Physical Activity, Rather Than Diet, Is Linked to Lower Insulin Resistance in PCOS Women—A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Body Composition Analysis with Bioelectrical Impedance (BIA)
2.4. Biochemical Analysis
2.5. Nutritional Assessment
2.6. Physical Activity
2.7. Statistical Analysis
3. Results
3.1. Characteristics of PCOS and Healthy Women
3.2. Insulin Resistance and Correlation between HOMA-IR and HOMA-AD
3.3. Effect of Diet and Physical Activity on Adipokines and Insulin Resistance
3.4. Correlations between Adipokines, Insulin Resistance Markers and Anthropometric Measurements and Body Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Groen, H.; Cantineau, A.E.P.; van Elten, T.M.; Karsten, M.D.A.; van Oers, A.M.; Mol, B.W.J.; Roseboom, T.J.; Hoek, A. Effectiveness of a 6-Month Lifestyle Intervention on Diet, Physical Activity, Quality of Life, and Markers of Cardiometabolic Health in Women with PCOS and Obesity and Non-PCOS Obese Controls: One Size Fits All? Nutrients 2021, 13, 3425–3437. [Google Scholar] [CrossRef] [PubMed]
- Stepto, N.K.; Moreno-Asso, A.; McIlvenna, L.C.; Walters, K.A.; Rodgers, R.J. Molecular Mechanisms of Insulin Resistance in Polycystic Ovary Syndrome: Unraveling the Conundrum in Skeletal Muscle? J. Clin. Endocrinol. Metab. 2019, 104, 5372–5381. [Google Scholar] [CrossRef] [PubMed]
- Bykowska-Derda, A.; Kaluzna, M.; Ruchała, M.; Ziemnicka, K.; Czlapka-Matyasik, M. The Significance of Plant-Based Foods and Intense Physical Activity on the Metabolic Health of Women with PCOS: A Priori Dietary-Lifestyle Patterns Approach. Appl. Sci. 2023, 13, 2118–2131. [Google Scholar] [CrossRef]
- Glueck, C.J.; Goldenberg, N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism 2019, 92, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, J.; Ostrowska, J.; Szostak-Węgierek, D. The Influence of Nutrition on Adiponectin—A Narrative Review. Nutrients 2021, 13, 1394–1419. [Google Scholar] [CrossRef] [PubMed]
- Baldani, D.P.; Skrgatic, L.; Kasum, M.; Zlopasa, G.; Kralik Oguic, S.; Herman, M. Altered leptin, adiponectin, resistin and ghrelin secretion may represent an intrinsic polycystic ovary syndrome abnormality. Gynecol. Endocrinol. 2019, 35, 401–405. [Google Scholar] [CrossRef]
- Li, W.; Chen, Q.; Xie, Y.; Hu, J.; Yang, S.; Lin, M. Prevalence and degree of insulin resistance in Chinese Han women with PCOS: Results from euglycemic-hyperinsulinemic clamps. Clin. Endocrinol. 2019, 90, 138–144. [Google Scholar] [CrossRef]
- Amisi, C.A. Markers of insulin resistance in Polycystic ovary syndrome women: An update. World J. Diabetes 2022, 13, 129–149. [Google Scholar] [CrossRef]
- Kim, J.J.; Hwang, K.R.; Oh, S.H.; Chae, S.J.; Yoon, S.H.; Choi, Y.M. Prevalence of insulin resistance in Korean women with polycystic ovary syndrome according to various homeostasis model assessment for insulin resistance cutoff values. Fertil. Steril. 2019, 112, 959–966. [Google Scholar] [CrossRef]
- Hong, S.H.; Sung, Y.A.; Hong, Y.S.; Jeong, K.; Chung, H.; Lee, H. Polycystic ovary morphology is associated with insulin resistance in women with polycystic ovary syndrome. Clin. Endocrinol. 2017, 87, 375–380. [Google Scholar] [CrossRef]
- Goldsammler, M.; Merhi, Z.; Buyuk, E. Role of hormonal and inflammatory alterations in obesity-related reproductive dysfunction at the level of the hypothalamic-pituitary-ovarian axis. Reprod. Biol. Endocrinol. 2018, 16, 45–55. [Google Scholar] [CrossRef]
- Kazemi, M.; Hadi, A.; Pierson, R.A.; Lujan, M.E.; Zello, G.A.; Chilibeck, P.D. Effects of Dietary Glycemic Index and Glycemic Load on Cardiometabolic and Reproductive Profiles in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Adv. Nutr. 2021, 12, 161–178. [Google Scholar] [CrossRef]
- Mattei, J.; Sotos-Prieto, M.; Bigornia, S.J.; Noel, S.E.; Tucker, K.L. The Mediterranean Diet Score Is More Strongly Associated with Favorable Cardiometabolic Risk Factors over 2 Years Than Other Diet Quality Indexes in Puerto Rican Adults. J. Nutr. 2017, 147, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Taheri, A.; Mirzababaei, A.; Setayesh, L.; Yarizadeh, H.; Shiraseb, F.; Imani, H.; Clark, C.C.T.; Mirzaei, K. The relationship between Dietary approaches to stop hypertension diet adherence and inflammatory factors and insulin resistance in overweight and obese women: A cross-sectional study. Diabetes Res. Clin. Pract. 2021, 182, 109–128. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Zhou, H.; Hu, M.; Feng, H. Effect of Diet on Insulin Resistance in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2020, 105, 3346–3360. [Google Scholar] [CrossRef]
- Shele, G.; Genkil, J.; Speelman, D. A Systematic Review of the Effects of Exercise on Hormones in Women with Polycystic Ovary Syndrome. J. Funct. Morphol. Kinesiol. 2020, 5, 35–59. [Google Scholar] [CrossRef]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 2018, 110, 364–379. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.J.; Tassone, E.C.; Boyle, J.; Brennan, L.; Harrison, C.L.; Hirschberg, A.L.; Lim, S.; Marsh, K.; Misso, M.L.; Redman, L.; et al. Evidence summaries and recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome: Lifestyle management. Obes. Rev. 2020, 21, 13046–13061. [Google Scholar] [CrossRef]
- The Rotterdam ESHRE/ASRAM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef]
- Gibson, R.S. Principles of Nutritional Assessment, 2nd ed.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- A Healthy Lifestyle—WHO Recommendations. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 17 March 2023).
- Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. Available online: https://www.who.int/publications/i/item/9789241501491 (accessed on 17 March 2023).
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gomez, J.M.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M. ESPEN Guidelines for bioelectrical impedance analysis: Part I and II. Clin. Nutr. 2004, 23, 1226–1243, 1430–1453. [Google Scholar] [CrossRef]
- Maltron International Ltd. Operating and Service Manual BioScan 920-2; Maltron International Ltd.: Rayleigh, UK, 1999. [Google Scholar]
- Cupisti, S.; Häberle, L.; Dittrich, R.; Oppelt, P.G.; Reissmann, C.; Kronawitter, D.; Beckmann, M.W.; Mueller, A. Smoking is associated with increased free testosterone and fasting insulin levels in women with polycystic ovary syndrome, resulting in aggravated insulin resistance. Fertil. Steril. 2010, 94, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Endukuru, C.K.; Gaur, G.S.; Yerrabelli, D.; Sahoo, J.; Vairappan, B. Cut-off Values and Clinical Utility of Surrogate Markers for Insulin Resistance and Beta-Cell Function to Identify Metabolic Syndrome and Its Components among Southern Indian Adults. J. Obes. Metab. Syndr. 2020, 29, 281–291. [Google Scholar] [CrossRef]
- Larsen, M.A.; Isaksen, V.T.; Moen, O.S.; Wilsgaard, L.; Remijn, M.; Paulssen, E.J.; Florholmen, J.; Goll, R. Leptin to adiponectin ratio—A surrogate biomarker for early detection of metabolic disturbances in obesity. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1114–1121. [Google Scholar] [CrossRef]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album of Photographs of Food Products and Dishes; National Food and Nutrition Institute: Warsaw, Poland, 2011. [Google Scholar]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J.; Yildiz, B.O. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2016, 2, 16057–16073. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, S.K.; Stepto, N.K.; Harrison, C.L.; Moran, L.J.; Strauss, B.J.; Teede, H.J. Effects of exercise on insulin resistance and body composition in overweight and obese women with and without polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2011, 96, 48–56. [Google Scholar] [CrossRef]
- Boshku, A.A.; Panova, I.D.; Ivanovska, B.Z. Adiponectin as a serum marker of adipose tissue dysfunction in women with polycystic ovary syndrome: Correlation with indicators of metabolic disturbances. Acta Endocrinol. 2018, 14, 346–352. [Google Scholar]
- Yilmaz, M.; Bukan, N.; Demirci, H.; Oztürk, C.; Kan, E.; Ayvaz, G.; Arslan, M. Serum resistin and adiponectin levels in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2009, 25, 246–252. [Google Scholar] [CrossRef]
- Song, D.K.; Hong, Y.S.; Sung, Y.A.; Lee, H. Insulin resistance according to β-cell function in women with polycystic ovary syndrome and normal glucose tolerance. PLoS ONE 2017, 12, e0178120. [Google Scholar] [CrossRef]
- Wang, Z.; Groen, H.; Cantineau, A.E.P.; van Elten, T.M.; Karsten, M.D.A.; van Oers, A.M.; Mol, B.W.J.; Roseboom, T.J.; Hoek, A. Dietary Intake, Eating Behavior, Physical Activity, and Quality of Life in Infertile Women with PCOS and Obesity Compared with Non-PCOS Obese Controls. Nutrients 2021, 13, 3526–3538. [Google Scholar] [CrossRef]
- Mizgier, M.; Jarząbek-Bielecka, G.; Formanowicz, D.; Jodłowska-Siewert, E.; Mruczyk, K.; Cisek-Woźniak, A.; Kędzia, W.; Opydo-Szymaczek, J. Dietary and Physical Activity Habits in Adolescent Girls with Polycystic Ovary Syndrome (PCOS)-HAstudy. J. Clin. Med. 2021, 10, 3469–3487. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Mittal, P.; Rani, A.; Bharti, R.; Agarwal, V.; Suri, J. Adiponectin to Leptin Ratio and its Association with Insulin Resistance in Women with Polycystic Ovarian Syndrome. Indian J. Endocrinol. Metab. 2022, 26, 239–244. [Google Scholar]
- Seow, K.M.; Juan, C.C.; Hsu, Y.P.; Ho, L.T.; Wang, Y.Y.; Hwang, J.L. Serum and follicular resistin levels in women with polycystic ovarian syndrome during IVF-stimulated cycles. Hum. Reprod. 2005, 20, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Pandit, U.; Singh, M.; Ranjan, R.; Gupta, V. The Effect of Exercise Training on Body Composition, Insulin Resistance and High Sensitivity C-reactive Protein (Hs-CRP) in Women with Polycystic Ovary Syndrome: A Pilot Study from North India. Cureus 2022, 14, e23994. [Google Scholar] [CrossRef] [PubMed]
- Moghetti, P.; Tosi, F.; Bonin, C.; Di Sarra, D.; Fiers, T.; Kaufman, J.M.; Giagulli, V.A.; Signori, C.; Zambotti, F.; Dall’Alda, M.; et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2013, 98, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Muscogiuri, G.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Metabolically Healthy Obesity (MHO) vs. Metabolically Unhealthy Obesity (MUO) Phenotypes in PCOS: Association with Endocrine-Metabolic Profile, Adherence to the Mediterranean Diet, and Body Composition. Nutrients 2021, 13, 3925–3943. [Google Scholar] [CrossRef]
- Matsuhisa, M.; Yamasaki, Y.; Emoto, M.; Shimabukuro, M.; Ueda, S.; Funahashi, T.; Matsuzawa, Y. A novel index of insulin resistance determined from the homeostasis model assessment index and adiponectin levels in Japanese subjects. Diabetes Res. Clin. Pract. 2007, 77, 151–154. [Google Scholar] [CrossRef]
- Vilela, B.S.; Vasques, A.C.; Cassani, R.S.; Forti, A.C.; Pareja, J.C.; Tambascia, M.A.; BRAMS Investigators; Geloneze, B. The HOMA-Adiponectin (HOMA-AD) Closely Mirrors the HOMA-IR Index in the Screening of Insulin Resistance in the Brazilian Metabolic Syndrome Study (BRAMS). PLoS ONE 2016, 4, e0158751. [Google Scholar] [CrossRef]
- Moran, L.J.; Brown, W.J.; McNaughton, S.A.; Joham, A.E.; Teede, H.J. Weight management practices associated with PCOS and their relationships with diet and physical activity. Hum. Reprod. 2017, 32, 669–678. [Google Scholar] [CrossRef]
- Gupta, V.; Mishra, S.; Mishra, S.; Gupta, V. L:A ratio, Insulin resistance and metabolic risk in women with polycystic ovarian syndrome. Diabetes Metab. Syndr. 2017, 11, 697–701. [Google Scholar] [CrossRef]
- Lecke, S.B.; Mattei, F.; Morsch, D.M.; Spritzer, P.M. Abdominal subcutaneous fat gene expression and circulating levels of leptin and adiponectin in polycystic ovary syndrome. Fertil. Steril. 2011, 95, 2044–2049. [Google Scholar] [CrossRef] [PubMed]
- Golbahar, J.; Das, N.M.; Al-Ayadhi, M.A.; Gumaa, K. Leptin-to-adiponectin, adiponectin-to-leptin ratios, and insulin are specific and sensitive markers associated with polycystic ovary syndrome: A case-control study from Bahrain. Metab. Syndr. Relat. Disord. 2012, 10, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Savastano, S.; Valentino, R.; Di Somma, C.; Orio, F.; Pivonello, C.; Passaretti, F.; Brancato, V.; Formisano, P.; Colao, A.; Beguinot, F.; et al. Serum 25-Hydroxyvitamin D Levels, phosphoprotein enriched in diabetes gene product (PED/PEA-15) and leptin-to-adiponectin ratio in women with PCOS. Nutr. Metab. 2011, 23, 84–93. [Google Scholar] [CrossRef]
- Rasool, S.U.A.; Ashraf, S.; Nabi, M.; Rashid, F.; Fazili, K.M.; Amin, S. Elevated fasting insulin is associated with cardiovascular and metabolic risk in women with polycystic ovary syndrome. Diabetes Metab. Syndr. 2019, 13, 2098–2105. [Google Scholar] [CrossRef]
- Posadzki, P.; Pieper, D.; Bajpai, R.; Makaruk, H.; Könsgen, N.; Neuhaus, A.L.; Semwal, M. Exercise/physical activity and health outcomes: An overview of Cochrane systematic reviews. BMC Public Health 2020, 16, 1724–1736. [Google Scholar] [CrossRef] [PubMed]
- Benham, J.L.; Yamamoto, J.M.; Friedenreich, C.M.; Rabi, D.M.; Sigal, R.J. Role of exercise training in polycystic ovary syndrome: A systematic review and meta-analysis. Clin. Obes. 2018, 8, 275–284. [Google Scholar] [CrossRef]
- Mario, F.M.; Graff, S.K.; Spritzer, P.M. Habitual physical activity is associated with improved anthropometric and androgenic profile in PCOS: A cross-sectional study. J. Endocrinol. Investig. 2017, 40, 377–384. [Google Scholar] [CrossRef]
- Kite, C.; Lahart, I.M.; Afzal, I.; Broom, D.R.; Randeva, H.; Kyrou, I.; Brown, J.E. Exercise, or exercise and diet for the management of polycystic ovary syndrome: A systematic review and meta-analysis. Syst. Rev. 2019, 12, 51–79. [Google Scholar] [CrossRef]
- Patten, R.K.; Boyle, R.A.; Moholdt, T.; Kiel, I.; Hopkins, W.G.; Harrison, C.L.; Stepto, N.K. Exercise Interventions in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Front. Physiol. 2020, 7, 606–623. [Google Scholar] [CrossRef]
- Turan, V.; Mutlu, E.K.; Solmaz, U.; Ekin, A.; Tosun, O.; Tosun, G.; Mat, E.; Gezer, C.; Malkoc, M. Benefits of short-term structured exercise in non-overweight women with polycystic ovary syndrome: A prospective randomized controlled study. J. Phys. Ther. Sci. 2015, 27, 2293–2297. [Google Scholar] [CrossRef]
- Kirthika, V.; Paul, J.; Selvam, S.; Priya, S. Effect of Aerobic exercise and lifestyle intervention among young women with Polycystic Ovary Syndrome. RJPT 2019, 12, 4269–4273. [Google Scholar] [CrossRef]
- Almenning, I.; Rieber-Mohn, A.; Lundgren, K.M.; Shetelig- Løvvik, T.; Garnæs, K.K.; Moholdt, T. Effects of High Intensity Interval Training and Strength Training on Metabolic, Cardiovascular and Hormonal Outcomes in Women with Polycystic Ovary Syndrome: A Pilot Study. PLoS ONE 2015, 10, e0138793. [Google Scholar] [CrossRef] [PubMed]
- de Souza, H.C.D.; Philbois, S.V.; de Paula Facioli, T.; Ferriani, R.A.; Gastaldi, A.C. Aerobic physical training impact on adipokines in women with polycystic ovary syndrome—Effects of body fat percentage. Arch. Endocrinol. Metab. 2022, 17, 837–847. [Google Scholar] [CrossRef]
- Al-Eisa, E.; Gabr, S.A.; Alghadir, A.H. Effects of supervised aerobic training on the levels of anti-Mullerian hormone and adiposity measures in women with normo-ovulatory and polycystic ovary syndrome. J. Pak. Med. Assoc. 2017, 67, 499–507. [Google Scholar] [PubMed]
- Covington, J.D.; Tam, C.S.; Pasarica, M.; Redman, L.M. Higher circulating leukocytes in women with PCOS is reversed by aerobic exercise. Biochimie 2016, 124, 27–33. [Google Scholar] [CrossRef]
- Redman, L.M.; Elkind-Hirsch, K.; Ravussin, E. Aerobic exercise in women with polycystic ovary syndrome improves ovarian morphology independent of changes in body composition. Fertil. Steril. 2011, 95, 2696–2699. [Google Scholar] [CrossRef]
- Stener-Victorin, E.; Baghaei, F.; Holm, G.; Janson, P.O.; Olivecrona, G.; Lönn, M.; Mannerås-Holm, L. Effects of acupuncture and exercise on insulin sensitivity, adipose tissue characteristics, and markers of coagulation and fibrinolysis in women with polycystic ovary syndrome: Secondary analyses of a randomized controlled trial. Fertil. Steril. 2012, 97, 501–508. [Google Scholar] [CrossRef]
- Aktaş, H.Ş.; Uzun, Y.E.; Kutlu, O.; Pençe, H.H.; Özçelik, F.; Çil, E.Ö.; Irak, L.; Altun, Ö.; Özcan, M.; Özsoy, N.; et al. The effects of high intensity-interval training on vaspin, adiponectin and leptin levels in women with polycystic ovary syndrome. Arch. Physiol. Biochem. 2022, 128, 37–42. [Google Scholar] [CrossRef]
- Lin, A.W.; Lujan, M.E. Comparison of dietary intake and physical activity between women with and without polycystic ovary syndrome: A review. Adv. Nutr. 2014, 5, 486–496. [Google Scholar] [CrossRef]
- Amirjani, S.; Asemi, Z.; Bazarganipour, F.; Aramesh, S.; Allan, H.; Sayadi, M.; Tabatabaei, M.S.; Mohamadian, Z.; Zabti, F.; Iranpak, N.; et al. Dietary intake and lifestyle behaviour in different phenotypes of polycystic ovarian syndrome: A case-control study. J. Hum. Nutr. Diet. 2019, 32, 413–421. [Google Scholar] [CrossRef]
- Nybacka, Å.; Hellström, P.M.; Hirschberg, A.L. Increased fibre and reduced trans fatty acid intake are primary predictors of metabolic improvement in overweight polycystic ovary syndrome-Substudy of randomized trial between diet, exercise and diet plus exercise for weight control. Clin. Endocrinol. 2017, 87, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Nybacka, Å.; Carlström, K.; Ståhle, A.; Nyrén, S.; Hellström, P.M.; Hirschberg, A.L. Randomized comparison of the influence of dietary management and/or physical exercise on ovarian function and metabolic parameters in overweight women with polycystic ovary syndrome. Fertil. Steril. 2011, 96, 1508–1513. [Google Scholar] [CrossRef] [PubMed]
- Shishehgar, F.; Mirmiran, P.; Rahmati, M.; Tohidi, M.; Tehrani, F.R. Does a restricted energy low glycemic index diet have a different effect on overweight women with or without polycystic ovary syndrome? BMC Endocr. Disord. 2019, 19, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Dâmaso, A.R.; Machado, P.P.; Rhein, S.O.; Masquio, D.C.L.; Oyama, L.M.; Boldarine, V.T.; de Oliveira, G.I.; Tock, L.; Thivel, D.; da Silveira Campos, R.M. Effects of an interdisciplinary weight loss program on fibroblast growth factor 21 and inflammatory biomarkers in women with overweight and obesity. Arch. Endocrinol. Metab. 2021, 65, 821–831. [Google Scholar] [CrossRef]
- Vu, V.; Riddell, M.C.; Sweeney, G. Circulating adiponectin and adiponectin receptor expression in skeletal muscle: Effects of exercise. Diabetes Metab. Res. Rev. 2007, 23, 600–611. [Google Scholar] [CrossRef]
Parameters | PCOS (n = 56) | CONTROL (n = 33) | p-Value * |
---|---|---|---|
Age and Anthropometric Measurements | |||
Age (years) | 25.96 ± 4.10 | 29.12 ± 6.85 | NS |
25.00 (19–38) | 31.00 (19–38) | ||
Weight (kg) | 75.99 ± 21.46 | 63.09 ± 10.44 | 0.008 |
70.00 (45.0–126.4) | 60.00 (47.0–93.0) | ||
Height (cm) | 166.70 ± 5.12 | 167.42 ± 5.85 | NS |
165.00 (158–180) | 167.00 (154–178) | ||
BMI (kg/m2) | 27.25 ± 7.40 | 22.43 ± 3.17 | 0.004 |
24.65 (17.2–42.9) | 21.90 (17.9–32.9) | ||
WC (cm) | 86.84 ± 18.34 | 75.20 ± 8.12 | 0.003 |
84.50 (58–126) | 73.50 (63–91) | ||
Body Composition | |||
FM (kg) | 27.93 ± 15.81 | 18.34 ± 7.44 | 0.008 |
23.24 (7.45–64.37) | 16.75 (8.94–40.55) | ||
FM (%) | 34.08 ± 10.62 | 28.04 ± 6.66 | 0.010 |
33.16 (15.84–51.96) | 27.92 (16.25–43.60) | ||
VAT (cm2) | 154.32 ± 124.21 | 72.52 ± 42.24 | 0.018 |
112.50 (21–350) | 57.00 (22–174) | ||
SAT (cm2) | 149.68 ± 87.86 | 94.39 ± 39.99 | 0.003 |
126.00 (37–380) | 88.00 (28–212) | ||
VAT/SAT | 1.03 ± 0.58 | 0.77 ± 0.30 | NS |
0.87 (0.38–2.41) | 0.74 (0.33–1.45) | ||
FFM (kg) | 48.06 ± 6.14 | 44.91 ± 3.93 | 0.021 |
46.76 (37.40–64.07) | 44.77 (37.25–53.79) | ||
FFM (%) | 65.99 ± 10.51 | 71.96 ± 6.66 | 0.010 |
66.84 (48.05–84.16) | 72.08 (56.40–83.75) | ||
MM (kg) | 21.07 ± 2.92 | 19.51 ± 1.76 | 0.012 |
20.46 (14.76–28.34) | 19.52 (16.22–23.71) | ||
BCM (kg) | 25.24 ± 4.41 | 22.87 ± 2.35 | 0.015 |
24.2 (15.96–35.13) | 22.9 (18.79–28.36) | ||
ECM (kg) | 22.78 ± 2.10 | 22.05 ± 1.92 | NS |
22.7 (19.00–28.94) | 21.8 (18.45–25.92) | ||
TBW (%) | 46.50 ± 5.20 | 49.75 ± 3.99 | 0.004 |
46.37 (37.50–55.88) | 49.65 (41.3–57.61) | ||
ECW (%) | 47.15 ± 3.74 | 48.29 ± 3.36 | 0.002 |
46.70 (44.32–67.97) | 47.53 (45.63–61.95) | ||
ICW (%) | 52.86 ± 3.75 | 51.70 ± 3.36 | 0.002 |
53.30 (32.02–56.67) | 52.46 (38.04–54.36) | ||
ECW/ICW | 0.91 ± 0.20 | 0.94 ± 0.16 | 0.002 |
0.88 (0.80–2.12) | 0.91 (0.84–1.63) | ||
Biochemical Parameters | |||
Fasting glucose (mg/dL) | 91.63 ± 6.98 | 96.45 ± 6.26 | <0.001 |
90.50 (77.4–122.0) | 96.00 (82.0–113.0) | ||
Fasting insulin (μU/mL) | 7.71 ± 4.39 | 8.24 ± 3.73 | NS |
6.50 (2.50–24.07) | 7.50 (3.40–18.00) | ||
Adiponectin (μg/mL) | 8.13 ± 3.51 | 14.70 ± 5.92 | <0.001 |
7.57 (2.20–16.40) | 14.15 (5.02–27.50) | ||
Leptin (ng/mL) | 14.42 ± (10.77) | 10.46 ± 9.25 | NS |
10.31 (1.40–48.20) | 6.60 (2.01–43.58) | ||
Resistin (ng/mL) | 7.29 ± 2.50 | 7.41 ± 1.75 | NS |
6.72 (4.10–15.70) | 6.93 (4.73–12.14) | ||
HOMA-IR | 1.77 ± 1.08 | 1.97 ± 0.92 | NS |
1.38 (0.54–5.59) | 1.70 (0.80–4.43) | ||
HOMA-AD | 6.70 ± 5.97 | 3.58 ± 2.35 | 0.029 |
4.11 (1.17–23.98) | 3.29 (0.99–11.63) | ||
L/A | 2.60 ± 2.74 | 0.93 ± 1.25 | <0.001 |
1.40 (0.12–12.06) | 0.56 (0.13–6.55) | ||
Diet Score and Physical Activity | |||
Diet score | 7.56 ± 2.46 | 8.15 ± 2.10 | NS |
7.50 (1.5–13.0) | 8.50 (3.5–12.0) | ||
Moderate [min/week] | 296.06 ± 137.94 | 372.41 ± 139.28 | 0.012 |
264.33 (71.50–611) | 359.10 (158.17–821.50) | ||
Vigorous [min/week] | 20.24 ± 36.31 | 35.34 ± 45.72 | 0.009 |
8.50 (0.00–223.67) | 16.80 (2.80–203.83) | ||
MVPA [min/week] | 316.30 ± 141.42 | 407.67 ± 135.78 | 0.003 |
301.92 (72.17–627.33) | 376.60 (186.80–835.33) |
Parameters | Adiponectin | Leptin | Resistin | Fasting Insulin | Fasting Glucose | HOMA-IR | HOMA-AD | A/L | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCOS | Control | PCOS | Control | PCOS | Control | PCOS | Control | PCOS | Control | PCOS | Control | PCOS | Control | PCOS | Control | |
Weight (kg) | −0.5997 * | −0.2335 | 0.6896 * | 0.7141 * | 0.6133 * | 0.0802 | 0.6041 * | 0.2121 | 0.5819 * | 0.0998 | 0.5859 * | 0.2177 | 0.7197 * | 0.5340 * | 0.6807 * | 0.7304 * |
BMI (kg/m2) | −0.6057 * | −0.1443 | 0.7208 * | 0.7676 * | 0.6034 * | 0.1274 | 0.6062 * | 0.2520 | 0.5419 * | 0.0784 | 0.5903 * | 0.2516 | 0.7012 * | 0.5169 * | 0.6979 * | 0.7393 * |
WC (cm) | −0.6034 * | −0.2544 | 0.7154 * | 0.6545 * | 0.5639 * | 0.0706 | 0.6147 * | 0.1175 | 0.5715 * | 0.1690 | 0.5984 * | 0.1404 | 0.6983 * | 0.4317 * | 0.6907 * | 0.5929 * |
FM (%) | −0.5835 * | 0.0914 | 0.7437 * | 0.7838 * | 0.5843 * | 0.1219 | 0.6139 * | 0.3266 | 0.5412 * | 0.1059 | 0.5823 * | 0.3240 | 0.6735 * | 0.4727 * | 0.6958 * | 0.6481 * |
VAT (cm2) | −0.6508 * | 0.1500 | 0.7396 * | 0.7544 * | 0.4915 * | 0.0486 | 0.6224 * | 0.2457 | 0.5575 * | 0.1170 | 0.6061 * | 0.2572 | 0.7185 * | 0.4746 * | 0.7305 * | 0.6371 * |
SAT (cm2) | −0.5232 * | 0.2665 | 0.6736 * | 0.8015 * | 0.4339 * | 0.1994 | 0.6038 * | 0.5100 * | 0.4743 * | 0.1871 | 0.5742 * | 0.5239 * | 0.5766 * | 0.6985 * | 0.5949 * | 0.7710 * |
VAT/SAT | −0.5187 * | 0.1072 | 0.5978 * | 0.1897 | 0.4688 * | −0.1556 | 0.5616 * | −0.2847 | 0.5042 * | 0.0313 | 0.5401 * | −0.2794 | 0.6307 * | −0.1145 | 0.5890 * | 0.0860 |
FFM (%) | 0.5852 * | 0.0910 | −0.7451 * | −0.7844 * | −0.5933 * | −0.1212 | −0.6014 * | −0.3268 | −0.5437 * | −0.1060 | −0.5886 * | −0.3242 | −0.6805 * | −0.4729 * | −0.6992 * | −0.6486 * |
MM (kg) | −0.5526 * | −0.2201 | 0.5457 * | 0.4099 * | 0.5778 * | 0.0493 | 0.5265 * | 0.0539 | 0.5236 * | 0.0438 | 0.5170 * | 0.0603 | 0.6707 * | 0.4017 * | 0.6598 * | 0.5530 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurczewska, J.; Ostrowska, J.; Chełchowska, M.; Panczyk, M.; Rudnicka, E.; Kucharski, M.; Smolarczyk, R.; Szostak-Węgierek, D. Physical Activity, Rather Than Diet, Is Linked to Lower Insulin Resistance in PCOS Women—A Case-Control Study. Nutrients 2023, 15, 2111. https://doi.org/10.3390/nu15092111
Jurczewska J, Ostrowska J, Chełchowska M, Panczyk M, Rudnicka E, Kucharski M, Smolarczyk R, Szostak-Węgierek D. Physical Activity, Rather Than Diet, Is Linked to Lower Insulin Resistance in PCOS Women—A Case-Control Study. Nutrients. 2023; 15(9):2111. https://doi.org/10.3390/nu15092111
Chicago/Turabian StyleJurczewska, Justyna, Joanna Ostrowska, Magdalena Chełchowska, Mariusz Panczyk, Ewa Rudnicka, Marek Kucharski, Roman Smolarczyk, and Dorota Szostak-Węgierek. 2023. "Physical Activity, Rather Than Diet, Is Linked to Lower Insulin Resistance in PCOS Women—A Case-Control Study" Nutrients 15, no. 9: 2111. https://doi.org/10.3390/nu15092111
APA StyleJurczewska, J., Ostrowska, J., Chełchowska, M., Panczyk, M., Rudnicka, E., Kucharski, M., Smolarczyk, R., & Szostak-Węgierek, D. (2023). Physical Activity, Rather Than Diet, Is Linked to Lower Insulin Resistance in PCOS Women—A Case-Control Study. Nutrients, 15(9), 2111. https://doi.org/10.3390/nu15092111