - | |
Pancreatic | 1629 | (9) | 1.86 [1.26–2.75] | 51% | 0.07 | |
Kidney | 0 | (0) | - | - | - | |
Esophageal | 828 | (5) | 3.17 [1.82–5.52] | 82% | <0.01 | |
Urothelial | 473 | (3) | 1.68 [1.33–2.11] | 0% | 0.47 | |
Prostatic | 698 | (4) | 4.50 [1.76–11.5] | - | - | |
Small cell lung | 0 | (0) | - | - | - | |
Cancer extension | 0.06 | |||||
Various | 14,436 | (84) | 1.76 [1.46–2.11] | 74% | <0.01 | |
Local | 999 | (6) | 2.35 [1.14–4.86] | 80% | <0.01 | |
Locally advanced | 955 | (6) | 1.35 [0.85–2.14] | 57% | 0.05 | |
Metastatic | 782 | (4) | 1.30 [1.09–1.54] | 0% | 0.80 | |
Treatment modalities | 0.04 | |||||
Not specified | 0 | (0) | - | - | - | |
Surgery | 16,325 | (95) | 1.77 [1.50–2.09] | 76% | <0.01 | |
Targeted therapy | 0 | (0) | - | - | - | |
Various | 847 | (5) | 1.26 [0.95–1.67] | 43% | 0.10 | |
Immune therapy | 0 | (0) | - | - | - | |
Radiotherapy | 0 | (0) | - | - | - | |
Chemotherapy | 0 | (0) | - | - | - | |
Exclusive supportive care | 0 | (0) | - | - | - | |
Intra-arterial infusion for hepatocellular carcinoma | 0 | (0) | - | - | - | |
Definition of sarcopenia | 0.03 | |||||
Muscle mass quantity only | ||||||
CT scan | 11,212 | (65) | 2.39 [2.01–2.83] | 75% | <0.01 | |
BIA | 626 | (4) | 3.16 [1.74–5.76] | 65% | 0.02 | |
DXA | 0 | (0) | - | - | - | |
Consensus algorithms | 5334 | (31) | 3.62 [2.79–4.69] | 36% | 0.07 | |
Muscle mass indices (n = 16,413) | 0.06 | |||||
AMA (cm2) | 0 | (0) | - | - | - | |
ASM (kg/m2) | 834 | (5) | 3.26 [1.80–5.90] | 72% | <0.01 | |
TPA (cm2/m2) | 2089 | (13) | 1.60 [1.09–2.35] | 72% | 0.06 | |
PMI (cm2/m2) | 719 | (4) | 2.41 [0.99–5.91] | 93% | <0.01 | |
SMI (cm2/m2) | 12,771 | (78) | 1.48 [1.27–1.71] | 61% | <0.01 |
Study Groups | Patients | Relative Risk [95% CI] for TOX | p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | 0.49 | |||||
All studies | 2980 | (100) | 1.47 [1.17–1.84] | 71% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 760 | (25.5) | 1.31 [1.11–1.57] | 62% | <0.01 | |
Quality of study (NOS) | 0.02 | |||||
Good | 2356 | (79) | 1.34 [1.01–1.77] | 67% | <0.01 | |
Fair | 517 | (17) | 1.78 [1.43–2.21] | 24% | 0.25 | |
Poor | 107 | (4) | 2.72 [1.76–4.21] | - | - | |
Year of publication | 0.38 | |||||
2008–2012 | 55 | (2) | 2.56 [1.14–5.78] | - | - | |
2013–2017 | 424 | (14) | 1.56 [0.94–2.60] | 70% | <0.01 | |
2018–2022 | 2501 | (84) | 1.40 [1.07–1.84] | 73% | <0.01 | |
N° of patients included | 0.03 | |||||
<100 | 851 | (28.5) | 1.39 [1.01–1.91] | 67% | <0.01 | |
100–199 | 702 | (23.5) | 1.92 [1.26–2.93] | 68.5% | <0.01 | |
200–399 | 219 | (7.5) | 0.98 [0.78–1.25] | - | - | |
≥400 | 1208 | (40.5) | 1.42 [0.63–3.21] | 88% | <0.01 | |
World region | 0.80 | |||||
Asia | 1551 | (52) | 1.43 [1.04–1.98] | 76.5% | <0.01 | |
Not Asia | 1429 | (48) | 1.52 [1.08–2.13] | 65% | <0.01 | |
Mean or median age (y) at inclusion (n = 1772) | 0.44 | |||||
<65 | 1459 | (82) | 1.57 [1.18–2.11] | 77% | <0.01 | |
≥65 | 313 | (18) | 1.26 [0.79–2.02] | 0% | 0.46 | |
Cancer site | <0.01 | |||||
Gastric | 458 | (15) | 0.96 [0.72–1.29] | - | - | |
Breast | 137 | (4.5) | 2.93 [1.82–4.73] | 0% | 0.69 | |
Sarcoma | 0 | (0) | - | - | - | |
Uterus | 0 | (0) | - | - | - | |
Head and neck | 862 | (29) | 2.47 [1.65–3.69] | 0% | 0.40 | |
Ovarian | 0 | (0) | - | - | - | |
Lymphoma | 0 | (0) | - | - | - | |
Various | 89 | (3) | ||||
Cholangiocarcinoma | 0 | (0) | - | - | - | |
Melanoma | 68 | (2) | 1.20 [0.40–3.56] | - | - | |
Leukemia | 0 | (0) | - | - | - | |
Colorectal | 244 | (8) | 1.00 [0.80–1.26] | 0% | 0.56 | |
Anal | 0 | (0) | - | - | - | |
Bile ducts | 0 | (0) | - | - | - | |
Non-small cell lung | 0 | (0) | - | - | - | |
Liver | 0 | (0) | - | - | - | |
Myeloma | 0 | (0) | - | - | - | |
Thyroids | 180 | (6) | 1.20 [0.89–1.61] | - | - | |
Pancreatic | 281 | (9) | 1.66 [1.13–2.42] | 0% | 0.47 | |
Kidney | 139 | (5) | 1.98 [0.99–3.98] | 0% | 0.71 | |
Esophageal | 494 | (16.5) | 1.17 [0.66–2.08] | 86% | <0.01 | |
Urothelial | 28 | (1) | 0.83 [0.21–3.29] | - | - | |
Prostatic | 0 | (0) | - | - | - | |
Small cell lung | 0 | (0) | - | - | - | |
Cancer extension | <0.01 | |||||
Various | 2216 | (74) | 1.57 [1.16–2.12] | 77% | <0.01 | |
Local | 0 | (0) | - | - | - | |
Locally advanced | 228 | (8) | 0.69 [0.47–1.02] | 0% | 0.62 | |
Metastatic | 536 | (18) | 1.57 [1.18–2.09] | 28% | 0.22 | |
Treatment modalities | 0.19 | |||||
Not specified | 0 | (0) | - | - | - | |
Surgery | 0 | (0) | - | - | - | |
Targeted therapy | 374 | (12.5) | 1.63 [1.05–2.54] | 30% | 0.23 | |
Various | 2040 | (68.5) | 1.22 [0.85–1.74] | 79% | <0.01 | |
Immune therapy | 68 | (2) | 1.20 [0.40–3.56] | - | - | |
Radiotherapy | 28 | (1) | 0.83 [0.21–3.29] | - | - | |
Chemotherapy | 470 | (16) | 1.98 [1.55–2.54] | 32% | 0.20 | |
Exclusive supportive care | 0 | (0) | - | - | - | |
Intra-arterial infusion for hepatocellular carcinoma | 0 | (0) | - | - | - | |
Definition of sarcopenia | <0.01 | |||||
Muscle mass quantity only | ||||||
CT scan | 2886 | (97) | 1.53 [1.22–1.93] | 70% | <0.01 | |
BIA | 94 | (3) | 0.82 [0.56–1.21] | - | - | |
DXA | 0 | (0) | - | - | - | |
Consensus algorithm-based | 0 | (0) | - | - | - | |
Muscle mass indices (n = 2136) | - | |||||
AMA (cm2) | 0 | (0) | - | - | - | |
ASM (kg/m2) | 0 | (0) | - | - | - | |
TPA (cm2/m2) | 0 | (0) | - | - | - | |
PMI (cm2/m2) | 0 | (0) | - | - | - | |
SMI (cm2/m2) | 2136 | (100) | 1.49 [1.18–1.90] | 69% | <0.01 |
Study Groups | Patients | Relative Risk [95% CI] for NI | p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | <0.01 | |||||
All studies | 6246 | (100) | 1.76 [1.41–2.22] | 58% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 864 | (14) | 1.15 [0.87–1.52] | |||
Quality of study (NOS) | 0.09 | |||||
Good | 4380 | (70) | 1.90 [1.45–2.49] | 52% | 0.01 | |
Fair | 1783 | (28.5) | 1.64 [1.02–2.65] | 69% | <0.01 | |
Poor | 83 | (1.5) | 0.83 [0.42–1.65] | - | - | |
Year of publication | 0.63 | |||||
2008–2012 | 234 | (4) | 1.83 [1.03–3.25] | - | - | |
2013–2017 | 2128 | (34) | 1.50 [1.20–1.87] | 30% | 0.17 | |
2018–2022 | 3884 | (62) | 1.87 [1.56–2.23] | 72% | <0.01 | |
N° of patients included | <0.01 | |||||
<100 | 132 | (2) | 0.76 [0.44–1.32] | 0% | 0.71 | |
100–199 | 1059 | (17) | 1.77 [1.22–2.56] | 34% | 0.17 | |
200–399 | 2385 | (38) | 1.85 [1.23–2.80] | 69% | <0.01 | |
≥400 | 2670 | (43) | 2.26 [1.66–3.07] | 6% | 0.36 | |
World region | 0.33 | |||||
Asia | 4817 | (77) | 1.91 [1.42–2.57] | 66% | <0.01 | |
Not Asia | 1429 | (33) | 1.53 [1.11–2.12] | 36% | 0.14 | |
Mean or median age (y) at inclusion (n = 5047) | <0.01 | |||||
<65 | 2126 | (42) | 2.60 [1.93–3.52] | 41% | 0.10 | |
≥65 | 2921 | (58) | 1.36 [1.01–1.83] | 45% | 0.06 | |
Cancer site | <0.01 | |||||
Gastric | 3342 | (53.5) | 2.55 [1.88–3.46] | 29% | 0.21 | |
Breast | 0 | (0) | - | - | - | |
Sarcoma | 0 | (0) | - | - | - | |
Uterus | 0 | (0) | - | - | - | |
Head and neck | 0 | (0) | - | - | - | |
Ovarian | 0 | (0) | - | - | - | |
Lymphoma | 0 | (0) | - | - | - | |
Various | 49 | (1) | 0.67 [0.27–1.66] | - | - | |
Cholangiocarcinoma | 0 | (0) | - | - | - | |
Melanoma | 0 | (0) | - | - | - | |
Leukemia | 0 | (0) | - | - | - | |
Colorectal | 1033 | (16.5) | 1.80 [1.31–2.48] | 14% | 0.33 | |
Anal | 0 | (0) | - | - | - | |
Bile-ducts | 0 | (0) | - | - | - | |
Non-small cell lung | 0 | (0) | - | - | - | |
Liver | 0 | (0) | - | - | - | |
Myeloma | 0 | (0) | - | - | - | |
Thyroids | 0 | (0) | - | - | - | |
Pancreatic | 202 | (3) | 0.69 [0.32–1.49] | - | - | |
Kidney | 0 | (0) | 0 | - | - | |
Esophageal | 1620 | (26) | 1.49 [1.02–2.18] | 61% | 0.01 | |
Urothelial | 0 | (0) | - | - | - | |
Prostatic | 0 | (0) | - | - | - | |
Small cell lung | 0 | (0) | - | - | - | |
Cancer extension | 0.57 | |||||
Various | 6073 | (97) | 1.75 [1.38–2.22] | 60% | <0.01 | |
Local | 173 | (3) | 2.13 [1.11–4.10] | - | - | |
Locally-advanced | 0 | (0) | - | - | - | |
Metastatic | 0 | (0) | - | - | - | |
Treatment modalities | 0.12 | |||||
Not specified | 0 | (0) | - | - | - | |
Surgery | 6033 | (97) | 1.84 [1.45–2.32] | 58% | <0.01 | |
Targeted therapy | 0 | (0) | - | - | - | |
Various | 213 | (3) | 1.05 [0.54–2.06] | 19% | 0.27 | |
Immune-therapy | 0 | (0) | - | - | - | |
Radiotherapy | 0 | (0) | - | - | - | |
Chemotherapy | 0 | (0) | - | - | - | |
Exclusive supportive care | 0 | (0) | - | - | - | |
Intra-arterial infusion for hepatocellular carcinoma | 0 | (0) | - | - | - | |
Definition of sarcopenia | 0.03 | |||||
-Muscle mass quantity only | ||||||
CT-scan | 2487 | (40) | 1.59 [1.28–1.97] | 0% | 0.45 | |
BIA | 423 | (7) | 1.12 [0.62–2.02] | 59% | 0.06 | |
DXA | 0 | (0) | - | - | - | |
-Consensus algorithm-based | 3336 | (53) | 2.49 [1.75–3.54] | 64% | <0.01 | |
Muscle mass indices (n = 5782) | 0.92 | |||||
AMA (cm2) | 951 | (16) | 1.86 [1.10–3.16] | - | - | |
ASM (kg/m2) | 344 | (6) | 1.34 [0.44–4.06] | 88% | <0.01 | |
TPA (cm2/m2) | 0 | (0) | - | - | - | |
PMI (cm2/m2) | 567 | (10) | 1.56 [0.73–3.30] | - | - | |
SMI (cm2/m2) | 3920 | (68) | 1.85 [1.41–2.43] | 53% | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couderc, A.-L.; Liuu, E.; Boudou-Rouquette, P.; Poisson, J.; Frelaut, M.; Montégut, C.; Mebarki, S.; Geiss, R.; ap Thomas, Z.; Noret, A.; et al. Pre-Therapeutic Sarcopenia among Cancer Patients: An Up-to-Date Meta-Analysis of Prevalence and Predictive Value during Cancer Treatment. Nutrients 2023, 15, 1193. https://doi.org/10.3390/nu15051193
Couderc A-L, Liuu E, Boudou-Rouquette P, Poisson J, Frelaut M, Montégut C, Mebarki S, Geiss R, ap Thomas Z, Noret A, et al. Pre-Therapeutic Sarcopenia among Cancer Patients: An Up-to-Date Meta-Analysis of Prevalence and Predictive Value during Cancer Treatment. Nutrients. 2023; 15(5):1193. https://doi.org/10.3390/nu15051193
Chicago/Turabian StyleCouderc, Anne-Laure, Evelyne Liuu, Pascaline Boudou-Rouquette, Johanne Poisson, Maxime Frelaut, Coline Montégut, Soraya Mebarki, Romain Geiss, Zoé ap Thomas, Aurélien Noret, and et al. 2023. "Pre-Therapeutic Sarcopenia among Cancer Patients: An Up-to-Date Meta-Analysis of Prevalence and Predictive Value during Cancer Treatment" Nutrients 15, no. 5: 1193. https://doi.org/10.3390/nu15051193
APA StyleCouderc, A. -L., Liuu, E., Boudou-Rouquette, P., Poisson, J., Frelaut, M., Montégut, C., Mebarki, S., Geiss, R., ap Thomas, Z., Noret, A., Pierro, M., Baldini, C., Paillaud, E., & Pamoukdjian, F. (2023). Pre-Therapeutic Sarcopenia among Cancer Patients: An Up-to-Date Meta-Analysis of Prevalence and Predictive Value during Cancer Treatment. Nutrients, 15(5), 1193. https://doi.org/10.3390/nu15051193